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Collectivity of the 2+
1 state in Z � 82 even-even nuclei probed by a ratio involving dynamic and static

electromagnetic E2 moments: Evolution of the quadrupole degrees of freedom and a new signature
for shape coexistence
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We present a new approach to investigate the evolution of collectivity on the nuclear map based on the
ratio R = B(E2; 2+

1 → 0+
1 )exp/B(E2; 2+

1 → 0+
1 )Q, where the quantity in the denominator is calculated using the

quadrupole moment of the 2+
1 level when known. The systematics of such ratios in even-even nuclei reveals

interesting features including signatures for particular collective excitations and sensitivity to shell- and subshell
closures. A reproduction of these data by theoretical models is highly desirable with the potential to shed more
light on the interplay between collective and single-particle motions. In particular, a new signature for shape
coexistence was found: R < 1.
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I. INTRODUCTION

Nuclei are examples of quantum systems with a relatively
small number of constituent particles appealing for finding
solutions of the many-body quantum problem [1] on the basis
of the knowledge of the fundamental interactions. Nowadays,
ab initio calculations are feasible until mass number A ≈ 40.
Developments within the shell model (see, e.g., [2]), with
some separation of valence and core nucleons, allow to signif-
icantly extend its application range [3]. The latter separation is
similar to that in the generalized collective model [4] where,
however, the core may undergo collective excitations of vi-
brational and rotational type. Therefore the notion of nuclear
shape in a geometrical sense naturally emerges within that
model. Insight into such shapes can be gained also on the
basis of, e.g., shell-model calculations by determining in three
dimensions the geometrical characteristics of the space region
where the nucleons are confined or by considering collec-
tive potentials associated with vibrations/rotations. Thus, in
medium and heavy nuclei, taking into account the effects of
collective and single-particle degrees of freedom as well as
their interplay is the most common approach to study nu-
clear structure. The lowest order deviations from spherical
shape are quadrupole deformations which are described in
the body-fixed coordinate system in terms of the dynamic
variables/parameters β (associated with the degree of the
overall deformation) and γ (describing the motion or rigid
shape away from axial symmetry) [4]. In the present work, we
address the simplest quadrupole excitations by considering the
systematics of electromagnetic observables characterizing the
first excited 2+ states in even-even nuclei and more precisely,
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that of a new experimental quantity, a ratio, derived using
these observables. Systematics of similar kind were already
discussed in the literature [5,6] but we believe that the our
work presents some new features which may be used for a
more sensitive classification/assignment of excitation modes.

II. FORMALISM AND DEFINITION OF THE NEW RATIO

We start with some identities related to the basic electro-
magnetic observables, namely the reduced B(E2) transition
strength to the ground state and the quadrupole moment
Q(2+

1 ), which are used later. In axially symmetric nuclei the
rotational model predicts

B(E2; 2+
1 → 0+

1 ) = | < 0+
1 ||E2||2+

1 > |2
5

= 5

16π
< 2020|00 >2 Q2

0, (1)

where Q0 is the intrinsic quadrupole moment in the body-fixed
coordinate system. For shapes differing from axial symme-
try and somewhat phenomenologically, a new quantity, the
transition quadrupole moment Qt is often introduced which
simply replaces Q0 in Eq. (1), especially at higher spins. An-
other quadrupole observable is the spectroscopic quadrupole
moment Q which can also be experimentally determined.
In a spherical coordinate system the z component of the
quadrupole operator is expressed as

Q̃z =
√

16π

5
�A

i=1eir
2
i Y 0

2 (θi, φi ), (2)

where the sum runs over the nucleons. Its reduced matrix
element between the 2+

1 and 0+
1 states is related to Q0 via

〈0+
1 ||Q̃z||2+

1 〉 =
√

25

16π
〈2020|00〉Q0. (3)
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FIG. 1. Ratio R for even-even nuclei from Z = 6 to Z = 82 with known quadrupole moments of the 2+
1 levels. The data on B(E2)’s and

Q’s are taken from Ref. [5] where experimental results published in recent surveys are summarized. The only exceptions are these of 20,22Ne
[7] and 30,32S [8]. The line corresponding to an axially symmetric rotor (ASR) with R = 1 is also shown. The legend indicates the isotones
interconnected by lines in the figure. See also text.

The spectroscopic quadrupole moment of a nuclear state with
spin I is proportional to the reduced static matrix element of
the spherical tensor of second rank Q̃ (i.e., of the operator for
E2 transitions)

Q(I ) = 〈I, m = I|Q̃z|I, m = I〉

=
√

I (2I − 1)

(2I + 1)(2I + 3)(I + 1)
〈I||Q̃z||I〉. (4)

In the case of rotation of an axially deformed nucleus this
expression reduces to

Q = 3K2 − I (I + 1)

(I + 1)(2I + 3)
Q0, (5)

where K is the projection of the angular momentum on the
symmetry axis. Thus, for the first excited 2+ state, the first
member of the K = 0 rotational band built on the ground state,
one obtains

Q(2+
1 ) = − 2

7 Q0(2+
1 ). (6)

Therefore it is easy to employ the spectroscopic quadrupole
moment Q to “extract” Q0 and calculate a value of a B(E2)
transition strength via Eqs. (6),(1), namely, the expression
reads

B(E2; 2+
1 → 0+

1 )Q = 5

16π

(7

2

)2

〈2020|00〉2Q2. (7)

This new quantity B(E2)Q, although not a real observable,
can be considered as “experimental” since it is proportional

to the square of the measured quadrupole moment Q. Thus,
one can define a ratio R of the experimental B(E2)exp value to
the value B(E2)Q calculated using Q:

R = B(E2)exp

B(E2)Q
. (8)

Deviations of this value from R = 1 (ASR horizontal line in
Figs. 1, 2 and below) point to other shapes or collective and
single-particle degrees of freedom in the particular nucleus
compared to the simple rotation of the nucleon “fluid” com-
posed by some part of the constituents of the nucleus.

III. DISCUSSION OF THE SYSTEMATICS

In Fig. 1, we present the ratio R for nuclei with known
Q(2+

1 ) in the region Z � 82 in dependence from the number
of protons Z , and in Fig. 2 the same data as function of the
number of neutrons N . The data on Q’s and B(E2)’s were
taken from the recent systematics [5]. However, we decided
to employ in our considerations only data with relative un-
certainty �R

R � 100%. This excludes some of the data points
[5], mainly due to quadrupole moments (negative or positive)
with small modulus which are the most difficult to determine
experimentally. In Figs. 3,4, and5, we present the Nilsson
schemes relevant for the number of nucleons involving in the
present study.

Our considerations are very close the ideas developed ear-
lier by Robinson et al. in [6], where, however, the ratio of
the intrinsic quadrupole moment derived from the measured
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FIG. 2. The same data as in Fig. 1 but displayed as a function of the number of neutrons N . The isotopes of the different elements are
interconnected by lines. See also text.

spectroscopic quadrupole moment via Eq. (6) and the intrinsic
quadrupole moment derived using Eq. (1) from the experi-
mental B(E2) data is considered. We shall denote this ratio by

RQ0Q0 =
√

49

64π
Q(2+

1 )

/√
B(E2; 2+

1 → 0+
1 ). (9)

It should be mentioned, as the authors of [6] do, that the equa-
tions used to derive Eq. (9) are valid for axially symmetric
rotors and thus are not necessarily valid for every possible nu-
clear shape. Therefore also the B(E2)Q value calculated by us
using Eq. (1) represents simply an auxiliary/helping quantity
used for normalization/comparison such as the considerations
below. It should be mentioned that the work [6] was dedicated
not to a systematic study of RQ0Q0 across the nuclear map but
rather to a group of light nuclei close to and in the f p shell,
within the the context of shell-model tests of rotational-model
relations. The very recent systematics published by Sharon
et al. [5] employed the ratio

RQB = Q(2+
1 )√

B(E2; 0+
1 → 2+

1 )
(10)

which was investigated in the same range of nuclei as in our
study. Within the rotational model already discussed RQB =
−0.906, i.e., a quantity whose modulus is close to 1 [5]. One
advantage of this approach is that only purely experimental

quantities are used to define the ratio. But when the nuclei
considered deviate from this limit, the simplicity of the rela-
tion between Q(2+) and the square root of the B(E2) gets lost.
This is because there is not a universal relation between the di-
agonal reduced E2 matrix element related precisely to Q(2+)
and the off-diagonal reduced E2 matrix element connecting
the 2+ and 0+ states. The ratio RQB cannot be mathematically
related to our ratio R in a simple way apart the axial rigid rotor
limit. But even in this case the transformation is not linear,
it is quadratic. Another advantage of Eq. (10) is the sign of
the ratio which may be both negative and positive keeping
the information on closeness of Q to the prolate or oblate
limits, respectively. As commented in Ref. [5], the RQB values
form mainly two distinct groups: one with values scattered
around to the rotational limit of −0.906 and another one,
characterized by a much bigger variance, scattered roughly
around the value RQB = −0.5. By an optical investigation of
the mass number and elemental dependence of RQB shown in
Fig. 1 of Ref. [5] one can easily associate the latter group
with vibrational and more or less transitional nuclei with few
exceptions. The ratio R used in the present work emphasizes
the cases of large excursions from the rotational model in
cases of measured quadrupole moments with small modulus
as well as the cases R < 1 (see below).

The results of the calculations of R are summarized in
Table I. Below we will consider them, first concentrating on
the effects whose single particle nature is easy to gain close
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TABLE I. In the first three columns, the nuclide is identified by Z , N , and A, respectively. The experimental data with their uncertainties
on the spectroscopic quadrupole moments Q (given in eb) and the B(E2; 2+

1 → 0+
1 ) transition strengths (in e2b2) are displayed in the next four

columns. The ratio R and and its error �R are shown in columns 7 and 8, respectively. In the next columns are displayed Nπ , Nν , their product
Nπ , Nν , and the distances from the closest magic numbers for the number of protons Z and neutrons N in terms of IBA [9] bosons, and the
distances from the closest magic numbers for the number of protons Z and neutrons N in terms of IBA [9] bosons, and finally, the normalized
product P = Nπ Nν

Nπ +Nν
(the so-called P factor [22]). See also text.

Z N A Q �Q B(E2) dB(E2) R �R Nπ Nν Nπ Nν Z-Zmagic−1 Zmagic-Z N-Nmagic−1 Nmagic-N
Nπ Nν

Nπ +Nν

8 8 16 −0.040 0.010 0.001 0.000 2.21 1.12 0 0 0 0 6 0 6 0.00
10 10 20 −0.230 0.030 0.006 0.001 0.50 0.14 1 1 1 1 5 1 5 0.50
10 12 22 −0.190 0.040 0.008 0.001 0.94 0.40 1 2 2 1 5 2 4 0.67
12 12 24 −0.290 0.030 0.009 0.000 0.43 0.09 2 2 4 2 4 2 4 1.00
12 14 26 −0.210 0.020 0.006 0.000 0.58 0.11 2 3 6 2 4 3 3 1.20
14 14 28 0.160 0.030 0.019 0.000 2.97 1.11 3 3 9 3 3 3 3 1.50
16 16 32 −0.160 0.020 0.005 0.000 0.80 0.21 2 2 4 4 2 4 2 1.00
20 22 42 −0.190 0.080 0.019 0.001 2.16 1.82 0 1 0 0 4 1 3 0.00
22 24 46 −0.210 0.060 0.019 0.001 1.77 1.01 1 2 2 1 3 2 2 0.67
22 26 48 −0.180 0.010 0.013 0.001 1.68 0.20 1 1 1 1 3 3 1 0.50
24 26 50 −0.360 0.070 0.021 0.001 0.67 0.26 2 1 2 2 2 3 1 0.67
24 28 52 −0.080 0.020 0.012 0.001 7.98 4.00 2 0 0 2 2 0 11 0.00
24 30 54 −0.210 0.080 0.017 0.001 1.59 1.21 2 1 2 2 2 1 10 0.67
26 30 56 −0.230 0.030 0.020 0.000 1.52 0.40 1 1 1 3 1 1 10 0.50
26 32 58 −0.270 0.050 0.024 0.001 1.37 0.51 1 2 2 3 1 2 9 0.67
28 32 60 −0.100 0.020 0.018 0.000 7.52 3.01 0 2 0 0 11 2 9 0.00
30 40 70 −0.240 0.030 0.030 0.002 2.15 0.55 1 5 5 1 10 6 5 0.83
32 40 72 −0.130 0.060 0.042 0.001 10.13 9.36 2 5 10 2 9 6 5 1.43
32 42 74 −0.190 0.020 0.061 0.003 6.96 1.50 2 4 8 2 9 7 4 1.33
32 44 76 −0.190 0.060 0.055 0.001 6.22 3.93 2 3 6 2 9 8 3 1.20
34 40 74 −0.360 0.070 0.071 0.004 2.26 0.89 3 5 15 3 8 6 5 1.88
34 42 76 −0.340 0.070 0.086 0.003 3.07 1.27 3 4 12 3 8 7 4 1.71
34 44 78 −0.260 0.090 0.069 0.002 4.16 2.89 3 3 9 3 8 8 3 1.50
34 46 80 −0.310 0.070 0.050 0.002 2.15 0.97 3 2 6 3 8 9 2 1.20
34 48 82 −0.220 0.070 0.037 0.002 3.10 1.98 3 1 3 3 8 10 1 0.75
42 54 96 −0.200 0.080 0.056 0.001 5.69 4.56 4 2 8 7 4 2 14 1.33
42 56 98 −0.260 0.090 0.054 0.001 3.27 2.27 4 3 12 7 4 3 13 1.71
42 58 100 −0.250 0.070 0.106 0.005 6.96 3.91 4 4 16 7 4 4 12 2.00
44 54 98 −0.210 0.080 0.080 0.003 7.46 5.69 3 2 6 8 3 2 14 1.20
44 56 100 −0.440 0.040 0.099 0.001 2.09 0.38 3 3 9 8 3 3 13 1.50
44 58 102 −0.630 0.040 0.126 0.002 1.31 0.17 3 4 12 8 3 4 12 1.71
44 60 104 −0.780 0.070 0.165 0.003 1.11 0.20 3 5 15 8 3 5 11 1.88
46 58 104 −0.460 0.110 0.106 0.003 2.05 0.98 2 4 8 9 2 4 12 1.33
46 60 106 −0.510 0.070 0.132 0.034 2.08 0.78 2 5 10 9 2 5 11 1.43
46 62 108 −0.580 0.040 0.153 0.004 1.86 0.26 2 6 12 9 2 6 10 1.50
46 64 110 −0.470 0.040 0.173 0.005 3.21 0.55 2 7 14 9 2 7 9 1.56
48 58 106 −0.280 0.080 0.081 0.002 4.26 2.44 1 4 4 10 1 4 12 0.80
48 60 108 −0.450 0.080 0.084 0.003 1.70 0.61 1 5 5 10 1 5 11 0.83
48 62 110 −0.400 0.040 0.085 0.004 2.19 0.45 1 6 6 10 1 6 10 0.86
48 64 112 −0.370 0.040 0.100 0.004 3.00 0.66 1 7 7 10 1 7 9 0.88
48 66 114 −0.350 0.010 0.107 0.005 3.59 0.26 1 8 8 10 1 8 8 0.89
48 68 116 −0.420 0.040 0.116 0.005 2.70 0.53 1 7 7 10 1 9 7 0.88
50 66 116 −0.170 0.040 0.041 0.001 5.86 2.76 0 8 0 0 16 8 8 0.00
52 70 122 −0.570 0.050 0.130 0.006 1.64 0.30 1 6 6 1 15 10 6 0.86
52 72 124 −0.450 0.050 0.112 0.006 2.27 0.52 1 5 5 1 15 11 5 0.83
52 74 126 −0.230 0.050 0.095 0.002 7.35 3.20 1 4 4 1 15 12 4 0.80
52 76 128 −0.220 0.050 0.076 0.001 6.44 2.93 1 3 3 1 15 13 3 0.75
52 78 130 −0.120 0.050 0.059 0.002 16.87 14.07 1 2 2 1 15 14 2 0.67
56 78 134 −0.260 0.120 0.133 0.004 8.07 7.46 3 2 6 3 13 14 2 1.20
56 80 136 −0.190 0.060 0.083 0.002 9.39 5.93 3 1 3 3 13 15 1 0.75
56 82 138 −0.140 0.060 0.046 0.002 9.63 8.27 3 0 0 3 13 0 22 0.00
58 84 142 −0.160 0.050 0.091 0.001 14.65 9.16 4 1 4 4 12 1 21 0.80
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TABLE I. (Continued.)

Z N A Q �Q B(E2) dB(E2) R �R Nπ Nν Nπ Nν Z-Zmagic−1 Zmagic-Z N-Nmagic−1 Nmagic-N
Nπ Nν

Nπ +Nν

60 84 144 −0.150 0.060 0.101 0.003 18.38 14.72 5 1 5 5 11 1 21 0.83
60 86 146 −0.780 0.090 0.150 0.004 1.01 0.23 5 2 10 5 11 2 20 1.43
60 88 148 −1.460 0.130 0.268 0.006 0.52 0.09 5 3 15 5 11 3 19 1.88
60 90 150 −2.000 0.050 0.541 0.006 0.56 0.03 5 4 20 5 11 4 18 2.22
62 86 148 −1.000 0.300 0.143 0.007 0.59 0.35 6 2 12 6 10 2 20 1.50
62 88 150 −1.300 0.200 0.269 0.005 0.65 0.20 6 3 18 6 10 3 19 2.00
62 90 152 −1.670 0.020 0.692 0.000 1.02 0.02 6 4 24 6 10 4 18 2.40
62 92 154 −1.870 0.040 0.869 0.001 1.02 0.04 6 5 30 6 10 5 17 2.73
64 90 154 −1.820 0.040 0.774 0.000 0.96 0.04 7 4 28 7 9 4 18 2.55
64 92 156 −1.930 0.040 0.940 0.022 1.04 0.05 7 5 35 7 9 5 17 2.92
64 94 158 −2.010 0.040 1.018 0.022 1.03 0.05 7 6 42 7 9 6 16 3.23
64 96 160 −2.080 0.150 1.037 0.003 0.98 0.14 7 7 49 7 9 7 15 3.50
66 98 164 −2.080 0.150 1.123 0.014 1.07 0.15 8 8 64 8 8 8 14 4.00
68 98 166 −1.900 0.400 1.145 0.009 1.30 0.55 7 8 56 9 7 8 14 3.73
68 102 170 −1.900 0.200 1.168 0.016 1.33 0.28 7 10 70 9 7 10 12 4.12
70 100 170 −2.180 0.030 1.145 0.009 0.99 0.03 6 9 54 10 6 9 13 3.60
70 102 172 −2.220 0.040 1.218 0.030 1.01 0.04 6 10 60 10 6 10 12 3.75
70 104 174 −2.180 0.050 1.170 0.032 1.01 0.05 6 11 66 10 6 11 11 3.88
70 106 176 −2.280 0.060 1.038 0.018 0.82 0.05 6 10 60 10 6 12 10 3.75
72 104 176 −2.100 0.020 1.084 0.034 1.01 0.04 5 11 55 11 5 11 11 3.44
72 106 178 −2.020 0.020 0.947 0.013 0.95 0.02 5 10 50 11 5 12 10 3.33
72 108 180 −2.000 0.020 0.929 0.001 0.95 0.02 5 9 45 11 5 13 9 3.21
74 106 180 −2.100 0.400 0.830 0.028 0.77 0.30 4 10 40 12 4 12 10 2.86
74 108 182 −2.100 0.400 0.825 0.008 0.77 0.29 4 9 36 12 4 13 9 2.77
74 110 184 −1.900 0.200 0.741 0.007 0.84 0.18 4 8 32 12 4 14 8 2.67
74 112 186 −1.600 0.300 0.700 0.008 1.12 0.42 4 7 28 12 4 15 7 2.55
76 108 184 −2.700 1.200 0.643 0.016 0.36 0.32 3 9 27 13 3 13 9 2.25
76 110 186 −1.630 0.040 0.613 0.014 0.95 0.05 3 8 24 13 3 14 8 2.18
76 112 188 −1.460 0.040 0.500 0.007 0.96 0.05 3 7 21 13 3 15 7 2.10
76 114 190 −1.180 0.030 0.469 0.018 1.38 0.09 3 6 18 13 3 16 6 2.00
76 116 192 −0.960 0.030 0.406 0.020 1.81 0.14 3 5 15 13 3 17 5 1.88
78 114 192 0.600 0.200 0.388 0.013 4.42 2.95 2 6 12 14 2 16 6 1.50
78 116 194 0.480 0.140 0.326 0.014 5.81 3.40 2 5 10 14 2 17 5 1.43
78 118 196 0.620 0.080 0.280 0.014 2.99 0.79 2 4 8 14 2 18 4 1.33
78 120 198 0.420 0.120 0.214 0.010 4.99 2.86 2 3 6 14 2 19 3 1.20
80 118 198 0.680 0.120 0.192 0.001 1.71 0.60 1 4 4 15 1 18 4 0.80
80 120 200 0.960 0.110 0.171 0.006 0.76 0.18 1 3 3 15 1 19 3 0.75
80 122 202 0.870 0.130 0.123 0.004 0.67 0.20 1 2 2 15 1 20 2 0.67
82 122 204 0.230 0.090 0.032 0.001 2.46 1.93 0 2 0 0 22 20 2 0.00

to filled main shells, i.e., to the magic numbers (Z, N = 2,
8, 20, 28, 50, 82, and 126). In principle, below Z, N = 82
there are cases where additional “magic” numbers associated
with complete filling of of subshells are suggested, e.g., 38,
40, 64. The latter number is related to the filling of the d5/2

and g7/2 subshells just above Z, N = 50. However, we limit
ourselves with the generally accepted standard numbers. After
these considerations, more general shape/collective effects as
well as their interplay with the single-particle ones will be
discussed.

1. Single-particle effects

The inspection of Figs. 1, 2 and Table I leads to the iden-
tification of nuclei with R values deviating significantly from
R = 1 as well as with appreciable evolution in R characteriz-
ing the respective isotopic chains where data are available. We

will separately consider these cases and try to associate them
with the population of the Nilsson orbitals evolution for both
proton and neutron systems. It should be mentioned that the
spherical gaps associated with specific Z, N (at ε2 = 0) are of
course modified at larger deformation, i.e., with the increase
of ε2 when the spherical subshells split into Nilsson states (cf.
Figs. 3, 4, and 5).

In general, the rather complex behavior of R is related
largely to proton-neutron interactions different for every
(Z, N) pair. The deviations are in most of the cases toward
a value R > 1 for the transitional and nearly spherical nuclei.
Ideally, the quadrupole moment of a spherical nucleus should
be zero, with no static deformation, but the quadrupole vi-
brations as well as other anharmonicities may dynamically
induce a small (effective) value of Q. Such values have the
tendency to make the ratio R large by the presence of the
relatively small B(E2)Q in the denominator of Eq. (8), in-
deed. More precisely, the reduced matrix element 〈I||Q̃z||I〉
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FIG. 3. Nilsson orbitals in the range of 8–50 neutrons in dependence on the quadrupole deformation parameter ε2 (ε2 ≈ 0.95 β.).

[Eq. (4)] in the definition of Q is proportional to the sum over
the nucleons of the integral of r2Y 0

2 (θ, φ) ∝ r2(3 cos2(θ ) −
1) taken between the bra and ket vectors of the state |I〉 [cf.
Eq. (2)]. We remind that the angle θ is measured about the
z intrinsic axis and therefore the matrix element considered
can be regarded as a measure of the deviation from spherical
symmetry. Let us assume that this integral is very small. The
reduced matrix element for the transition I → I − 2 is pro-
portional to the integral of the same quantity taken between
the wave vectors 〈I − 2| and |I〉. Since only the vector 〈I − 2|
is different, one should expect a somewhat larger value of the
integral now, otherwise the transition would not occur. This
effect seem to be the reason of the deviations of R toward

values larger than 1. Let us consider consecutively such de-
viations of R with increasing Z in Fig. 2 (when necessary, the
observations are combined with the data in Fig. 1 and Table I
as well as the filling of the Nilsson orbitals shown in Figs. 3,
4, and 5).:

(i) 28Si: In 28
14Si14 both proton and neutron systems fill

completely the 1d5/2 orbitals and these subshell clo-
sures lead to a spherical shape, at least at the lowest
spins.

(ii) 52Cr: In 52
24Cr28 the number of neutrons is magic

(N = 28) while the protons are in the middle of the
1 f7/2 subshell.
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FIG. 4. The same as Fig. 3 but for N from 50 to 82 .

(iii) 60Ni: In 60
28Ni32 the number of protons is magic (N =

28) while the neutrons fill completely the 2p3/2 sub-
shell (cf. Fig. 3).

(iv) Ge-Se isotopes: The Ge(Z = 32) and Se(Z = 34)
isotopic chains presented in Fig. 2 are characterized
by the same number of neutrons in the interval N =
40–44. However, the behavior of the corresponding
R’s is quite different. The stabilization (although
with fluctuations) toward lower values in Se may
be explained by the deformation-driving role of the
lowest 1/2[310] orbit stemming from the 1 f5/2 shell
filled with on the last two protons. Simultaneously, at
N = 40 all subshells below the 1g9/2 one are filled,
an energy gap appears between 2p1/2 and 1g9/2, and

the increase of N above 40 leads initially to prolate
deformation driving effect which is changed to a
preference for oblate deformation when approaching
the magic N = 50. This picture of somewhat dif-
ferent roles of protons and neutrons with respect to
the quadrupole deformation are consistent with the
suggested strong, nearly rigid triaxiality [10] close
to the ground states in even-even Ge and Se isotopes
on the basis of considering the lowest quadrupole
invariants of rang 2 and 3 (Q2 and Q3, see also
below).

(v) Mo-Ru-Pd-Cd isotopes: In the Mo, Ru, Pd, Cd iso-
topic chains (Z = 42,44,46,48, respectively) what
was said above for the Ge-Se neutrons can be re-
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FIG. 5. The same as Fig. 3 but for N > 82.

peated, but now with respect to the increase of the
proton numbers in the 1g9/2 subshell toward Z = 50.
In this group, N changes from 54 in 96Mo to 68
in 116Cd. There is some overlap between the neu-
tron numbers, especially in neighboring isotopes,
with N = 58 being present in all partial chains con-
sidered. This number is positioned about midshell
between magic N = 50 and the more questionable
but quite often suggested magic N = 64. It has to be
mentioned that the error bars of the data for the Mo
and light Ru isotopes are relatively large, but a ten-
dency seems to emerge for low values of R around
N = 58–60 and even values of R ≈ 1 are observed
in 102,104Ru. However, it would be premature to con-
clude that the A = 100 Ru and Pd nuclei are good

rotors, there are attempts to address the properties
of these nuclei in terms of features specific for a
transition between the U(5) and O(6) limits of the
IBA, and in general to find good candidates for the
E(5) critical point symmetry [11]. The fact that the
inclusion of a g boson in the framework of the IBA
leads to a good description of 104Ru [12] points to the
role of hexadecapole deformation effects and thus
to more complex nuclear shape. The Cd isotopes
also display a variety of properties suggesting shape
changes (see, e.g., the recent work [13] applying
the pseudo-SU(3) model to these isotopes and the
Sn ones) while they should be simply vibrator-like
nuclei, with some anharmonicities in the collective
potential. The high value R = 5.86 (2.76) for 116

50 Sn66

044317-8



COLLECTIVITY OF THE 2+
1 STATE IN Z � … PHYSICAL REVIEW C 102, 044317 (2020)

because its magic Z = 50 can be hardly surprising.
Thus, the Mo-Ru-Pd-Cd region remains a challenge
for nuclear theory.

(vi) Te isotopes: In the Te isotopes considered (Z = 52),
the outermost protons are lying on the deformation
driving orbitals stemming from the 2d5/2-1g7/2 sub-
shells. For the interval A = 122–130 the occupation
of the neutron orbitals undergoes an evolution from
slightly above midshell to the N = 82 closed shell.
This qualitatively explains the evolution of R values
from close to the ASR ones to R = 16.9(14.1) in
130Te.

(vii) Ba isotopes: In the Ba (Z = 56) isotopes considered
(A = 134–138), the error bars of the R’s are quite
large but nevertheless their mean value of about
R = 6 points to deviations from rigid axial shapes.
While the situation with the neutrons seems to be
clear (they approach gradually N = 82), that with
the protons is more complicated. On the one hand,
the 2d5/2 subshell could be fully filled. On the other
hand, there are indications that the 1g7/2 subshell
may come down and mix with the 2d5/2 orbital
[14]. Thus, effects driving to prolate deformation
may appear, opposite to the effect driven by the last
neutrons below and at N = 82. In this general frame-
work, experimental evidence for O(6)-like features
or γ -soft character of the Ba (and Xe) nuclei was
found [15]. Later this picture was somewhat revised
(see, e.g., [16]) but still the expectations for high
values of R are kept and indicate the deviations from
a rigid axial shape.

(viii) Ce-Nd isotopes: In the 142
58 Ce84 and 144–150Nd iso-

topes the high R values at N = 84 are obviously
related to magicity and with the complications in
the proton 2d5/2-1g7/2 subshells mentioned above.
The following drop in R in the Nd’s toward the ASR
value (in some cases even below) has as main reason
the gradual filling of the low-� neutron orbitals after
N = 82. These down-sloping orbitals stem from the
2 f7/2, 1h9/2, and 1i13/2 in the new shell. The effect is
nicely illustrated by the abrupt fall of R to the ASR
value in 146Nd down from that in 144Nd.

(ix) Os-Pt-Hg isotopes: These isotopes are positioned
at the end of the classical region 150 < A <

190 of axially deformed nuclei. We remind that
we consider 184–192

76 Os108–116, 192–198
78 Pt114–120, and

198–202
80 Hg118–122, As matter of fact, most of the Pt’s
and all the Hg’s among them are out of the classi-
cal region. The number of their neutrons gradually
gets far from the mid main shell at N = 104 and
approaches the magic N = 126. The behavior of
the R values for the platinum isotopes resembles
to that of the Se’s and Cd’s considered earlier—
relatively stable R’s >1 (with fluctuations within
the error bars). This suggest triaxiality effects and
indeed, 196Pt was the first nucleus proposed to have
an O(6) character [17]. This limiting case of the IBA
is associated geometrically with γ -softness and the

features of γ -soft rotor [18] as already mentioned.
The last four neutrons of 196Pt fill the 3p3/2 orbits
which have a small prolate-driving character with
increasing deformation ε2 while the last protons act
in the opposite direction. Thus, important prereq-
uisites for γ -softness are available. The latter exist
also in the neighboring Os and Hg, however with
different balances leading in some cases to oblate
shapes (in the Hg isotopes) and shape-coexistence
(see below).

2. Considerations within the IBA-2

Let us consider now the data from point of view of one of
the most popular and easily accessible to experimentalists for
concrete calculations collective models, namely the IBA-2 [9].
Thereby, proton and neutron bosons are distinguished which is
not the case for its first version IBA-1. We apply the standard
counting of the bosons based on half the distance from the
closest for given Z and N magic numbers. In the framework of
the IBA-2, the leading role of the proton-neutron quadrupole
interaction for the evolution of collectivity is nicely illustrated
by presenting the dependence of different observables on the
product of proton and neutron boson numbers Nπ and Nν

as proposed by Casten [19]. To interpret the results of the
application of this NπNν rule shown in Fig. 6, it is convenient
to use the columns of Table I starting from the tenth to the
up-most right. The simplest observation is that for values of
NπNν > 20 (= 4 × 5) all R values lie within the error bars on
the axial rigid rotor (ASR) line with R = 1. These values cor-
respond to the nuclei from the centrum of the deformed region
with Z = 68 to 76. However, the nuclei above 152

62 Sm90 but
with Z < 68 have also R values consistent with the ASR line
with much smaller NπNν (and Nπ + Nν) values. Of course,
the role of 152Sm as pivotal nucleus, namely in the context
of the critical point symmetry X(5) [20,21] is well known
and is nicely confirmed by our findings. The neighboring
two even-even Sm isotopes with smaller number of neutrons
(N = 86,88) have values of R smaller than 1 which indicates
probably shape coexistence phenomena at quite low excitation
energy (see also text below, and Table II).

In Fig. 7, the x axis is rescaled compared to that in Fig. 6,
namely the quantity P = Nπ Nν/(Nπ + Nν ) or the P factor [22]
which can be interpreted as a measure of the valence proton-
neutron interactions per one boson. The data on the ratios R
looks now much more compact and better organized, with the
nuclei deviating from the ASR R = 1 line grouped mainly
in two intervals (approximately 0.5–1.0 and 1.25–1.75). The
first interval may be associated with a very close position
on the nuclear map to magic number(s) while the second
one corresponds to nuclei with more pronounced transitional
character (see also Table I).

However, there are other types of mainly quadrupole col-
lectivity expressed by sufficiently large B(E2)’s even at small
values of Q. In such nuclei, the oscillations of the nuclear
surface of quadrupole character, also, vibrations of that type,
are more adequate to depict the lowest excited states in even-
even nuclei. Some of them preserve the axial symmetry in the
intrinsic frame (pure vibrators, U(5) limit nuclei), others do

044317-9



PETKOV, DELION, AND MÜLLER-GATERMANN PHYSICAL REVIEW C 102, 044317 (2020)

FIG. 6. The same data as in Figs. 1,2 but plotted as function of the product Nπ Nν of IBA bosons associated with half the valence protons
(π ) and neutrons (ν), respectively. The data points in the isotopic chains, identified by the symbols in the legend, are interconnected by lines.
Note that after Nπ Nν ≈ 15 = 5 × 3 = 3 × 5 all ratios R drop down to the ASR line. At smaller Nπ Nν’s the situation is more complicated and
we tried to make this more clear in the insert Nπ Nν = 0 ± 14. See also text.

TABLE II. Collection of the cases of R < 1 values observed among the investigated isotopes. For the meaning of the items in the first nine
columns see caption to Table I. The last column contains short comments pointing to the type of shape coexistence discussed in the literature
with quotations. See also text.

Z N A Q �Q B(E2) dB(E2) R �R Interpretation

10 10 20 −0.230 0.030 0.006 0.001 0.50 0.14 20Ne = α + 16O states interacting with spherical states, [7,24]
12 12 24 −0.290 0.030 0.009 0.000 0.43 0.09 2h̄ω contribution to low-lying 0+ states, [25]
12 14 26 −0.210 0.020 0.006 0.000 0.58 0.11
16 16 32 −0.160 0.020 0.005 0.000 0.80 0.21 32S = 16O + 16O states interacting with spherical states, [8]
24 26 50 −0.360 0.070 0.021 0.001 0.67 0.26 Spherical-deformed shape coexistence in pf shell, [26]
60 86 146 −0.780 0.090 0.150 0.004 1.01 0.23 Striking behavior of the 0+

2 excitation energy in 146−152Nd,
60 88 148 −1.460 0.130 0.268 0.006 0.52 0.09 it drops suddenly in 150Nd by ≈ 230 keV, then rejumps higher
60 90 150 −2.000 0.050 0.541 0.006 0.56 0.03 X(5) shape-(phase) transition around N=90, [20,21]
62 86 148 −1.000 0.300 0.143 0.007 0.59 0.35 Striking behavior of the 0+

2 excitation energy in 148−154Sm, it drops
62 88 150 −1.300 0.200 0.269 0.005 0.65 0.20 suddenly in 150Sm by ≈ 680 keV, then remains approximately constant
62 90 152 −1.670 0.020 0.692 0.000 1.02 0.02 in 150−152Sm, finally rejumps higher (by 400 keV) in 154Sm
62 92 154 −1.870 0.040 0.869 0.001 1.02 0.04 X(5) shape-(phase) transition at N=90, [20,21]
70 106 176 −2.280 0.060 1.038 0.018 0.82 0.05 Coexisting excited 0+ state with different deformation, [27]
76 108 184 −2.700 1.200 0.643 0.016 0.36 0.32 Experimental problems?
80 120 200 0.960 0.110 0.171 0.006 0.76 0.18 Shape coexistence in the neutron-deficient
80 122 202 0.870 0.130 0.123 0.004 0.67 0.20 lead region: 188 − 200Hg, [28]
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FIG. 7. The same as in Fig. 6 but plotted as function of the normalized product Nπ Nν/(Nπ + Nν ) of IBA-2 bosons. See also text.

not [γ -soft rotors, O(6) limit nuclei]. In the context of our
study, their R values lie above the ASR line of R = 1 and
this was discussed above when individual isotopic chains were
discussed. The values of the Nπ Nν product in all these cases
never surpasses 20 (i.e., when one has four proton and five
neutron bosons, or the inverse).

Obviously the ratio R shows a sensitivity to fine effects
related to the filling of valence orbitals. Let us turn now our
attention again to the cases where the R’s have in mean a
constant behavior but fluctuations around this mean value are
not hard to be seen. The nature of these fluctuations as well
as the question if they are related to each other via a common
basic physical nature can be posed. The answer to it seems
to be rather negative because of different well established
interpretations in the literature: the Pt’s considered are γ -soft
(see, e.g., Refs. [9,17]), the Cd’s are anharmonic vibrators
(see, e.g., [23]) and the Se’s may be rigid triaxial [10].

3. Cases of R < 1: A new signature for shape coexistence?

In some cases throughout the isotopes considered, values
of R distinguishably smaller than 1 are observed. These cases
are summarized in Table II. It is not so easy to decide imme-
diately if one is really confronted with a physical effect, nor

to find a widely employed nuclear model explaining it. For
example the asymmetric rigid rotor model of Davydov and
Fillipov [29] predicts R values smaller than 1, but the effect is
rather small, varying with γ and being no more than 7%. In
most of the cases this effect is within experimental error bars.
Here, we will try to address the R < 1 values more quantita-
tively by considering the two lowest quadrupole states 0+

1 , 2+
1

as a superposition (resulting from mixing) between excitations
with different quadrupole deformation, i.e., a case of shape
coexistence. An important and very often used assumption in
such treatment is that the cross-talk between the two unper-
turbed excitations via the E2 operator is negligible. Let us
consider one concrete case, namely when axially deformed
states (def) and vibrational (spherical) states (vib) are mixed.
Then, the total wave function can be written as

|�〉 = avib|vib〉 + bdef |def〉. (11)

To simplify the discussion, we assume also that the composi-
tion of the wave functions of the 2+

1 and 0+
1 states is similar

with respect to the weights of the unperturbed states |vib〉 and
|def〉. Then, the experimental E2 reduced matrix element for
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the 2+
1 → 0+

1 transition is given by

〈0+
1 ||E2||2+

1 〉exp = b2
def

√
25

16π
〈2020|00〉Q0

+ (
1 − b2

def

)〈0+
1 ||E2||2+

1 〉vib, (12)

where the usual assumption for neglectful contribution of
transitions between the deformed and spherical wave-function
components is made. Since for vibrational, close to spherical
nuclei the spectroscopic quadrupole moment disappears (or is
close to zero in a more general case), one has

Q(2+
1 )exp = −b2

def
2
7 Q0. (13)

As is well known [4],

〈0+
1 ||E2||2+

1 〉vib = 3

4π
√

5
ZeR2βvib

2 , (14)

where R is the mean radius of the nuclear sphere and βvib
2 is

the mean amplitude of the shape parameter β for quadrupole
vibrations (surface oscillations) conserving the axial shape.
It is easy to show that at such conditions our ratio R can be
expressed as

R =
∣∣∣∣∣(1 − b2

def

)(βvib
2

βdef
2

)2

+ b2
def

∣∣∣∣∣
2

. (15)

Since βvib
2

βdef
2

is always less than 1, obviously within these mixing
assumptions R is close to 1 when the deformed state domi-
nates the wave function (b2

def ≈ 1) and can reach even quite
small values close to 0, in principle. Therefore, we interpret
the experimental values of R which are smaller than 1 with the
uncertainties taken into account as a signal for shape coexis-
tence between spherical and deformed states. More precisely,
if there is a shape coexistence of the type discussed (between
spherical and deformed states), R is for sure less than 1. But
we cannot claim that the inverse is always true. For example,
one could be confronted with a purely experimental problem
of imprecise data.

The data in Table II support such hypothesis, with one
exception—the case of 184Os, but there experimental prob-
lems might play a role since the relative error of R is close
to 100%. It is out of the scope of the present work to in-
vestigate in details the nature of the shape coexistence in all
cases presented in Table II. A very abundant literature can
be found in the references quoted in the table. We use for
illustration only few cases from our practice. As shown in
[7,8] for 20Ne and 32S, respectively, effects of clusterization

(α clusters or larger clusters) may play an important role and
lead to shapes different from the classical axially symmetric
ellipsoid. More details on clusterization in nuclei in general
and in particular for 20Ne can be found, e.g., in [24,30,31].
We mention also that in the Sm and Nd considered, another
coexisting shapes come into play around N = 88. These are
yrast octupole bands (with odd spins) lying quite low in
energy [32]. However, because of the negative parity, they
do not mix with the quadrupole states. At about N = 88,
strong octupole effects are expected because of the presence
among the valence orbitals of pairs characterized by �l = 3
where l is the orbital number in the spherical basis. Such
pairs among the neutrons are the (1i13/2, 2 f5/2) and (1i13/2,
2 f7/2) ones (see Fig. 5). The parity-alternating yrast bands
in 144Ba were thoroughly investigated in Ref. [33] including
explicit analytical expressions for B(E2) transitions within the
bands. An interesting point in that work is the involvement of
clusterized α-particle component in the wave functions. We
note that with six neutrons above N = 82 and six protons
above Z = 56 in 144Ba a formation of mixing configuration
with three α-particles seems natural. These three α’s induce
octupole-driving shape effects, indeed.

As already mentioned, and as it also follows from the
consideration of Table II, it is not necessary to have always
a mixing of spherical and deformed sates to obtain R < 1, it
is sufficient to have an interaction and mixing between exci-
tations with different quadrupole deformation (i.e., with weak
overlap of the wave functions) provided that their cross-talk
via the E2 operator is negligible.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have presented a new way to look at the
evolution of collectivity on the nuclear map using the ratio
R = B(E2; 2+

1 → 0+
1 )exp/B(E2; 2+

1 → 0+
1 )Q. The systematics

of such ratios in even-even nuclei reveal interesting features as
signatures for particular collective excitations and sensitivity
to shell- and sub-shell closures. Their absolute size appeals for
reproduction by nuclear models. A value of R < 1 seem to in-
dicate effects of shape-coexistence at low excitation energy in
the corresponding nucleus. In our opinion, new measurements
of quadrupole moments are needed to enlarge the systematics
below Z < 82. It is of interest to expand the systematics also
for Z > 82 after future measurements.
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