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Insights into nuclear saturation density from parity-violating electron scattering
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The saturation density of nuclear matter ρ0 is a fundamental nuclear physics property that is difficult to
predict from fundamental principles. The saturation density is closely related to the interior density of a heavy
nucleus, such as 208Pb. Parity-violating electron scattering can determine the average interior weak charge and
baryon densities in 208Pb. This requires not only measuring the weak radius Rwk but also determining the
surface thickness of the weak charge density a. We use the PREX experimental result for the weak radius
of Pb and assume a 10% theoretical uncertainty in the presently unmeasured surface thickness to obtain
ρ0 =0.150 ± 0.010 fm−3. Here the 7% error also has contributions from the extrapolation to infinite nuclear
matter. These errors can be improved with the upcoming PREX II results and with a new parity-violating electron
scattering experiment, at a somewhat higher momentum transfer, to determine a.
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I. INTRODUCTION

The saturation density of nuclear matter ρ0 is very im-
portant for the structure of nuclei. Infinite nuclear matter, a
hypothetical uniform system of protons and neutrons without
Coulomb interactions, is expected to have an energy per nu-
cleon that is minimized at ρ0. This minimum describes nuclear
saturation and is a fundamental nuclear-structure property.
Furthermore, this value of ρ0 is an important benchmark that
is used to measure even higher density matter in astrophysics
and in the laboratory. Nuclear saturation implies that the in-
terior density of heavy nuclei should be nearly constant and
close to ρ0. Historically, the semiempirical mass formula [1,2]
and the liquid drop model [3] describe the nucleus as an
incompressible quantum drop at ρ0. But why does nuclear
matter saturate? And how can one calculate the saturation
density ρ0? Surprisingly, the answers to these deceptively
simple questions have proved to be both subtle and elusive.

Liquid water saturates at a density of 1 g/cm3 because of
the size of the water molecules. Does nuclear matter saturate
because of the finite nucleon size and, if so, does this size
explain the value of ρ0 ≈0.15 fm−3? The situation is likely
more complicated. Nucleons are known to have repulsive
cores because phase shifts for nucleon-nucleon scattering be-
come negative at high energies. However, the core size is too
small to explain the value of ρ0 [4]. Indeed, nuclear matter
calculations with only two-nucleon interactions may saturate
at up to twice the expected density [5]. It is now believed
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that three- and higher-nucleon interactions are important for
nuclear saturation and for determining ρ0.

Chiral effective field theory (CEFT) provides a system-
atic expansion of the strong interaction between nucleons
in powers of the momentum transfer over a suitable chiral
scale [6–8]. This allows one to calculate the energy of nuclear
matter to a given order in a chiral expansion. Note that CEFT
includes two-, three-, and many-nucleon interactions. Under
this framework, the empirical saturation point (density and
energy per nucleon) are well reproduced within statistical and
systematic uncertainties [9,10]. The uncertainty band comes
from the truncation of the chiral expansion and from imposing
a cutoff at high-momentum transfers. Whereas CEFT appears
consistent with nuclear saturation at ρ0, the error band in
present calculations is too broad to make a sharp prediction
of the actual value of ρ0.

So if one cannot accurately compute ρ0 from first-principle
calculations, can one observe it? Strictly speaking, nuclear
matter is an infinite system without Coulomb interactions,
so observations of ρ0 must involve an extrapolation from
measurements in finite nuclei; see, for example, Ref. [11].
Nevertheless, the interior baryon density of heavy nuclei is
expected to be fairly constant and close to ρ0. Among heavy
nuclei, 208Pb may be particularly important because it is the
heaviest stable doubly magic nucleus. As such, the interior
baryon density of 208Pb may provide the finite nucleus observ-
able that is most closely related to ρ0. In this paper we present
a new measurement of the interior baryon density of 208Pb
based on results from the PREX experiment [12,13].

Unfortunately, we do not have detailed knowledge of the
neutron density in 208Pb; see Ref. [14] and references con-
tained therein. The charge density is well measured so the
proton density is accurately known [15]. However, 208Pb has
44 excess neutrons, so the neutron density can be signifi-
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cantly different from the proton density. Given this incomplete
information, our present best estimate of ρ0 comes from a
variety of empirical nuclear energy-density functionals. These
functionals are calibrated to the binding energies and charge
radii of a variety of nuclei and can then be used to predict ρ0,
see, for example, Refs. [16,17]. In particular, Reinhard and
Nazarewicz argue that fitting charge radii sharply constrains
ρ0 [18].

Alternatively, if one can cleanly measure the interior neu-
tron density of 208Pb, then one should be able to infer ρ0 with
small and quantifiable uncertainties. Often neutron densities
are determined with strongly interacting probes [19], such
as antiprotons [20,21], elastic proton scattering [22], heavy-
ion collisions [23], elastic pion scattering [24], and coherent
pion photo production [25]. One typically measures cross
sections or spin observables that involve the convolution of
the neutron density with an effective strong-interaction range
for the probe. Although these observables can be measured
with small statistical uncertainties, complexities arising from
the strong interaction introduce significant systematic errors
in the extracted neutron densities [14].

It is also possible to measure neutron densities, or
equivalently weak charge densities, with electroweak probes
using coherent neutrino-nucleus scattering [26–29] or parity-
violating (PV) electron scattering [12,30]. This is because
the weak charge of a neutron is much larger than that of a
proton, so the weak charge density of a nucleus is very closely
related to its neutron distribution. Compared to strongly
interacting probes, parity violation offers a clean and model-
independent way to determine the weak charge density with
much smaller uncertainties (statistical+systematic) than with
strongly interacting probes. In the past few decades signifi-
cant theoretical [30–37] and experimental [12,38] efforts have
been devoted to improve parity-violating electron scattering
experiments. At Jefferson laboratory, the radius of the weak
charge density of 208Pb was measured in the original PREX
campaign [12,13] and is now being measured with increased
precision during the follow-up PREX-II campaign [39]. At the
same time, CREX will provide the first electroweak determi-
nation of the weak radius of 48Ca [40].

Present parity-violating experiments focus on determining
the rms radius of the weak charge density Rwk from a sin-
gle measurement at a relatively low-momentum transfer. Yet
additional features of the weak charge density ρwk(r) can be
revealed by measuring the parity-violating asymmetry Apv

at higher-momentum transfers. If Apv is measured at several
momentum transfers, then a complete model independent rep-
resentation of the weak charge density can be determined [41],
either as Fourier Bessel expansion or as a sum of Gaussians.
This is feasible for 48Ca and may require measurements at
six or seven momentum transfers. For 208Pb, however, this
is more challenging because a determination of ρwk in the
nuclear interior requires a measurement at high-momentum
transfer where the elastic cross section is very small.

What is then required to determine the saturation den-
sity ρ0? In principle, one could follow these four steps: (a)
Determine the entire weak charge density ρwk(r) of 208Pb,
(b) average over ρwk(r) in the interior to obtain a measure
of the average weak charge density, (c) combine this average

weak charge density with an average of the experimental
charge density to obtain a measure of the interior baryon
density, and (d) extrapolate such a value to the very closely
related saturation density of infinite nuclear matter. Here we
combine the first two steps in a manner that dramatically
minimizes the need for parity-violating experiments.

II. FORMALISM

We propose, rather than to determine the full density, a
simple representation of ρwk(r) using a symmetrized two-
parameter Fermi function that is then used to perform the
interior average. That is, we model ρwk(r) as [42,43]

ρwk(r, c, a) = ρ0
wk

sinh(c/a)

cosh (r/a) + cosh(c/a)
, (1)

where c is the half-density radius, a the surface diffuseness,
and the normalization constant is

ρ0
wk = 3Qwk

4πc(c2 + π2a2)
⇒

∫
d3rρwk(r, c, a) = Qwk. (2)

Here the total weak charge of a nucleus with N neutrons and
Z protons is Qwk = QnN + QpZ , where (including radiative
corrections [44,45]) Qn =−0.9878 is the weak charge of a
neutron, and Qp =0.0721 that of a proton. For 208Pb, Qwk =
−118.551.

While the symmetrized Fermi (SFermi) function is practi-
cally indistinguishable from the conventional Fermi function,
its superior analytic properties allows one to determine the
form factor as well as all its moments in closed form [42,43].
In particular, the mean-square weak radius is

R2
wk = 1

Qwk

∫
r2ρwk(r)d3r = 3

5
c2 + 7

5
(πa)2. (3)

We propose to use ρ0
wk in Eq. (2) as the measure of the average

interior weak charge density, which for clarity we rewrite in
terms of the weak radius Rwk rather than c:

ρ0
wk = 27Qwk

4π
(
5R2

wk − 4π2a2
)√

15R2
wk − 21π2a2

. (4)

Given that we are interested only in the average density ρ0
wk

rather than on the full density, PV experiments need only
to determine the weak radius Rwk and the surface thickness
a. The existing PREX and PREX II [39] measurements are
primarily sensitive to Rwk, so an additional PV experiment at a
somewhat higher-momentum transfer could determine a [43].
We will describe this experiment in a forthcoming paper.

We illustrate our procedure in Fig. 1, which shows the
experimental charge density of 208Pb along with a SFermi
function fit that yields: cch =6.6658 fm, ach =0.51219 fm,
and a corresponding charge radius of Rch =5.5031 fm [15].
In turn, this implies a normalization of ρ0

ch =0.06246 fm−3.
This is our measure of the average interior charge density
of 208Pb. Figure 1 also shows a model weak charge density
as predicted by the FSUGold relativistic mean-field inter-
action [46] and the corresponding SFermi function fit. The
SFermi functions—which average over shell oscillations—are
seen to be very good representations of both the (electromag-
netic) charge and weak charge densities. Note that we are
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FIG. 1. The experimental charge density of 208Pb [15] (red cir-
cles) and the corresponding SFermi function fit (solid red line). Also
shown is the weak charge density as predicted by the FSUGold
interaction [46] (blue circles) along with a SFermi function fit (solid
black line).

not proposing to use model predictions for the weak charge
density but rather a SFermi function with both parameters Rwk

and a determined from experiment.
We now combine the average interior weak and charge

densities to obtain an estimate of the average interior baryon
density ρ0

b . That is,

ρ0
b = ρ0

n + ρ0
p = 1

Qn

(
ρ0

wk − Qpρ
0
ch

) + ρ0
ch

= 1

Qn
ρ0

wk +
(

1 − Qp

Qn

)
ρ0

ch

= −(1.0123)ρ0
wk + (1.0730)ρ0

ch. (5)

The final step is to extrapolate the interior baryon density ρ0
b to

the closely related saturation density of infinite nuclear matter
ρ0. We define an extrapolation factor fex as the saturation
density of infinite nuclear matter ρ0 over the average interior
density of 208Pb:

fex = ρ0

ρ0
b

. (6)

We expect fex ≈1. We estimate fex by considering a variety
of relativistic and nonrelativistic energy-density functionals
(EDFs). For each EDF one calculates point proton ρp(r) and
neutron ρn(r) densities and then computes the weak density
by folding these point-nucleon densities with a dipole nucleon
form factor of radius rp = 0.84 fm that accounts for the finite
nucleon size. Next, one fits SFermi functions to the model
weak and charge densities to obtain ρ0

wk, ρ0
ch, and ultimately

ρ0
b from Eq. (5). Comparing this value of ρ0

b to the prediction
for the saturation density ρ0 yields fex for that particular EDF.

Results are plotted in Fig. 2 for the following nonrelativis-
tic Skyrme functionals: SIII [47], SLY4, SLY5, SLY7, and
SKM* [48], SV-min [17], UNEDF0 [49], and UNEDF1 [50].
We also include results for the following relativistic func-
tionals: FSUGold [46], IUFSU [51], NL3 [52], FSUGarnet,
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FIG. 2. The extrapolation factor fex defined in Eq. (6) as a func-
tion of the the neutron skin thickness of 208Pb for a number of
nonrelativistic and relativistic EDFs. Shown with triangles is the
extrapolation factor f̃ex to asymmetric nuclear matter with the same
ratio of neutrons to protons as 208Pb.

RMF012, 022, 028, and 032 [53]. We see that fex is indeed
close to one for all of the models that have been considered.
However, if one looks in more detail, then fex for relativistic
models is in general very close to one with a slight increase
with increasing neutron skin (neutron minus proton radius
Rn−Rp). This is likely related to the density dependence of
the symmetry energy which increases with increasing neutron
skin. Most of the nonrelativistic models that we consider
predict fex ≈1.04 and this is noticeably larger than for the
relativistic functionals. This is an interesting result that may
be related to the assumed density dependence of the various
EDFs. For example, the old Skyrme force SIII, with γ =1 for
the density-dependent term t3ργ , predicts fex ≈ 0.99 that is
close to the prediction of most relativistic models. In contrast,
all other Skyrme forces (shown in Fig. 2) have smaller values
for γ and yield significantly larger fex.

The extrapolation from ρ0
b in 208Pb to ρ0 involves three

effects. First, surface tension—which is absent in an infinite
system—increases the density of lead and tends to make fex <

1. Second, Coulomb interactions which are ignored in infinite
nuclear matter reduce the density of lead making fex >1.
To some extent, effects from surface tension and Coulomb
interaction cancel out restoring fex ≈ 1. Finally, one is ex-
trapolating in isospin from the neutron rich lead nucleus to
symmetric nuclear matter, as ρ0 is the saturation density of
symmetric nuclear matter.

To explore the consequences of the extrapolation in
isospin, we define ρ̃0 as the saturation density of asymmetric
nuclear matter with a proton fraction identical to that of 208Pb,
namely, Yp =82/208�0.39. It is a simple matter to calculate
ρ̃0 for all EDFs included in Fig. 2. Note that to a very good
approximation ρ̃0 is given by [54]

ρ̃0

ρ0
= 1 − 3

L

K
α2 + O(α4), (α=1−2Yp), (7)
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where K is the incompressibility coefficient of symmetric
matter and L the slope of the symmetry energy. Following
Eq. (6) we define in analogy f̃ex = ρ̃0/ρ

0
b . Values for f̃ex are

shown in Fig. 2 using up- and down-triangles. For relativistic
functionals, fex ≈1 and the interior density of lead is close to
the saturation density of symmetric nuclear matter. However,
f̃ex <1 as ρ̃0 decreases with increases L, a quantity that is
strongly correlated to Rn−Rp. In contrast, for nonrelativistic
functionals f̃ex ≈ 1 so the interior density of lead is close to
the saturation density of asymmetric nuclear matter.

This interesting difference between relativistic and nonrel-
ativistic functionals should be explored using other models.
For example, by building on 48Ca [55,56], microscopic cou-
pled cluster calculations for 208Pb may become feasible in the
near future. This could provide a microscopic determination
of fex that is more closely connected to chiral two- and three-
nucleon forces. Until then, we use all models in Fig. 2 to infer
the following limit:

fex ≈ 1.02 ± 0.03. (8)

That is, the extrapolation to infinite nuclear matter introduces
a ∼3% uncertainty in the inferred value of ρ0.

In summary, PV experiments can determine both the radius
Rwk and surface thickness a of the weak charge density of
208Pb, from which the average weak density ρ0

wk is calculated
using Eq. (4). The known charge density ρ0

ch is then added to
ρ0

wk in Eq. (5) to obtain ρ0
b . This, in turn, is extrapolated to ρ0

using Eqs. (6) and (8).

III. RESULTS

We present a first estimate of ρ0 based on the existing
PREX result of Rwk =5.826 ± 0.181 fm [13]. Unfortunately,
at present there is no electroweak experiment that constrains
the surface thickness a. Thus, we provide a conservative
theoretical estimate for a. Considering all EDFs in Fig. 2
yields a surface thickness in the 0.58 fm (SIII) to 0.632 fm
(RMF032) range. We arbitrarily select the UNEDF0 result
to define the central value and assign a very conservative
10% error that more than covers the theoretical range; that
is, a=0.616 ± 0.062 fm. A future PV experiment at a slightly
larger-momentum transfer to constrain a would allow a direct
experimental determination of the interior weak density.

Adopting the PREX value for Rwk, our theoretical assump-
tion for a, and Eqs. (4) and (5) yields,

ρ0
b = 0.1473 ± 0.0084 ± 0.0030 fm−3, (9)

where the first error is from the PREX error in Rwk while the
second error corresponds to our assumed 10% uncertainty in
a. The last step is to multiply this result by fex =1.02 ± 0.03
to get our present estimate for the saturation density of nuclear
matter:

ρ0 = 0.1502 ± 0.0086 ± 0.0031 ± 0.0045 fm−3, (10)

where the last error is due to the uncertainty in fex. Adding all
three errors in quadrature gives a total uncertainty of 7% that
is dominated by the error in Rwk. That is,

ρ0 = 0.150 ± 0.010 fm−3. (11)
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FIG. 3. Theoretical prediction for the baryon density of 208Pb.
The error band assumes that Rwk is measured to 1% and the surface
thickness is constrained to 10%, see text for details. The correspond-
ing curve for the weak charge density is also shown. Finally, the
experimental charge density [15] is displayed along with a SFermi
fit.

Our result is consistent, although somewhat lower, than
the phenomenological estimate of ρ0 =0.164 ± 0.007
fm−3 claimed in Ref. [9] based on some selected
density functionals—yet fully consistent with ρ0 =
0.151 ± 0.001 fm−3 predicted by a relativistic EDF calibrated
using exclusively physical observables [57]. Note that
an alternative procedure that uses a Helm-type [13,58]
weak charge density instead of a SFermi function yields a
consistent, yet slightly lower, density than Eq. (11).

How accurately can ρ0 be measured in the near future?
The PREX II campaign has completed data taking with a
goal of measuring Rwk to 1%. Figure 3 shows an example
baryon density for 208Pb assuming a SFermi weak charge
density with Rwk = 5.826 fm (central PREX value [13]) and
a = 0.62 fm. We have added the charge density as per Eq. (5).
The error band in Fig. 3 includes a 1% error in Rwk and a 10%
error in a added in quadrature. This total error corresponds
to ±0.004 fm−3 in ρ0

b or about a 2.5% error in ρ0 that is
comparable to our assumed 3% error in fex.

There is strong motivation for an additional parity-
violating electron scattering experiment to measure the
surface thickness a. Both PREX and PREX II were performed
at a momentum transfer of q ≈ 0.475 fm−1 and are primarily
sensitive to the weak radius. Instead, a new experiment near
q ≈ 0.78 fm−1 is sensitive to a [43]. Following Ref. [59]
we have calculated the parity-violating asymmetry Apv for
elastic electron scattering including Coulomb distortions [31].
We find that the logarithmic derivative of Apv with respect
to log(a) is about 0.53 at q = 0.78 fm−1. Therefore a 5%
measurement of Apv can constrain a to 10%. We will discuss
this possible experiment in more detail in a forthcoming paper.

IV. CONCLUSIONS

In conclusion, the saturation density of nuclear matter
ρ0 is a fundamental nuclear physics property that is diffi-
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cult to predict from chiral effective field theory. Because
of nuclear saturation, ρ0 is closely related to the interior
density of a heavy nucleus. We emphasize that the average
interior baryon density of 208Pb is an experimentally observ-
able quantity that can be determined with parity-violating
electron scattering. We used the existing PREX results for
the weak radius to obtain a first measurement of the in-
terior baryon density of 208Pb. We then extrapolated this
result to infinite nuclear matter and obtained ρ0 =0.150 ±
0.011 fm−3. The quoted 7% error has contributions from
the PREX error on the weak radius, uncertainty in a theo-
retical estimate of the surface thickness a, and the error in
extrapolating to infinite nuclear matter. These errors can be
improved with the upcoming PREX II results and with a new
parity violating electron scattering experiment—at a some-
what higher-momentum transfer—to determine the surface

thickness of the weak density. This will allow an accurate
determination of ρ0 that is very closely related to the ex-
perimentally measured interior baryon density of 208Pb. As
a result of the parity-violating measurements, the theoretical
assumptions necessary to extract ρ0 will be both reduced and
clarified.
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