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The neutron skin thickness �rnp in heavy nuclei was known as one of the most sensitive terrestrial probes
of the nuclear symmetry energy Esym(ρ ) around 2

3 of the saturation density ρ0 of nuclear matter. Existing
neutron skin data mostly from hadronic observables suffer from large uncertainties and their extraction from
experiments are often strongly model dependent. While waiting eagerly for the promised model-independent
and high-precision neutron skin data for 208Pb and 48Ca from the parity-violating electron scattering experiments
(PREX-II and CREX at JLab as well as MREX at MESA), within the Bayesian statistical framework using
the Skyrme-Hartree-Fock model we infer the posterior probability distribution functions (PDFs) of the slope
parameter L of the nuclear symmetry energy at ρ0 from imagined �rnp(208Pb) = 0.15, 0.20, and 0.30 fm with a
1σ error bar of 0.02, 0.04, and 0.06 fm, respectively, as well as �rnp(48Ca) = 0.12, 0.15, and 0.25 fm with a 1σ

error bar of 0.01 and 0.02 fm, respectively. The results are compared with the PDFs of L inferred using the same
approach from the available �rnp data for 116,118,120,122,124,130,132Sn from hadronic probes. They are also compared
with results from a recent Bayesian analysis of the radius and tidal deformability data of canonical neutron stars
from GW170817 and NICER. The neutron skin data for Sn isotopes gives L = 45.5+26.5

−21.6 MeV surrounding its
mean value or L = 53.4+18.6

−29.5 MeV surrounding its maximum a posteriori value, respectively, with the latter
smaller than but consistent with the L = 66+12

−20 MeV from the neutron star data within their 68% confidence
intervals. We found that �rnp = 0.17–0.18 fm in 208Pb with an error bar of about 0.02 fm leads to a PDF of L
compatible with that from analyzing the Sn data. To provide additionally useful information on L extracted from
the �rnp of Sn isotopes, the experimental error bar of �rnp in 208Pb should be at least smaller than 0.06 fm aimed
by some current experiments. In addition, the �rnp(48Ca) needs to be larger than 0.15 fm but smaller than 0.25
fm to be compatible with the Sn and/or neutron star results. To further improve our current knowledge about
L and distinguish its PDFs in the examples considered, even higher precisions leading to significantly less than
±20 MeV error bars for L at 68% confidence level are necessary.

DOI: 10.1103/PhysRevC.102.044316

I. INTRODUCTION

Nuclear symmetry energy Esym(ρ) encodes the information
about the energy necessary to make nuclear systems, such as
nuclei, neutron stars, and matter created during collisions of
two nuclei or neutron stars, more neutron rich [1]. As such,
reliable knowledge about the symmetry energy has broad
impacts on many critical issues in both nuclear physics and
astrophysics [2–4]. Thanks to the great efforts of many people
in both communities over the last two decades, much progress
was made in constraining both the magnitude Esym(ρ0) and the
slope parameter L = 3ρ0(dEsym/dρ)ρ0 at the saturation den-
sity ρ0 of nuclear matter [5–12]. For example, fiducial values
of Esym(ρ0) = 31.7 ± 3.2 MeV and L = 58.7 ± 28.1 MeV
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were found from surveying 53 analyses [13,14] carried out
by 2016 using various terrestrial nuclear laboratory data
and astrophysical observations. In comparison, using a novel
Bayesian approach to quantify the truncation errors in chi-
ral effective field theory (EFT) predictions for pure neutron
matter and a many-body perturbation theory with consistent
nucleon-nucleon and three-nucleon interactions up to fourth
order in the EFT expansion, the Esym(ρ0) and L were found
very recently to be Esym(ρ0) = 31.7 ± 1.1 MeV and L =
59.8 ± 4.1 MeV [15], respectively. In a very recent Bayesian
analysis of the radius and tidal deformability data of canonical
neutron stars from GW170817 and NICER, the most prob-
able value of L = 66+12

−20 MeV at 68% confidence level was
found [16] while the Esym(ρ0) remains the same as the fiducial
value. Clearly, these results are all highly consistent while the
error bars from the data analyses are significantly larger than
the EFT predictions. One of the possible reasons for the larger
error bars of the extracted L values is that the extraction of the
symmetry energy from terrestrial experiments often involves
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large and sometimes unqualifiable theoretical uncertainties.
Moreover, exiting experimental data are mostly from hadronic
probes that are known to suffer from large statistical and
systematical errors. Thus, in the continuous strive to better
constrain the density dependence of nuclear symmetry energy,
significant efforts are being made in the nuclear physics com-
munity to better quantify theoretical uncertainties and/or to
find more clean experimental probes; see, e.g., Refs. [17,18].

The neutron skin thickness �rnp = Rn − Rp is the differ-
ence in root-mean-square neutron Rn and proton Rp radii.
The �rnp values of heavy nuclei have been known as one
of the most sensitive terrestrial probes of the nuclear sym-
metry energy Esym(ρ) at subsaturation densities around 2

3ρ0;
see, e.g., Refs. [19–27]. For recent reviews, we refer the
readers to Refs. [28,29]. It was shown using various nuclear
many-body theories that the �rnp is approximately propor-
tional to the density slope within theoretical uncertainties;
see, e.g., Refs. [30,31] for reviews. In fact, considerable
efforts have been devoted continuously to measuring the
�rnp in 208Pb for decades [32]. For earlier reviews, see,
e.g., Refs. [33,34]. More recently, for example, �rnp =
0.211+0.054

−0.063 fm and 0.16 ± 0.07 fm were obtained from pro-
ton [35] and pion [36] scatterings, respectively. Studies from
the annihilation of antiprotons on the nuclear surface gave
�rnp = 0.18 ± 0.04(expt.) ± 0.05(theor.) fm [37,38], while
the isospin diffusion data in heavy-ion collisions imply �rnp

to be around 0.22 ± 0.04 fm [39,40], and �rnp = 0.15 ±
0.03(stat.)+0.01

−0.03(sys.) fm was obtained from coherent pion
photoproductions [41]. Obviously, both the mean and error
bar of �rnp(208Pb) are not well determined. Consequently,
in studying impacts of �rnp(208Pb) on neutron stars, some-
times a fiducial value of �rnp(208Pb) = 0.20 ± 0.04 fm was
used [2,42]. Among the available data for heavy nuclei, the
�rnp of Sn isotopes have been most extensively measured
using isovector spin-dipole resonances excited by the charge-
exchange reactions [43], antiproton annihilations [44], and
proton elastic scatterings [45], etc. We will therefore first
use the measured �rnp values of Sn isotopes to establish a
reference PDF for L in our Bayesian analyses, and compare
the results with the information from a traditional approach
using forward modeling with χ2 minimization. This reference
serves as a quantitative measure of our current knowledge
about inferring the L value using available neutron skin data.
We will then measure possible improvements to this knowl-
edge by using anticipated high-precision neutron skin data of
�rnp(208Pb) and �rnp(48Ca) from parity-violating electron-
nucleus scattering experiments.

While most of the available neutron skin data from
hadronic probes suffer from large statistical and system-
atic errors as well as model dependence, parity-violating
electron scatterings were shown theoretically to provide
model-independent and high-precision measures of neutron
skin thickness [46,47]. However, these experiments are ex-
tremely difficult. While the pioneering Lead (208Pb) Radius
EXperiment (PREX) at the Jefferson Laboratory (JLab), i.e.,
PREX-I experiment, has demonstrated an excellent control
of systematic errors, the resulting �rnp(208Pb) = 0.33+0.16

−0.18
fm still has a large error bar [48]. The PREX-II experiment

and the Calcium Radius EXperiment (CREX) at JLab are
expected to dramatically reduce the error bars to the level of
±0.06 fm for 208Pb and ±0.02 fm for 48Ca, respectively [28].
Even better, the planned Mainz Radius EXperiment (MREX)
at the Mainz Energy recovery Superconducting Accelerator
(MESA) aims to determine the neutron radius in 208Pb with
a 0.5% (or 0.03 fm) precision; while for 48Ca the sensitivity
is similar to the one expected from the CREX at JLab [28].
If realized, these experiments may improve dramatically our
knowledge about the nuclear symmetry energy and help con-
strain tightly nuclear theories.

Wishing the experimentalists all the best luck in the world
and eagerly waiting for their new results from the parity-
violating electron scattering experiments, hinted by existing
results and the planned experiments, we imagine a few mean
values and error bars for the neutron skin thickness in 208Pb
and 48Ca in our Bayesian inference of the symmetry energy
slope parameter L. We compare the resulting PDFs of L with
those from Bayesian analyses of neutron star observations
and the neutron skin thickness in Sn isotopes. Following the
spirit of a recent work conducting covariant analysis to obtain
analytic insights on the information content of new observ-
ables [49], we also try to answer the two questions posted
by Reinhard and Nazarewicz [50]: (1) Considering the cur-
rent theoretical knowledge, what novel information does new
measurements bring in? and (2) How can new data reduce the
uncertainties of current theoretical models? More specifically,
we study (1) how the uncertainties of the neutron skin mea-
surements affect the extraction of the symmetry energy; and
(2) what additional information about the symmetry energy
can new measurements bring to us. To address these ques-
tions, in addition to comparing with results from Bayesian
analyses of the very recent data from neutron star observa-
tions and the old neutron skin data of Sn isotopes, we freely
dreamed that the experimentalists would some day measure
the �rnp(208Pb) and �rnp(48Ca) at precisions even better than
they already planned at JLab and/or MESA. We understand
that these will be extremely challenging, but we assume that
they are not more difficult than measuring nuclear matter
effects on the strain amplitude and frequency of gravitational
waves from merging neutron stars.

The rest of the paper is arranged as follows. We shall first
summarize in Sec. II the most relevant aspects of the standard
Skyrme-Hartree-Fock (SHF) model and interactions we use,
and then recall the main formalisms and prior information
we use in the Bayesian analyses. In Sec. III we present and
discuss our results. The summary and conclusions are given
in Sec. IV.

II. THEORETICAL FRAMEWORK

Within the Bayesian statistical framework we infer from
the neutron skin thickness data the posterior PDFs of isovector
nuclear interactions used in the standard SHF model. These
isovector interactions determine the density dependence of
nuclear symmetry energy, while the isoscalar parameters are
fixed at their currently known most probable values. Con-
sequently, the posterior PDF of the symmetry energy slope
parameter L can be obtained. For completeness and ease of
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discussions, we summarize in the following the most impor-
tant aspects of the SHF model and the Bayesian approach as
well as the specific inputs used in this work. We skip most of
the details that can be found easily in the literature.

A. Skyrme-Hartree-Fock model

We start from the following standard effective Skyrme
interaction between nucleon 1 and nucleon 2 [51],

v(�r1, �r2) = t0(1 + x0Pσ )δ(�r)

+ 1
2 t1(1 + x1Pσ )[�k′2δ(�r) + δ(�r)�k2]

+ t2(1 + x2Pσ )�k′ · δ(�r)�k
+ 1

6 t3(1 + x3Pσ )ρα ( �R)δ(�r)

+ iW0(�σ1 + �σ2)[�k′ × δ(�r)�k]. (1)

In the above, �r = �r1 − �r2 and �R = (�r1 + �r2)/2 are related to
the positions of two nucleons �r1 and �r2, �k = (∇1 − ∇2)/2i
is the relative momentum operator and �k′ is its complex
conjugate acting on the left, and Pσ = (1 + �σ1 · �σ2)/2 is the
spin exchange operator, with �σ1(2) being the Pauli matrices.
The parameters t0, t1, t2, t3, x0, x1, x2, x3, and α determine
macroscopic quantities describing the saturation properties
of symmetric nuclear matter, density dependence of nuclear
symmetry energy, and structures of finite nuclei. Inversely,
they can be expressed analytically in terms of several macro-
scopic quantities, facilitating the Bayesian inference of the
latter directly from the neutron skin data. In this work, we
use the MSL0 interaction [52]. Specifically, the macroscopic
quantities used are the saturation density ρ0, the binding en-
ergy E0 at the saturation density, the incompressibility K0, the
isoscalar and isovector nucleon effective mass m�

s and m�
v at

the Fermi momentum in normal nuclear matter, the symmetry
energy E0

sym ≡ Esym(ρ0) and its slope parameter L at the satu-
ration density, and the isoscalar and isovector density gradient
coefficient GS and GV . The spin-orbit coupling constant is
fixed at W0 = 133.3 MeV fm5. In the present study, we calcu-
late the posterior PDFs of the isovector interaction parameters,
i.e., E0

sym, L, and m�
v , by varying them randomly with equal

probability within their respective prior ranges, while fixing
the other macroscopic quantities at their empirical values as
in the original MSL0 interaction [52].

The potential energy density can be calculated from the
above effective interaction [Eq. (1)] based on the Hartree-
Fock method, and the single-particle Hamitonian can then
be obtained using the variational principle. Here we assume
that the nucleus is spherical and only time-even contributions
are considered. Solving the Schrödinger equation leads to the
wave functions of each nucleon, and the density distributions
for neutrons and protons can be calculated accordingly. The
neutron skin thickness can then be obtained from the dif-
ference of the root-mean-square radii between neutrons and
protons. For details of this standard procedure, we refer the
reader to Ref. [53]. In the present work, we use Reinhard’s
SHF code described in Ref. [54].

B. Bayesian analysis

Compared to the traditional approach of forward modeling
together with a χ2 minimization to fit the experimental data
and empirical properties of nuclear matter, the advantages
of Bayesian analysis in the uncertainty quantification and
evaluating correlations of model parameters have been well
documented in the literature; see, e.g., Ref. [55] for a very
recent overview of the Bayesian approach and its applications
in studying nuclear structures. We adopt it here to infer the
posterior PDFs of the isovector interaction parameters and the
corresponding nuclear symmetry energy from the neutron skin
data. The Bayes’ theorem describes how new experimental
data may improve a hypothesis reflecting prior knowledge via

P(M|D) = P(D|M )P(M )∫
P(D|M )P(M )dM

. (2)

In the above, P(M|D) is the posterior PDF for the model M
given the data set D, P(D|M ) is the likelihood function or
the conditional probability for a given theoretical model M
to predict correctly the data D, and P(M ) denotes the prior
PDF of the model M before being confronted with the data.
The denominator of the right-hand side of the above equation
is the normalization constant.

For the prior PDFs, we choose the model parameters p1 =
E0

sym uniformly within 25–35 MeV, p2 = L uniformly within
0–120 MeV, and p3 = m�

v/m uniformly within 0.5–1, with
m being the bare nucleon mass. Our choice of the large
prior range and the uniform PDF for the symmetry energy
slope parameter L is intentionally ignorant with respect to
our current knowledge from many earlier analyses of both
terrestrial and astrophysical data as well as the state-of-the-art
EFT predictions as we outlined in the introduction. Without
belittling the invaluable prior knowledge from the hard work
of many people over two decades, this choice helps us reveal
how the neutron skin data alone may narrow down the uniform
prior PDF of L in the artificially enlarged range of 0–120 MeV.

For a given set of the MSL0 interaction parameters, the
theoretical neutron skin thickness d th

1 = �r (1)
np , d th

2 = �r (2)
np ,...

for different nuclei from the SHF calculations are used to
calculate the likelihood of these model parameters with re-
spect to the corresponding experimental data dexp

1 , dexp
2 ,...

according to

P[D(d1,2,...)|M(p1,2,3)] = 	i
1√

2πσi

exp

[
− (�di )2

2σ 2
i

]
, (3)

where �di and σi denote, respectively, the deviation of the-
oretical results from the experimental data and the width in
the likelihood function for an independent experimental data
sample i. In principle, the likelihood function depends on
uncertainties of both the experimental data and model pre-
dictions. For the neutron-skin thickness of 208Pb or 48Ca, we
use the imagined experimental error bar (which is varied and
could be considered as from both experimental and model
uncertainties) as the width σi as often done in the literature,
and �di = |d th

i − dexp
i | being the deviation of the theoretical

result from the mean value of the imagined experimental data.
For the neutron skin thicknesses of 116,118,120,122,124Sn [45]
and 130,132Sn [56], they are treated as two independent
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experimental data samples with each series extracted from a
correlated method. The deviation and the width for each series
are calculated according to

�di =
√√√√ j∈i∑

j

(
d th

j − dexp
j

)2
, (4)

σi =
√√√√ j∈i∑

j

σ 2
j , (5)

where d th
j , dexp

j , and σ j are the theoretical result, the mean
value of the experimental data, and the experimental 1σ error
bar of the neutron skin thickness for a Sn isotope j, respec-
tively.

The posterior PDF of a single model parameter pi is
given by

P(pi|D) =
∫

P(D|M )P(M )	 j �=id p j∫
P(D|M )P(M )	 jd p j

, (6)

while the correlated PDF of two model parameters pi and p j

is given by

P[(pi, p j )|D] =
∫

P(D|M )P(M )	k �=i, jd pk∫
P(D|M )P(M )	kd pk

. (7)

For the one-dimensional PDF, the range of the model param-
eter at the 68% confidence level is obtained according to [57]∫ piU

piL

P(pi|D)d pi = 0.68, (8)

where piL (piU ) is the lower (upper) limit of the corresponding
narrowest interval of the parameter pi surrounding its mean
value,

〈pi〉 =
∫

piP(pi|D)d pi, (9)

or its maximum a posteriori (MAP) value. The calculation of
the posterior PDFs is based on the Markov-Chain Monte Carlo
approach using the Metropolis-Hastings algorithm [58,59].
The calculation generally takes about 105–106 steps, and
the analysis is carried out after the first 104 steps when the
convergence is mostly reached.

III. RESULTS AND DISCUSSIONS

A. L from measured neutron skin thickness
in 116,118,120,122,124,130,132Sn

To establish a reference for comparisons, we first perform
Bayesian analyses with the real experimental data of neutron
skin thicknesses �rnp in Sn isotopes. It is one of the most
complete �rnp data sets along the longest isotope chain avail-
able. The �rnp data of 116,118,120,122,124Sn and 130,132Sn as two
independent experimental data samples from Refs. [45,56]
are listed in Table I. The mean values and the experimental
1σ errors together with the theoretical results are used in
calculating the likelihood function according to Eqs. (3)–(5).

After integrating one of the isovector model parameters
L, m�

v/m, or E0
sym according to Eq. (7), the resulting corre-

lated PDFs of the other two parameters are shown in the
upper panels of Fig. 1. It is seen that the L parameter is
strongly correlated with the isovector effective mass m�

v/m,
with the latter weakly correlated with the E0

sym within their
prior ranges considered, because of the decompositions of the
L and E0

sym parameters [60] according to the Hugenholtz-Van
Hove theorem [61]; see the extensive review in Ref. [12]. The
anticorrelated PDF in the L − E0

sym plane is similar to the
L − E0

sym correlation observed in Fig. 6 of Ref. [52], where
the traditional χ2 fit was performed using the same MSL0
interaction within SHF to the empirical properties of nuclear
matter and some properties of finite nuclei as well as the same
set of the neutron skin thickness data of Sn isotopes. This con-
sistency is what one expects. However, the Bayesian analysis
can go beyond what the traditional analysis can provide. The
posterior PDFs of each model parameter after integrating all
the others according to Eq. (6) are shown in the lower panels
of Fig. 1, where the ranges of L and E0

sym from fiducial val-
ues [13,14], from the EFT analysis [15], and from the neutron
star analysis [16] are also plotted for comparisons. It is seen
that with the neutron skin thickness data of Sn isotopes, the
uniform prior distribution of L within (0,120) MeV changes to
a posterior distribution peaking around 50 MeV, while those
of m�

v/m and E0
sym are not improved by much compared to

their prior PDFs. More quantitatively, the L is determined to
be within (23.9,72.0) MeV around the mean value 45.5 MeV
or the MAP value 53.4 MeV at the 68% confidence level by
the �rnp data of Sn isotopes. Because of the asymmetric PDF
of L, the mean value is smaller than the MAP value, with
the latter consistent with the fiducial value L = 58.7 ± 28.1
MeV [13,14], the L = 59.8 ± 4.1 MeV from the EFT anal-
ysis [15], and the L = 66+12

−20 MeV from the neutron star
analysis [16].

The anticorrelation between the E0
sym and L in Fig. 1(c) de-

serves some discussions. As noticed before [25,52,60,62], this
correlation is opposite to the positive correlation from study-
ing nuclear giant resonances, heavy-ion collisions, and the
electric dipole polarizability [62–64]. The overlapping area
of these opposite correlations played a critical role in finding
the common constraints on the E0

sym − L plane [25,60,62,65].
However, its origin needs further understanding. For this pur-
pose, shown in the upper panels of Fig. 2 are the correlated
PDFs between the E0

sym and L(ρ�) = 3ρ�(dEsym/dρ)ρ� at
different subsaturation densities ρ� using the same Bayesian
analysis method. Here the L(ρ�) calculated at ρ� from the
same density dependence of Esym(ρ) depends on the SHF
parameters in the same way as the E0

sym and L at ρ0. They
are thus all correlated. It is interesting to see that at the
density ρ� smaller (larger) than 0.10 fm−3 the L(ρ�) and
E0

sym are positively correlated (anticorrelated), while at ρ� =
0.10 fm−3 the PDF of L(ρ�) is approximately independent of
E0

sym. Moreover, it is seen that at the 68% confidence level,

L(ρ� = 0.10 fm−3) is tightly constrained to 43.7+5.3
−5.3 MeV

with a symmetric distribution, while the PDFs of L(ρ�) are
generally broader especially at higher densities. This shows
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TABLE I. The slope parameter L of the symmetry energy at 68% confidence level from real and imagined neutron skin thickness data of
various nuclei used in this study, with the mean values calculated according to Eq. (9), the MAP values from fitting the peaks of the PDFs
using a Gaussian function, and the confidence intervals obtained by using Eq. (8).

Nucleus �rnp (fm) L(mean) (MeV) L(MAP) (MeV)

116Sn 0.110 ± 0.018
118Sn 0.145 ± 0.016
120Sn 0.147 ± 0.033
122Sn 0.146 ± 0.016 45.5+26.5

−21.6 53.4+18.6
−29.5

124Sn 0.185 ± 0.017
130Sn 0.23 ± 0.04
132Sn 0.24 ± 0.04
208Pb 0.15 ± 0.02 35.6+19.1

−25.8 35.5+19.2
−25.7

208Pb 0.15 ± 0.04 42.0+18.4
−35.2 36.3+24.1

−29.5
208Pb 0.15 ± 0.06 48.1+16.9

−45.6 36.3+28.7
−33.8

208Pb 0.20 ± 0.02 65.2+26.4
−15.6 74.8+16.8

−25.2
208Pb 0.20 ± 0.04 64.2+36.6

−23.7 75.0+25.8
−34.5

208Pb 0.20 ± 0.06 63.2+41.2
−27.9 75.0+29.4

−39.7
208Pb 0.30 ± 0.02 112.5+7.5

−1.2 120.0+0.0
−8.7

208Pb 0.30 ± 0.04 102.5+17.5
−2.9 120.0+0.0

−20.4
208Pb 0.30 ± 0.06 91.0+29.0

−5.9 120.0+0.0
−34.9

48Ca 0.12 ± 0.01 14.4+3.8
−14.4 0.0+18.2

−0.0
48Ca 0.12 ± 0.02 23.1+6.0

−23.1 0.0+29.1
−0.0

48Ca 0.15 ± 0.01 30.8+9.8
−30.8 16.3+24.3

−16.3
48Ca 0.15 ± 0.02 37.1+10.8

−37.1 20.8+27.1
−20.8

48Ca 0.25 ± 0.01 114.3+5.7
−0.9 120.0+0.0

−6.6
48Ca 0.25 ± 0.02 106.0+14.0

−2.0 120.0+0.0
−16.0

208Pb and 0.15 ± 0.02
Sn isotopes Refs. [45,56] 38.1+23.7

−21.1 42.5+19.3
−25.5

208Pb and 0.15 ± 0.04
Sn isotopes Refs. [45,56] 42.3+25.2

−21.5 49.3+18.2
−28.5

208Pb and 0.15 ± 0.06
Sn isotopes Refs. [45,56] 43.9+25.9

−21.5 51.0+18.8
−28.6

208Pb and 0.20 ± 0.02
Sn isotopes Refs. [45,56] 55.2+24.8

−15.7 64.0+16.0
−24.5

208Pb and 0.20 ± 0.04
Sn isotopes Refs. [45,56] 49.2+26.8

−19.0 58.0+18.0
−27.8

208Pb and 0.20 ± 0.06
Sn isotopes Refs. [45,56] 47.3+26.9

−20.2 56.1+18.1
−29.0

208Pb 0.15 ± 0.02
and 48Ca 0.12 ± 0.01 24.8+13.9

−16.7 26.3+12.4
−18.2

208Pb 0.15 ± 0.02
and 48Ca 0.15 ± 0.01 32.6+19.3

−22.8 40.1+11.8
−30.3

208Pb 0.20 ± 0.02
and 48Ca 0.12 ± 0.01 37.1+22.0

−14.5 44.9+14.2
−22.3

208Pb 0.20 ± 0.02
and 48Ca 0.15 ± 0.01 47.9+26.8

−16.0 61.5+13.2
−29.6

that the neutron skin thicknesses in Sn isotopes determines
most tightly the value of L(ρ�) around ρ� = 0.10 fm−3, which
is approximated the average density of a nucleus. We note
that this finding is robust for different nuclei, because the
neutron skin thickness in 208Pb and 48Ca is also found to be
mostly determined by L(ρ� = 0.10 fm−3) as well, and this is

consistent with that observed in Ref. [25] within the tradi-
tional approach.

So, why are the E0
sym and L at ρ0 anticorrelated? As shown

in the upper panels of Fig. 2, there is a clear tendency that their
correlation changes from positive to negative as the density
increases towards ρ0. One can understand these numerical
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FIG. 1. (Upper) Correlated posterior PDFs from neutron skin thicknesses in Sn isotopes in the L − m�
v/m plane (a), the E 0

sym − m�
v/m plane

(b), and the E 0
sym − L plane (c). (Lower) Prior (dotted lines) and posterior (solid lines) probability distributions of m�

v/m (d), L (e), and E 0
sym (f),

with the band of fiducial values [13,14], the 68% confidence band from the EFT analysis [15], and the PDF from the neutron star analysis [16]
(dash-dotted line) plotted for comparisons.

results by analytically investigating how the E0
sym and L at

ρ0 are correlated when a constraint is applied to the function
Esym(ρ) at a subsaturation density ρ∗. In Appendix A, using
a general form of the symmetry energy Esym(ρ) = E0

sym( ρ

ρ0
)γ

describing those predicted by SHF very well, we have shown
analytically that the E0

sym and L at ρ0 are positively correlated
if the observable used constrains the magnitude of Esym(ρ∗),
while a negative correlation appears if the observable con-
strains the L(ρ∗) at ρ∗. In the situation here, the neutron
skin thickness constrained the L(ρ∗) but not Esym(ρ∗) around
ρ� = 0.10 fm−3. Consequently, the neutron skin constraint
leads to a negative correlation between the E0

sym and L at ρ0.
We have also noticed that the strength of the anticorrelation
between L(ρ�) at ρ� = 0.12 fm−3 and E0

sym is much weaker
compared with that at smaller ρ�. This indicates the difficulty
of constraining the symmetry energy at the saturation density
using the neutron skin data. Basically, the latter determines the
slope of Esym at 0.10 fm−3, while the information about the
Esym at higher densities is from extrapolating the underlying
energy density functional. Thus, while the neutron skin data
may be model independent and very precise, the extraction of
Esym or L at ρ0 from the neutron skin data is also model de-
pendent. The correlation between the neutron-skin thickness
of nuclei and the radii of neutron stars is even weaker and
very model dependent as demonstrated numerically already in
Ref. [29]. Here we used the SHF functional in our Bayesian
analysis, and it would be interesting to study in the future with
other models.

It is interesting to note that in a recent Bayesian anal-
ysis [64] using the centroid energy E−1 of the isovector

giant dipole resonance in 208Pb as well as its electric
polarizability αD, it was found that these data determine the
nuclear symmetry energy Esym at about ρ� = 0.05 fm−3 and
the isovector nucleon effective mass m�

v at ρ0. At 90% confi-
dence level, Esym(ρ�) = 16.4+1.0

−0.9 MeV and m�
v/m = 0.79+0.06

−0.06
were obtained around their mean values. Compared to what
we have learned from the Bayesian analysis of neutron skin
thicknesses of Sn isotopes, the results are complimentary for
mapping out the density dependence of nuclear symmetry
energy while their difference is completely understandable.
Specifically, the neutron skin thickness is mostly dominated
by the neutron pressure related to L [19,22], while the giant
resonances are affected by both the restoring force from the
EOS and the nucleon effective mass [64,66,67].

B. L from imagined neutron skin thickness in 208Pb

As discussed in the introduction, we want to know if and
how new measurements can improve our knowledge about the
symmetry energy, especially its slope parameter L at ρ0 with
respect to what we learned from analyzing the Sn isotopes
and neutron star data. Because the neutron skin thickness
in 208Pb is still not well determined, to illustrate how the
uncertainties of �rnp in 208Pb may affect the extraction of L,
we display in Fig. 3 its posterior PDFs by using the imagined
neutron skin thickness data of �rnp = 0.15, 0.20, and 0.30
fm with different error bars. As one expects, a larger neutron
skin thickness generally leads to a larger value of L. With
�rnp = 0.30 fm, L would peak outside the prior range of
(0,120) MeV if we enlarge it further, contradictory to most
of the existing constraints listed in Refs. [13,14]. Of course,
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FIG. 2. (Upper) Correlated posterior PDFs from neutron skin thicknesses in Sn isotopes in the E 0
sym − L(ρ�) plane for ρ� = 0.08, 0.10, and

0.12 fm−3. (Lower) Prior (dotted lines) and posterior (solid lines) probability distributions of L(ρ�).

the PDFs become broader with a larger experimental error
bar, showing a reduced constraining power on the PDF of L.
The width of the PDF actually depends on the relative error
bar of the experimental data, i.e., a smaller width in PDF is
obtained with a larger mean value of the experimental data for
the same absolute 1σ error bar as one expects. The L values
at 68% confidence level around the mean values and the MAP
values from the real and imagined neutron skin thickness data
of various nuclei used in this study are compared in Table I.

What further information on L can the measurement of
�rnp in 208Pb bring to us, in additional to our knowledge
from analyzing the Sn isotopes? To answer this question, we

FIG. 3. Prior (dotted lines) and posterior probability distributions
of L from the imagined neutron skin thickness 0.15 (a), 0.20 (b), and
0.30 (c) fm in 208Pb with different error bars.

compare in Fig. 4 the PDFs of L from using the imagined
�rnp = 0.15 (0.20) fm data of 208Pb with different error bars,
the measured �rnp data of Sn isotopes, and the combined data,
respectively. Because �rnp = 0.15 (0.20) fm of 208Pb leads to
smaller (larger) L values compared to that extracted from the
�rnp data of Sn isotopes, the PDF of L from the combined data
is shifted and peaks at a smaller (larger) value. We found that a
�rnp = 0.17–0.18 fm of 208Pb with an error bar of about 0.02
fm leads to a PDF of L compatible with that from analyzing
the Sn data. On the other hand, it is shown that larger error
bars of �rnp(208Pb) weaken the effects of incorporating the
208Pb data into the Bayesian analysis with the combined data.
Quantitatively, an error bar as large as 0.06 fm for �rnp(208Pb)
leads to negligible improvements of the posterior PDF of L
extracted from the �rnp of Sn isotopes.

C. L from imagined neutron skin thickness in 48Ca

An ab initio calculation in Ref. [68] has predicted that the
neutron skin thickness in 48Ca is about 0.12–0.15 fm, while it
is predicted to be about 0.25 fm from a nonlocal dispersive
optical-model analysis [69]. Accordingly, here we consider
three cases of �rnp = 0.12, 0.15, and 0.25 fm with an 1σ

error bar of 0.01 and 0.02 fm, respectively. The resulting
PDFs of L are displayed in Fig. 5 with the prior range of
(0,120) MeV. With �rnp = 0.12 or 0.25 fm, the posterior PDF
of L would peak out of the prior range of (0,120) MeV if
allowed, incompatible with the known range of L from earlier
analyses [13,14].
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FIG. 4. Posterior probability distributions of L from imagined
neutron skin thicknesses with different mean values and error bars
in 208Pb (dashed lines), from real neutron skin thickness data of Sn
isotopes (dash-dotted lines), as well as from their combinations (solid
lines).

To compare the posterior PDFs of L from analyzing the
�rnp in 48Ca with those in the case of 208Pb, one needs to
compare results with approximately the same relative values
of both the neutron skin thicknesses and their error bars with
respect to the radii of the two nuclei. Comparing the fractions
�rnp/R of 48Ca and 208Pb, the radius R of 48Ca is about 4.3
fm, while that of 208Pb is about 7.0 fm. For the same �rnp =
0.15 fm, it is about 3.5% of the radius for 48Ca but only
2% for 208Pb. For the same reason, with the same imagined

FIG. 5. Prior (dotted lines) and posterior probability distributions
of L from imagined neutron skin thicknesses 0.12 (a), 0.15 (b), and
0.25 (c) fm in 48Ca with different error bars.

FIG. 6. Posterior probability distributions of L from imagined
neutron skin thicknesses in 208Pb (dashed lines), imagined neutron
skin thicknesses in 48Ca (dash-dotted lines), as well as from their
different combinations (solid lines).

0.02 fm absolute error bar the relative error for the neutron
skin thickness is actually larger for 48Ca than for 208Pb.

What further information on L can the new neutron skin
thickness measurement of 48Ca bring to us? To answer this
question, we have done Bayesian analyses by using both the
imagined experimental data for 208Pb and 48Ca. The resulting
posterior PDFs of L from different combinations of �rnp in
208Pb and 48Ca are shown in Fig. 6. Because of the different
constraints on L from �rnp in 208Pb and 48Ca, it is seen that the
posterior PDFs of L indicated by the solid lines are in between
those from two separate analyses, with the dashed lines from
only the �rnp in 208Pb and dash-dotted lines from only the
�rnp in 48Ca, respectively. The corresponding L values at 68%
confidence level around the mean values and the MAP values
are listed in Table I. Again, the final PDFs also depend on the
1σ error bar of �rnp. Using a larger 1σ error bar for the �rnp

in 208Pb or 48Ca, the corresponding PDF of L becomes broader
and less important, and the posterior PDF of L from the
combined �rnp data is closer to the one with a smaller error
bar. Our results indicate that it is better to analyze the 208Pb
and 48Ca data separately, then compare the L values extracted,
instead of combining the data and extracting a common L.
This is because the two nuclei have very different charge radii.
Coulomb and other dynamical effects in the two nuclei may
be very different unlike the neutron skins in isotope chains
having the same charge.

IV. SUMMARY AND CONCLUSIONS

In summary, within the Bayesian statistical framework
using both real and imagined neutron skin thickness data
in heavy and medium nuclei, we have investigated how the
available and expected data may help improve our knowledge
about the density dependence of nuclear symmetry energy,
especially its slope parameter L at the saturation density of nu-
clear matter. Using the available data for Sn isotopes, we have
not only extracted the posterior PDF of L parameter as a useful
reference for future studies with new data of high precisions
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from parity-violating electron scattering experiments, but also
found the density region in which the neutron skin data is
most sensitive to the variation of symmetry energy. We also
demonstrated numerically and explained analytically why the
magnitude and the slope parameter of symmetry energy at
ρ0 are anticorrelated when the experimental constraint on the
neutron skin thickness is applied. Moreover, we compared the
L values extracted from the Bayesian analyses of the neutron
skin data in Sn isotopes and observations of neutron stars.
They are largely compatible within their 68% confidence in-
tervals.

Furthermore, we found that a neutron skin of the size
�rnp = 0.17–0.18 fm in 208Pb with an error bar of about 0.02
fm leads to a PDF of L compatible with that from analyz-
ing the Sn neutron skin data, while the �rnp(208Pb) = 0.30
fm regardless of its error bar leads to a posterior PDF of L
largely incompatible with the results from analyzing neither
the neutron star data nor the neutron skin data of Sn isotopes.
To provide new information on L compared to our current
knowledge about it, the experimental error bar of �rnp in
208Pb should be at least smaller than 0.06 fm aimed by some
current experiments. On the other hand, the �rnp(48Ca) needs
to be larger than 0.15 fm but smaller than 0.25 fm for the
extracted PDF of L to be compatible with the Sn and/or
neutron star results. To further improve our current knowledge
about L and distinguish its posterior PDFs in the examples
considered in this work, better precisions of measurements
leading to significantly less than ±20 MeV error bars for L
at 68% confidence level are necessary.
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APPENDIX: INTUITIVE DISCUSSIONS ON THE
CORRELATION BETWEEN L AND E0

sym

Here we discuss intuitively the correlation between the
symmetry energy E0

sym at the saturation density and the slope

parameter L of the symmetry energy at the saturation density.
We will show that their positive correlation means that the
observable is dominated by the symmetry energy at a sub-
saturation density, while their negative correlation means that
the observable is dominated by the slope parameter of the
symmetry energy at a subsaturation density.

We illustrate the idea with a popularly used symmetry
energy of the following form,

Esym(ρ) = E0
sym

(
ρ

ρ0

)γ

. (A1)

Thus, the slope parameter L of the symmetry energy can be
expressed as

L = 3ρ0

[
dEsym(ρ)

dρ

]
ρ0

= 3E0
symγ . (A2)

For a fixed symmetry energy at a subsaturation density ρ�,

Esym(ρ�) = E0
sym

(
ρ�

ρ0

)γ

, (A3)

the expression of L in terms of E0
sym is

L = 3Esym(ρ�)

[
E0

sym

Esym(ρ�)

]
ln

[
E0

sym

/
Esym(ρ�)

]
ln(ρ0/ρ�)

. (A4)

It is obviously seen that L increases with increasing E0
sym (see

Ref. [64] as an example). The slope parameter at ρ� can be
expressed as

L(ρ�) = 3ρ�

[
dEsym(ρ)

dρ

]
ρ�

= L

(
ρ�

ρ0

)γ

, (A5)

where L(ρ�) is seen to be smaller than L. For a fixed L(ρ�),
the expression of E0

sym in terms of L is

E0
sym = L(ρ�)

3

ln(ρ�/ρ0)

[L(ρ�)/L] ln[L(ρ�)/L]
. (A6)

The function x ln(x) is negative for x < 1 and increases with
increasing x for x > 0.4. Thus, E0

sym generally increases with
increasing x = L(ρ�)/L. Because L decreases with increasing
x, this leads to an anticorrelation between L and E0

sym. This
conclusion is general and helps us understand the results
shown in Fig. 2 of the present manuscript.
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