Analytic formula for estimating the α -particle preformation factor

Jun-Gang Deng (邓军刚)¹ and Hong-Fei Zhang (张鸿飞)^{1,2,3,*}

¹School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, People's Republic of China

²Joint Department for Nuclear Physics, Institute of Modern Physics, CAS and Lanzhou University,

730000 Lanzhou, People's Republic of China

³Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University,

730000 Lanzhou, People's Republic of China

(Received 2 June 2020; accepted 28 August 2020; published 14 October 2020)

In the present work, we build a bridge between the α decay energy and the α -particle preformation factor, and put forward an analytic formula for estimating the α -particle preformation factor. With the help of this formula, experimental α decay half-lives of 535 nuclei varying from 6.90×10^{-8} to 6.34×10^{26} s are reproduced within a factor of 1.81. Noticeably, for superheavy nuclei, calculated α decay half-lives can well reproduce experimental data and reduce the deviations significantly. This formula can be applied to estimate the α -particle preformation factors and predict the α decay half-lives for unsynthesized superheavy nuclei, which would be useful for future experiments in synthesizing new superheavy elements and isotopes. This formula can shed light on microscopic nuclear structure information such as shell and odd-even staggering effects, and provide a positive signal for the existence of an island of stability for superheavy nuclei.

DOI: 10.1103/PhysRevC.102.044314

I. INTRODUCTION

In 1928, Gurney and Condon [1] and Gamow [2] proposed the quantum tunneling theory to describe α decay. Quantum mechanics was used in nuclear physics for the first time, and not only explained the α decay process successfully but also promoted its development. In recent years, radioactive ion beam facilities and experiments worldwide focus on new nuclei far from the β -stability line. α decay is an important probe for studying unstable nuclei and neutron-deficient nuclei, and it is an important decay mode of heavy and superheavy nuclei that attracts a lot of interest [3–7]. From the researches on α decay, much important information on nuclear structure has been observed, such as the properties of the ground state, nuclear deformation, nuclear shape coexistence, energy levels, and so on [8–19]. In addition, observation of α decay is an important way to identify new synthesized superheavy nuclei [20–25]. Besides, it is meaningful to unify proton radioactivity, α decay, cluster radioactivity, and spontaneous fission in one physical picture of barrier penetration [26–38]. Therefore, α decay is one of the hottest topics in the field of nuclear physics.

Within Gamow's theory, the α decay process is described as a preformed α particle penetrating the Coulomb barrier. Hence an α -particle preformation factor hypothesis is proposed to describe the probability of an α -cluster formation inside its parent nucleus before emission. The α -particle preformation factor depends heavily on the state structures of parent and daughter nuclei, and is a measure of the similarity between the initial state of the parent nucleus and the final state of the daughter nucleus plus α particle [39]. There are many models devoted to estimating the α -particle preformation factor. Microscopically, the α -particle preformation factor can be obtained by the overlap between the initial wave function and the α decaying wave function [40]. In the *R*-matrix method, the α -particle preformation factor is calculated by the initial tailored wave function of the parent nucleus [41–44]. The Tohsaki-Horiuchi-Schuck-Röpke wave function approach can successfully describe the cluster structure of light nuclei and the α -particle preformation factor [45,46]. Because of the complicated structure of quantum many-body systems, microscopic methods are extremely difficult for calculation the α -particle preformation factor of a nucleus that is heavier than ²¹²Po.

Phenomenologically, the α -particle preformation factor, P_{α} , is obtained from the ratio of the theoretical α decay halflife to the experimental value; in the theoretical calculation, P_{α} is a constant [39,47–51]. However, the extrapolations of the α -particle preformation factor and half-life for an unknown nucleus by this method are limited to some extent. Recently, the cluster-formation model (CFM) was proposed to extract the α -particle preformation factor using binding energy differences of the parent nucleus and its neighboring nuclei [28,52–55]. But, at present, CFM cannot be generalized to the isomeric state. Therefore, there is an urgent need to establish a new method for accurately describing the α -particle preformation factor globally. This is the purpose of the present work.

The Royer formula [56–58] and the universal decay law (UDL) [59] have achieved great successes in describing α decay half-lives [60–69]. In the present work, we build a

^{*}zhanghongfei@lzu.edu.cn

bridge between the α decay energy and α -particle preformation factor with the help of an empirical formula for α decay half-lives, and put forward an analytical expression for estimating the α -particle preformation factor. This formula can be used to accurately calculate α decay half-lives, and can be extended to estimate α -particle preformation factors as well as predict α decay half-lives for unsynthesized superheavy nuclei. This formula can also shed light on some microscopic nuclear structure information such as the shell effect and the odd-even staggering effect. This article is organized as follows. In Sec. II, the theoretical framework of the α decay half-life is briefly presented. The analytic formula for estimating α -particle preformation factor is put forward. The detailed calculations and discussion are given in Sec. III. Section IV is a brief summary.

II. THEORETICAL FRAMEWORK

A. The generalized liquid drop model

The α decay half-life can be obtained by

$$T_{1/2} = \frac{\ln 2}{\lambda}.$$
 (1)

In the framework of the generalized liquid drop model (GLDM) [39,64,70–73], the α decay constant λ is calculated by

$$\lambda = P_{\alpha} \nu P, \tag{2}$$

where P_{α} represents the α -particle preformation factor. The assault frequency ν is expressed as

$$\nu = \frac{1}{2R_0} \sqrt{\frac{2E_\alpha}{M_\alpha}},\tag{3}$$

where R_0 denotes the radius of the α decay parent nucleus, which can be obtained by

$$R_i = 1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3} \quad (i = 0, 1, 2).$$
(4)

 $E_{\alpha} = \frac{A-4}{A}Q_{\alpha}$ is the kinetic energy of the α particle, with A and Q_{α} being the mass number and α decay energy of the parent nucleus. M_{α} represents the mass of the α particle.

Using the Wentzel-Kramers-Brillouin (WKB) approximation, the barrier penetrating probability P is expressed as

$$P = \exp\left[-\frac{2}{\hbar} \int_{r_{\rm in}}^{r_{\rm out}} \sqrt{2B(r)[E_r - E({\rm sphere})]} dr\right], \quad (5)$$

where *r* is the center-of-mass distance between the α cluster and daughter nucleus. The classical turning points r_{in} and r_{out} satisfy the conditions $r_{in} = R_1 + R_2$ and $E(r_{out}) = Q_{\alpha}$. $B(r) = \mu$ denotes the reduced mass between the α particle and daughter nucleus.

The total interaction potential E in GLDM includes four parts [56]: the volume energy E_V , the surface energy E_S , the Coulomb energy E_C , and the proximity energy E_{Prox} . In this work, the centrifugal potential E_l is introduced into the GLDM to study the unfavored α decay:

$$E = E_V + E_S + E_C + E_{\text{Prox}} + E_l. \tag{6}$$

For one-body shapes, the volume, surface, and Coulomb energies are defined as

$$E_V = -15.494(1 - 1.8I^2)A, (7)$$

$$E_S = 17.9439(1 - 2.6I^2)A^{2/3}(S/4\pi R_0^2), \qquad (8)$$

$$E_C = 0.6e^2 (Z^2/R_0)$$

$$\times 0.5 \int [V(\theta)/V_0] (R(\theta)/R_0]^3 \sin \theta \, d\theta, \qquad (9)$$

where *S* denotes the surface of the one-body deformed nucleus. *I* is the relative neutron excess. $V(\theta)$ represents the electrostatic potential at the surface and V_0 the surface potential of the sphere.

When the fragments are separated,

$$E_V = -15.494 [(1 - 1.8I_1^2)A_1 + (1 - 1.8I_2^2)A_2], \qquad (10)$$

$$E_{S} = 17.9439 [(1 - 2.6I_{1}^{2})A_{1}^{2/3} + (1 - 2.6I_{2}^{2})A_{2}^{2/3}], \quad (11)$$

$$E_C = 0.6e^2 Z_1^2 / R_1 + 0.6e^2 Z_2^2 / R_2 + e^2 Z_1 Z_2 / r,$$
 (12)

where A_i , Z_i , R_i , and I_i denote the mass numbers, proton numbers, radii, and the relative neutron excesses of the α particle and daughter nucleus, respectively. The radii R_i can be calculated by Eq. (4).

GLDM can describe the complex deformation process from parent nucleus continuous transition to the appearance of deep and narrow necks, and finally into two tangential fragments, because it introduces the quasimolecular shape mechanism [56]. All along the decay path, the effects of the nucleon-nucleon force inside the neck or the gap between the nascent or separated α particle and daughter nucleus have been taken into account in a proximity energy term [56], which can be expressed as

$$E_{\text{Prox}}(r) = 2\gamma \int_{h_{\min}}^{h_{\max}} \Phi[D(r,h)/b] 2\pi h \, dh, \qquad (13)$$

with the surface parameter γ being the geometric mean between the surface parameters of the two fragments:

$$\gamma = 0.9517 \sqrt{\left(1 - 2.6I_1^2\right) \left(1 - 2.6I_2^2\right)},\tag{14}$$

where *h* is the ring radius in the plane perpendicular to the longitudinal deformation axis. *D* denotes the distance between the opposite infinitesimal surfaces [74]. After the separation, $h_{\min} = 0$ and $h_{\max} = R_1$. b = 0.99 fm is the standard surface width value [56]. Φ denotes the proximity function.

The centrifugal barrier $E_l(r)$ is expressed as

$$E_l(r) = \frac{\hbar^2 l(l+1)}{2\mu r^2},$$
(15)

where l is the angular momentum carried by the α particle. Based on the conservation of angular momentum and parity [60], the minimum angular momentum l_{\min} taken away by the α particle is expressed as

$$l_{\min} = \begin{cases} \Delta_j & \text{for even } \Delta_j \text{ and } \pi_p = \pi_d, \\ \Delta_j + 1 & \text{for even } \Delta_j \text{ and } \pi_p \neq \pi_d, \\ \Delta_j & \text{for odd } \Delta_j \text{ and } \pi_p \neq \pi_d, \\ \Delta_j + 1 & \text{for odd } \Delta_j \text{ and } \pi_p = \pi_d, \end{cases}$$
(16)

Nuclei	Region	а	b	С	d	е	f	σ
Even-even nuclei	<i>N</i> ≤ 126	-9.8980	-8.5241	4.3520	1.1231	-2.8566		0.213
	N > 126	-2.9300	-0.0571	4.4151	1.1214	-0.0123		
Odd-A nuclei	$N \leqslant 126$	-27.1693	-13.5635	11.2042	2.8926	-4.7185	-0.0338	0.285
	N > 126	1.3776	-6.0618	-0.2476	-0.0733	-1.8972	-0.0913	
Doubly odd nuclei	$N \leqslant 126$	-1.5349	-4.1063	1.5502	0.4059	-1.3209	-0.0912	0.231
	N > 126	-38.3925	-20.2893	23.7471	6.1166	-7.0236	-0.2007	

TABLE I. The parameters of Eq. (21), and standard deviations between estimated α -particle preformation factors by Eq. (21) and extracted experimental α -particle preformation factors from Eq. (20).

where $\Delta_j = |j_p - j_d|$. j_p , π_p , j_d , π_d are the spin and parity values of the parent and daughter nuclei, respectively.

B. The α -particle preformation factor

The experimental α decay constant λ_{exp} can be obtained by experimental α decay half-life $T_{1/2}^{exp}$,

$$\lambda_{\exp} = \frac{\ln 2}{T_{1/2}^{\exp}} = P_{\alpha} \nu P. \tag{17}$$

If the α -particle preformation factor fixed as a constant, $P_0 = 1$, the theoretical decay constant λ_{cal} is

$$\lambda_{\text{cal}} = \frac{\ln 2}{T_{1/2}^{\text{cal}}} = P_0 \nu P.$$
(18)

Thus experimental α -particle preformation factor P_{α} can be extracted from experimental α decay half-life [39,47–51] because the α decay half-life is mainly decided by the barrier penetrating probability [39]. It is expressed as

$$P_{\alpha}^{\exp} = \frac{\lambda_{\exp}}{\lambda_{cal}} = \frac{T_{1/2}^{cal}}{T_{1/2}^{\exp}}.$$
 (19)

Taking the logarithms of both sides of Eq. (19), we have

$$\log_{10} P_{\alpha}^{\exp} = \log_{10} \frac{T_{1/2}^{\operatorname{cal}}}{T_{1/2}^{\exp}} = \log_{10} T_{1/2}^{\operatorname{cal}} - \log_{10} T_{1/2}^{\exp}.$$
 (20)

Two empirical formulas for α decay half-life, namely the Royer formula [56–58] and the UDL formula [59], which both successfully describe the α decay [60–69], are used here to express $\log_{10} T_{1/2}^{cal}$ and $\log_{10} T_{1/2}^{exp}$, respectively. Then, we put forward an analytic expression for estimating the α -particle preformation factor:

$$\log_{10} P_{\alpha}^{\rm Eq} = a + bA^{1/6}\sqrt{Z} + c\frac{Z}{\sqrt{Q_{\alpha}}} - d\chi' - e\rho' + f\sqrt{l(l+1)},$$
(21)

where the first three terms come from the Royer formula [56–58]. The fourth term $\chi' = Z_1 Z_2 \sqrt{\frac{A_1 A_2}{(A_1 + A_2)Q_{\alpha}}}$ and fifth term $\rho' = \sqrt{\frac{A_1 A_2}{A_1 + A_2} Z_1 Z_2 (A_1^{1/3} + A_2^{1/3})}$ are from the UDL formula [59]. The last term depends on the angular momentum carried by the α -particle and reflects the hindrance effect of the centrifugal potential. It is notable that this term is independent of mass. With the help of Eq. (20) and calculated α decay half-lives with $P_0 = 1$ in GLDM as well as corresponding

experimental data, the values of adjustable parameters *a*, *b*, *c*, *d*, *e*, and *f* are listed in Table I. Equation (21) builds a bridge between the α decay energy and α -particle preformation factor. If α decay energy is obtained, ones can easily estimate the α -particle preformation factor. Therefore, Eq. (21) is helpful to calculate and predict α decay half-life exactly as well as shed light on some microscopic nuclear structure information.

III. RESULTS AND DISCUSSION

The GLDM can well deal with the proton radioactivity [32], cluster radioactivity [75], fusion [74], fission [76], and the α decay process [39,56,64,70–73]. Here, first, we adopt the GLDM to calculate α decay half-lives with $P_{\alpha} = 1$ for 159 even-even nuclei, 295 odd-A nuclei, and 81 doubly odd nuclei. The calculations are denoted as $\log_{10} T_{1/2}^{cal1}$ and listed in Tables II–IV. Then we use Eq. (20) with calculated α decay half-lives $\log_{10} T_{1/2}^{\text{call}}$ and experimental data $\log_{10} T_{1/2}^{\text{exp}}$ to extract experimental α -particle preformation factors, which are denoted as P_{α}^{exp} . In the next step, we employ Eq. (21) and parameters in Table I to calculate α -particle preformation factors, which are denoted as P_{α}^{Eq} . P_{α}^{exp} , and P_{α}^{Eq} and are also listed in Tables II–IV. From these tables, we can see that P_{α}^{Eq} values are consistent with P_{α}^{exp} data. In order to measure the agreements of estimated α -particle preformation factors by Eq. (21) with extracted experimental ones by Eq. (20), the standard deviations for all 535 nuclei, including 159 eveneven nuclei, 295 odd-A nuclei, and 81 doubly odd nuclei, are calculated by

$$\sigma = \sqrt{\frac{1}{n} \sum \left(\log_{10} P_{\alpha}^{\text{Eq}} - \log_{10} P_{\alpha}^{\text{exp}} \right)^2}.$$
 (22)

The results of standard deviations are listed in the last column of Table I. In this table, we can find that values of σ are satisfactory. For even-even nuclei, odd-A nuclei, and doubly odd nuclei, P_{α}^{Eq} can well reproduce P_{α}^{\exp} within factors of $10^{0.213} = 1.63$, $10^{0.285} = 1.93$, and $10^{0.231} = 1.70$, respectively. Note that Eq. (21) not only is user friendly, but also can reproduce extracted experimental α -particle preformation factor with high precision.

Two types of α -particle preformation factors, P_{α}^{exp} given by Eq. (20) and P_{α}^{Eq} obtained from Eq. (21), for even-even, odd-*A*, and doubly odd nuclei are plotted as open dark and solid red circles in Figs. 1–3, respectively. From these figures, one can see that P_{α}^{Eq} can fit P_{α}^{exp} well, indicating that the

TABLE II. Calculations of α -particle preformation factors and α decay half-lives for even-even nuclei. Experimental α decay half-lives are taken from the latest evaluated nuclear properties table NUBASE2016 [83]. The α decay energies are taken from the latest evaluated atomic mass table AME2016 [84,85]. The α decay energies and half-lives are in units of MeV and s, respectively.

α trai	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
¹⁴⁸ Gd	¹⁴⁴ Sm	3.27	0	9.35	8.68	0.2157	0.2223	9.34
¹⁵⁰ Gd	¹⁴⁶ Sm	2.81	0	13.75	13.17	0.2605	0.2829	13.72
¹⁵⁰ Dv	¹⁴⁶ Gd	4.35	0	3.07	2.17	0.125	0.1345	3.04
¹⁵² Dv	¹⁴⁸ Gd	3.73	0	6.93	6.26	0.2145	0.1617	7.05
¹⁵⁴ Dv	¹⁵⁰ Gd	2.95	0	13.98	13.17	0.1557	0.2376	13.79
¹⁵² Er	¹⁴⁸ Dv	4.94	0	1.06	0.12	0.1149	0.1215	1.03
154 Er	¹⁵⁰ Dy	4 28	Ő	4 68	3.72	0.1115	0.1379	4 58
¹⁵⁶ Er	¹⁵² Dy	3 48	Ő	10.24	9.49	0 1797	0.1799	10.24
¹⁵⁴ Yh	¹⁵⁰ Fr	5 47	Ő	-0.35	-1 39	0.0926	0.117	-0.46
¹⁵⁶ Yh	152 Fr	4 81	0	2 41	1.59	0.0220	0.1266	2.69
¹⁵⁸ Yh	154 Fr	4 17	0	6.63	5 52	0.0785	0.1200	6 37
¹⁵⁶ Hf	¹⁵² Vb	6.03	0	-1.63	-2.73	0.0796	0.116	-1 79
158 158 158	¹⁵⁴ Vb	5.41	0	0.35	_0.18	0.2080	0.110	0.75
160 ப ர	156 Vh	4.0	0	3.28	-0.18	0.2989	0.1195	3.2
162 LIF	158 Vh	4.42	0	5.60	2.20	0.1010	0.1212	5.07
158 177	154 LLF	4.42	0	3.09	5.07	0.242	0.1249	3.97
W 160 xx7	ПІ 156це	6.02	0	-2.9	-4.04	0.0729	0.1172	-3.11
162 x x 7	15811C	5.69	0	-0.99	-2.03	0.0677	0.1109	-1.11
164 xx7	160 I I C	5.08	0	0.42	-0.40	0.1305	0.1108	0.49
166 xx 7	16211C	5.28	0	2.22	1.51	0.1249	0.1075	2.28
168 XX 7	164116	4.80	0	4.74	5.49	0.0507	0.1039	4.47
180 w	176 HI	4.5	0	6.2	5.57	0.2327	0.1034	6.55
¹⁶⁰ W	158 TT	2.52	0	25.75	24.54	0.061	0.1126	25.49
166 OS	¹⁵⁰ W	6.//	0	-2.68	-3.76	0.0831	0.1147	-2.82
168 OS	164 W	6.14	0	-0.53	-1.55	0.0944	0.1001	-0.56
¹⁰⁰ Os	¹⁰⁴ W	5.82	0	0.68	-0.23	0.1229	0.0942	0.8
170 Os	168 W	5.54	0	1.89	1.01	0.1313	0.0881	2.06
¹⁷² Os	¹⁰⁸ W	5.22	0	3.23	2.46	0.168	0.0834	3.54
^{1/4} Os	¹⁷⁰ W	4.87	0	5.25	4.35	0.1245	0.0799	5.44
¹⁰⁰ Os	¹⁶² W	2.82	0	22.8	21.72	0.0823	0.074	22.85
¹⁰⁰ Pt	¹⁰² Os	7.29	0	-3.52	-4.73	0.0627	0.1065	-3.75
¹⁰⁰ Pt	¹⁰⁴ Os	6.99	0	-2.69	-3.78	0.0815	0.0984	-2.78
¹⁷² Pt	¹⁰⁸ Os	6.46	0	-1	-2.02	0.0945	0.0836	-0.95
¹⁷⁴ Pt	170Os	6.18	0	0.06	-0.95	0.0961	0.0774	0.16
¹⁷⁰ Pt	¹⁷² Os	5.89	0	1.2	0.28	0.1207	0.0721	1.42
^{1/0} Pt	¹⁷⁴ Os	5.57	0	2.43	1.63	0.1584	0.0674	2.8
¹⁰⁰ Pt	¹⁷⁰ Os	5.24	0	4.27	3.28	0.1019	0.0635	4.48
¹⁸² Pt	^{1/8} Os	4.95	0	5.62	4.83	0.16	0.0596	6.05
¹⁸⁴ Pt	¹⁸⁰ Os	4.6	0	7.77	6.94	0.1474	0.0568	8.18
¹⁹⁰ Pt	¹⁸⁶ Os	3.27	0	19.31	17.86	0.0354	0.0557	19.12
¹⁷² Hg	¹⁶⁸ Pt	7.53	0	-3.64	-4.79	0.0696	0.092	-3.76
¹⁷⁴ Hg	¹⁷⁰ Pt	7.23	0	-2.7	-3.9	0.0628	0.0845	-2.83
¹⁷⁶ Hg	172 Pt	6.9	0	-1.65	-2.79	0.0729	0.0781	-1.68
¹⁷⁸ Hg	174 Pt	6.58	0	-0.53	-1.69	0.0678	0.0722	-0.55
¹⁸⁰ Hg	¹⁷⁶ Pt	6.26	0	0.73	-0.47	0.063	0.0668	0.7
¹⁸² Hg	¹⁷⁸ Pt	6	0	1.89	0.62	0.0533	0.0616	1.83
¹⁸⁴ Hg	¹⁸⁰ Pt	5.66	0	3.44	2.12	0.0474	0.0574	3.36
¹⁸⁶ Hg	¹⁸² Pt	5.2	0	5.7	4.37	0.047	0.0546	5.64
¹⁷⁸ Pb	¹⁷⁴ Hg	7.79	0	-3.64	-4.94	0.0504	0.0796	-3.84
¹⁸⁰ Pb	¹⁷⁶ Hg	7.42	0	-2.39	-3.81	0.0374	0.0733	-2.68
¹⁸⁴ Pb	¹⁸⁰ Hg	6.77	0	-0.21	-1.64	0.0376	0.0618	-0.43
¹⁸⁶ Pb	¹⁸² Hg	6.47	0	1.07	-0.54	0.0243	0.0568	0.7
¹⁸⁸ Pb	¹⁸⁴ Hg	6.11	0	2.43	0.94	0.0326	0.0526	2.22
¹⁹⁰ Pb	¹⁸⁶ Hg	5.7	0	4.24	2.81	0.0368	0.049	4.12
¹⁹² Pb	¹⁸⁸ Hg	5.22	0	6.55	5.26	0.0522	0.0462	6.6
¹⁸⁶ Po	¹⁸² Pb	8.5	0	-4.47	-6.36	0.0129	0.0603	-5.14
¹⁹⁰ Po	¹⁸⁶ Pb	7.69	0	-2.61	-4.08	0.0337	0.0508	-2.79

ANALYTIC FORMULA FOR ESTIMATING THE ...

				IIIDEE II. (C	ommucu.)			
α tran	nsition	Q_{lpha}	l _{min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	P^{\exp}_{lpha}	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
¹⁹⁴ Po	¹⁹⁰ Pb	6.99	0	-0.41	-1.79	0.0416	0.0426	-0.42
¹⁹⁶ Po	¹⁹² Pb	6.66	0	0.75	-0.58	0.0467	0.0391	0.83
¹⁹⁸ Po	¹⁹⁴ Pb	6.31	0	2.27	0.82	0.0358	0.0359	2.27
²⁰⁰ Po	¹⁹⁶ Pb	5.98	0	3.79	2.26	0.0293	0.0329	3.74
²⁰² Po	¹⁹⁸ Pb	5.7	0	5.14	3.53	0.0243	0.0302	5.05
²⁰⁴ Po	²⁰⁰ Pb	5.49	0	6.27	4.61	0.0216	0.0275	6.17
²⁰⁶ Po	²⁰² Pb	5.33	0	7.14	5.44	0.02	0.025	7.05
²⁰⁸ Po	²⁰⁴ Pb	5.22	0	7.96	6.06	0.0124	0.0226	7.7
²¹² Po	²⁰⁸ Pb	8.95	0	-6.53	-8	0.034	0.0678	-6.83
²¹⁴ Po	²¹⁰ Pb	7.83	0	-3.79	-4.94	0.0699	0.0933	-3.91
²¹⁶ Po	²¹² Pb	6.91	0	-0.84	-1.86	0.0961	0.1281	-0.96
²¹⁸ Po	²¹⁴ Pb	6.12	0	2.27	1.28	0.1037	0.1771	2.04
¹⁹⁴ Rn	¹⁹⁰ Po	7.86	0	-3.11	-3.9	0.1596	0.0494	-2.6
¹⁹⁶ Rn	¹⁹² Po	7.62	0	-2.33	-3.16	0.1465	0.0448	-1.81
²⁰⁰ Rn	¹⁹⁶ Po	7.04	0	0.07	-1.22	0.0509	0.0371	0.21
202 Rn	¹⁹⁸ Po	6.77	0	1.09	-0.27	0.0433	0.0337	1.2
²⁰⁴ Rn	²⁰⁰ Po	6.55	0	2.01	0.61	0.0395	0.0306	2.12
²⁰⁶ Rn	²⁰² Po	6.38	0	2.74	1.27	0.0343	0.0277	2.83
²⁰⁸ Rn	²⁰⁴ Po	6.26	0	3.37	1.79	0.0265	0.0251	3.39
²¹⁰ Rn	²⁰⁶ Po	6.16	0	3.95	2.16	0.0161	0.0227	3.8
212 Rn	²⁰⁸ Po	6.38	0	3.16	1.15	0.0097	0.0203	2.84
214 Rn	²¹⁰ Po	9.21	0	-6.57	-7.97	0.0401	0.0583	-6.73
²¹⁶ Rn	²¹² Po	8.2	0	-4.35	-5.3	0.1108	0.076	-4.18
²¹⁸ Rn	²¹⁴ Po	7.26	0	-1.47	-2.37	0.1252	0.1017	-1.38
²²⁰ Rn	²¹⁶ Po	6.41	0	1.75	0.92	0.1497	0.1405	1.77
²²² Rn	²¹⁸ Po	5.59	0	5.52	4.76	0.173	0.2041	5.45
²⁰² Ra	¹⁹⁸ Rn	7.88	0	-2.39	-3.34	0.1118	0.039	-1.93
²⁰⁴ Ra	²⁰⁰ Rn	7.64	0	-1.22	-2.58	0.0439	0.0353	-1.13
²⁰⁸ Ra	²⁰⁴ Rn	7.27	0	0.1	-1.37	0.0334	0.0289	0.17
²¹⁴ Ra	²¹⁰ Rn	7.27	0	0.39	-1.49	0.0133	0.0212	0.19
²¹⁶ Ra	212 Rn	9.53	0	-6.74	-8.08	0.0462	0.0496	-6.77
²¹⁸ Ra	214 Rn	8.55	0	-4.6	-5.61	0.0967	0.0628	-4.41
²²⁰ Ra	²¹⁶ Rn	7.59	0	-1.75	-2.71	0.1079	0.0826	-1.63
²²² Ra	²¹⁸ Rn	6.68	0	1.53	0.65	0.1326	0.1135	1.59
²²⁴ Ra	²²⁰ Rn	5.79	0	5.5	4.7	0.1585	0.166	5.48
²²⁶ Ra	²²² Rn	4.87	0	10.7	10.04	0.2181	0.2745	10.6
²⁰⁸ Th	204 Ra	8.2	0	-2.62	-3.65	0.0933	0.034	-2.18
²¹² Th	²⁰⁸ Ra	7.96	0	-1.5	-2.98	0.0327	0.0277	-1.43
²¹⁴ Th	²¹⁰ Ra	7.83	0	-1.06	-2.58	0.03	0.025	-0.98
²¹⁶ Th	212 Ra	8.07	0	-1.59	-3.41	0.0151	0.0226	-1.76
²¹⁸ Th	²¹⁴ Ra	9.85	0	-6.93	-8.21	0.0527	0.0423	-6.84
²²⁰ Th	²¹⁶ Ra	8.95	0	-5.01	-6.04	0.0946	0.0515	-4.75
²²² Th	²¹⁸ Ra	8.13	0	-2.65	-3.69	0.0911	0.0635	-2.49
²²⁴ Th	²²⁰ Ra	7.3	0	0.02	-0.93	0.1142	0.0813	0.16
²²⁰ Th	²²² Ra	6.45	0	3.27	2.46	0.157	0.1101	3.42
²²⁰ Th	²²⁴ Ra	5.52	0	7.78	7.04	0.1806	0.1674	7.81
²³⁰ Th	²²⁶ Ra	4.77	0	12.38	11.74	0.2319	0.2544	12.34
²¹⁶ U	²¹² Th	8.53	0	-2.16	-4.05	0.0129	0.0269	-2.48
²¹⁸ U	²¹⁴ Th	8.78	0	-3.26	-4.81	0.0284	0.0244	-3.19
²²² U	²¹⁸ Th	9.48	0	-5.33	-6.74	0.0384	0.0415	-5.36
²²⁴ U 226	²²⁰ Th	8.63	0	-3.4	-4.48	0.0844	0.0503	-3.18
²²⁰ U	²²² Th	7.7	0	-0.57	-1.56	0.1015	0.0647	-0.37
²⁵⁰ U	²²⁰ Th	5.99	0	6.24	5.48	0.1727	0.1191	6.4
²³² U	²²⁸ Th	5.41	0	9.34	8.64	0.201	0.1547	9.45
²³⁴ U	²³⁰ Th	4.86	0	12.89	12.22	0.2131	0.208	12.9
²⁵⁰ U	²³² Th	4.57	0	14.87	14.21	0.2207	0.2433	14.83
²²⁰ Pu	²²⁴ U	7.94	0	0.32	-1.65	0.0106	0.0548	-0.39
²³⁰ Pu	²²⁶ U	7.18	0	2.01	1.08	0.1177	0.0685	2.24

TABLE II. (Continued.)

	IABLE II. (Commuted.)									
α tran	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$		
²³² Pu	²²⁸ U	6.72	0	4.24	2.98	0.0548	0.0791	4.08		
²³⁴ Pu	²³⁰ U	6.31	0	5.72	4.82	0.1252	0.0906	5.86		
²³⁶ Pu	²³² U	5.87	0	7.96	6.98	0.1056	0.1073	7.95		
²³⁸ Pu	²³⁴ U	5.59	0	9.44	8.49	0.1105	0.1191	9.41		
²⁴⁰ Pu	²³⁶ U	5.26	0	11.32	10.52	0.1584	0.138	11.38		
²⁴² Pu	²³⁸ U	4.98	0	13.07	12.3	0.1695	0.1564	13.11		
²⁴⁴ Pu	²⁴⁰ U	4.67	0	15.4	14.6	0.157	0.185	15.33		
²³⁴ Cm	²³⁰ Pu	7.37	0	2.28	1.15	0.074	0.0569	2.4		
²³⁶ Cm	²³² Pu	7.07	0	3.35	2.26	0.082	0.0613	3.48		
²³⁸ Cm	²³⁴ Pu	6.67	0	5.31	3.95	0.0434	0.0689	5.11		
²⁴⁰ Cm	²³⁶ Pu	6.4	0	6.37	5.2	0.0681	0.0746	6.33		
²⁴² Cm	²³⁸ Pu	6.22	0	7.15	6.08	0.0854	0.0782	7.19		
²⁴⁴ Cm	²⁴⁰ Pu	5.9	0	8.76	7.7	0.0876	0.0872	8.76		
²⁴⁶ Cm	²⁴² Pu	5.48	0	11.17	10.07	0.0785	0.1039	11.05		
²⁴⁸ Cm	²⁴⁴ Pu	5.16	0	13.08	12.05	0.0945	0.119	12.98		
²³⁸ Cf	²³⁴ Cm	8.13	0	1.02	-0.91	0.0117	0.0399	0.49		
²⁴⁰ Cf	²³⁶ Cm	7.71	0	1.61	0.55	0.0867	0.0439	1.91		
²⁴² Cf	²³⁸ Cm	7.52	0	2.42	1.26	0.0696	0.0454	2.6		
²⁴⁴ Cf	²⁴⁰ Cm	7.33	0	3.07	1.96	0.0792	0.047	3.29		
²⁴⁶ Cf	²⁴² Cm	6.86	0	5.11	3.84	0.0543	0.0536	5.11		
²⁴⁸ Cf	²⁴⁴ Cm	6.36	0	7.46	6.16	0.0506	0.063	7.36		
²⁵⁰ Cf	²⁴⁶ Cm	6.13	0	8.62	7.33	0.0518	0.0673	8.5		
²⁵² Cf	²⁴⁸ Cm	6.22	0	7.94	6.85	0.0825	0.0632	8.05		
²⁵⁴ Cf	²⁵⁰ Cm	5.93	0	9.22	8.31	0.1221	0.0695	9.47		
²⁴⁴ Fm	²⁴⁰ Cf	8.55	0	-0.11	-1.63	0.0303	0.0309	-0.12		
²⁴⁸ Fm	²⁴⁴ Cf	8	0	1.56	0.18	0.0419	0.0341	1.65		
²⁵² Fm	²⁴⁸ Cf	7.15	0	4.96	3.39	0.027	0.0418	4.77		
²⁵⁴ Fm	²⁵⁰ Cf	7.31	0	4.07	2.67	0.0404	0.0388	4.08		
²⁵⁶ Fm	²⁵² Cf	7.03	0	5.07	3.83	0.0586	0.0414	5.22		
²⁵⁴ No	²⁵⁰ Fm	8.23	0	1.75	0.03	0.0187	0.0278	1.58		
²⁵⁶ No	²⁵² Fm	8.58	0	0.46	-1.18	0.0225	0.0249	0.42		
²⁵⁸ No	²⁵⁴ Fm	8.15	0	2.08	0.24	0.0144	0.027	1.81		
²⁵⁶ Rf	²⁵² No	8.93	0	0.32	-1.55	0.0136	0.0215	0.12		
²⁵⁸ Rf	²⁵⁴ No	9.19	0	-0.98	-2.4	0.0384	0.0198	-0.69		
²⁶⁰ Rf	²⁵⁶ No	8.9	0	0.02	-1.53	0.0279	0.0206	0.15		
²⁶⁰ Sg	²⁵⁶ Rf	9.9	0	-1.91	-3.77	0.0139	0.0158	-1.97		
²⁶⁴ Hs	²⁶⁰ Sg	10.59	0	-2.97	-4.97	0.0099	0.0125	-3.07		
²⁶⁸ Hs	²⁶⁴ Sg	9.63	0	0.15	-2.44	0.0026	0.0143	-0.59		
²⁷⁰ Hs	²⁶⁶ Sg	9.07	0	0.95	-0.76	0.0195	0.0156	1.05		
²⁷⁰ Ds	²⁶⁶ Hs	11.12	0	-3.69	-5.69	0.0099	0.0102	-3.7		
²⁸⁶ Fl	²⁸² Cn	10.37	0	-0.46	-2.8	0.0045	0.0086	-0.74		
²⁸⁸ Fl	²⁸⁴ Cn	10.07	0	-0.12	-1.99	0.0135	0.0088	0.06		
²⁹⁰ Lv	²⁸⁶ Fl	11.01	0	-2.1	-3.92	0.0151	0.0071	-1.77		
²⁹² Lv	²⁸⁸ Fl	10.78	0	-1.62	-3.36	0.0183	0.0071	-1.21		
²⁹⁴ Og	²⁹⁰ Lv	11.84	0	-2.94	-5.36	0.0038	0.0057	-3.12		

TABLE II. (Continued.)

analytic formula for estimating the α -particle preformation factor is credible. In addition, we can find that the sequence of nuclei in the order of decreasing P_{α}^{exp} and P_{α}^{Eq} are even-even nuclei, odd-A nuclei, and doubly odd nuclei, which satisfy the variation tendencies of α -particle preformation factors obtained by different models [28,29,77–82]. Moreover, one can find that the closer the neutron number is to the magic number N = 126, the smaller P_{α}^{exp} and P_{α}^{Eq} are. When N is far from the neutron magic number N = 126, P_{α}^{exp} and P_{α}^{Eq} will increase as the neutron number deviates from N = 126 shell closure, until the neutron number approaches the next neutron closed shell. This indicates that the closer the neutron number is to the magic number, the more difficult it is for an α particle to form inside its parent nucleus because P_{α} represents the probability of an α -cluster formation inside its parent nucleus before emission. It is also shown that the microscopic shell structure information is reflected by the observation of P_{α}^{Eq} obtained from Eq. (21). Noticeably, when neutron numbers

TABLE III. Same as Table II, but for α decay of odd-A nuclei. Elements with upper suffixes "m", "n", "p", or "x" indicate assignments to excited isomeric states (defined as higher states with half-lives greater than 100 ns). Suffixes "p" also indicate nonisomeric levels, but used in the AME2016 [84,85].

α trai	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{ m cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
¹⁴⁹ Tb	¹⁴⁵ Eu	4.08	2	4.95	3.68	0.0534	0.0669	4.85
¹⁵¹ Tb	¹⁴⁷ Eu	3.5	2	8.82	7.76	0.0872	0.1226	8.68
¹⁵¹ Dv	¹⁴⁷ Gd	4.18	0	4.28	3.19	0.0814	0.0768	4.3
¹⁵³ Dv	¹⁴⁹ Gd	3.56	Ő	8.39	7.54	0.14	0.1405	8.39
¹⁵¹ Ho	147 Th ^m	4 64	Ő	2.2	1.09	0.0773	0.0622	2 29
¹⁵¹ Ho ^m	¹⁴⁷ Th	4 74	0	1 79	0.6	0.065	0.0569	1 84
¹⁵³ Ho ^m	¹⁴⁹ Th	4 12	0	5.47	4 14	0.005	0.088	5.2
¹⁵³ Er	¹⁴⁹ Dv	4.12	0	1.84	0.78	0.0400	0.0583	2.01
¹⁵⁵ Er	¹⁵¹ Dv	4.12	0	6.15	0.78	0.0304	0.0038	2.01 5.77
¹⁵³ Tm	¹⁴⁹ Ho	4.12	0	0.15	4.74	0.0394	0.0938	0.30
153 Tm ^m	149 LI o ^m	5.25	0	0.21	-0.87	0.0827	0.0542	0.39
155 155 Tm	151 Lo	J.24 4 57	0	0.43	-0.85	0.0327	0.0342	0.42
1 III 155 x/L	151 D a	4.57	0	5.58	2.33	0.1461	0.0778	5.00
157 XL	153 E r	5.54	0	0.5	-0.8	0.0787	0.0554	0.45
155 T	151m	4.62	0	3.89	2.76	0.0745	0.0795	3.80
¹⁵⁵ Lu	¹⁵¹ Tm	5.8	0	-1.12	-2.3	0.0654	0.0546	-1.04
155 Lum	151 m	5.73	0	-0.74	-2	0.0547	0.05/1	-0.76
¹⁵⁵ Lu ⁿ	¹⁵¹ Tm	7.58	8	-2.57	-4.48	0.0123	0.0115	-2.54
¹⁵⁷ Lu ^m	¹⁵⁵ Tm	5.13	0	1.89	0.64	0.0561	0.0701	1.79
¹³⁷ Hf	¹⁵⁵ Yb	5.89	0	-0.91	-2.22	0.0492	0.0572	-0.98
157 Ta ⁿ	¹⁵³ Lu	7.95	8	-2.77	-4.75	0.0104	0.0158	-2.95
¹⁵⁹ Ta	¹⁵⁵ Lu ^m	5.66	0	0.48	-0.83	0.0493	0.0712	0.32
¹⁵⁹ Ta ^m	¹⁵⁵ Lu	5.75	0	0.01	-1.19	0.063	0.0678	-0.02
^{159}W	¹⁵⁵ Hf	6.45	0	-2	-3.46	0.0348	0.0632	-2.26
^{161}W	157 Hf	5.92	0	-0.25	-1.46	0.0626	0.0673	-0.28
^{163}W	159 Hf	5.52	0	1.27	0.24	0.0937	0.0684	1.4
159 Re ^m	¹⁵⁵ Ta	6.97	0	-3.54	-4.8	0.0557	0.0678	-3.63
161 Re ^m	¹⁵⁷ Ta ^m	6.43	0	-1.8	-2.97	0.0671	0.0701	-1.82
¹⁶³ Re	¹⁵⁹ Ta	6.01	0	0.08	-1.41	0.0324	0.0697	-0.25
163 Re ^m	¹⁵⁹ Ta ^m	6.07	0	-0.49	-1.63	0.0719	0.0679	-0.47
¹⁶⁵ Re	¹⁶¹ Ta	5.69	0	1.25	-0.13	0.0418	0.067	1.04
¹⁶⁵ Re ^m	¹⁶¹ Ta ^m	5.66	0	1.12	0.02	0.0781	0.0681	1.18
167 Re ^m	¹⁶³ Ta	5.41	0	2.77	1.17	0.0249	0.064	2.36
¹⁶⁹ Re	¹⁶⁵ Ta	5.01	3	5.18	3.79	0.0407	0.05	5.1
169 Re ^m	¹⁶⁵ Ta ^m	5.16	3	3.88	3	0.1327	0.0459	4.34
¹⁶¹ Os	¹⁵⁷ W	7.07	0	-3.19	-4.74	0.0284	0.0722	-3.6
¹⁶³ Os	¹⁵⁹ W	6.69	0	-2.26	-3.5	0.0578	0.069	-2.34
¹⁶⁵ Os	^{161}W	6.34	0	-1.1	-2.28	0.0659	0.0656	-1.1
¹⁶⁷ Os	^{163}W	5.99	Ő	0.21	-0.93	0.072	0.0629	0.27
¹⁶⁹ Os	^{165}W	5.71	Ő	1.4	0.21	0.0652	0.0588	1.44
¹⁶⁵ Ir ^m	161 Re ^m	6.89	0 0	-2 57	-3.82	0.0574	0.0703	-2.66
¹⁶⁷ Ir	¹⁶³ Re	6.51	Ő	-1.17	-2.51	0.0371	0.0668	-1.33
¹⁶⁷ Ir ^m	163 Re ^m	6.56	0	-1.55	_2.51 _2.71	0.0683	0.0655	-1.53
¹⁶⁹ Ir	¹⁶⁵ Re	6.14	0	-0.18	_1.13	0.1133	0.0636	0.07
169 Jr.m	165 D .em	6.27	0	0.10	1.15	0.067	0.0606	0.07
171 Ir	167 D .e ^m	5.87	0	-0.45	-1.03	0.007	0.0000	-0.41
171 Tm	167 P o	5.67	0	0.42	-0.03	0.0439	0.0389	1.18
11 173 L .m	169 D o	0.10 5.04	2	0.43	-0.94	0.0421	0.0433	0.42
11 175 m	171 D a	5.94	2	1.20	-0.09	0.0440	0.0391	1.52
11 177 L .	173 D -	5.45	2	5.02	2.23	0.1007	0.0403	5.02
167 D4	163 C	5.08	U	4.69	3.07	0.0939	0.04/4	5
171 D4	167 C	/.10	0	-5.1	-4.33	0.058/	0.0705	-3.18
173 D	169 C	0.01	U	-1.3	-2.54	0.0579	0.0582	-1.3
¹⁷⁵ Pt	10 ² Os	6.36	0	-0.35	-1.64	0.0524	0.0526	-0.36
¹⁷⁷ Pt	171 Os	6.16	2	0.58	-0.57	0.0709	0.0387	0.84
170 Pt	175 Os	5.64	0	2.27	1.36	0.1239	0.0472	2.68
^{1/9} Pt	^{1/5} Os	5.41	2	3.94	2.72	0.0595	0.0356	4.16

				IABLE III. (Ca	miinuea.)			
α trai	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{\text{call}}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
¹⁸¹ Pt	¹⁷⁷ Os	5.15	0	4.85	3.74	0.0777	0.0399	5.14
¹⁸³ Pt	¹⁷⁹ Os	4.82	0	6.61	5.57	0.0914	0.0383	6.98
¹⁷¹ Au ^m	167 Ir ^m	7.16	0	-2.76	-4.04	0.0527	0.0642	-2.85
¹⁷³ Au	¹⁶⁹ Ir	6.84	0	-1.53	-2.96	0.0367	0.0588	-1.73
¹⁷³ Au ^m	169 Ir ^m	6.9	0	-1.86	-3.17	0.0489	0.0578	-1.94
¹⁷⁵ Au	171 Ir	6.59	0	-0.64	-2.08	0.0364	0.0529	-0.8
¹⁷⁵ Au ^m	171 Ir ^m	6.59	0	-0.75	-2.08	0.0468	0.0529	-0.8
¹⁷⁷ Au	¹⁷³ Ir	6.3	0	0.56	-1	0.0277	0.0482	0.31
¹⁷⁷ Au ^m	173 Ir ^m	6.26	0	0.25	-0.85	0.0786	0.0487	0.46
¹⁷⁹ Au	¹⁷⁵ Ir	5.98	1	1.51	0.35	0.0695	0.0399	1.75
¹⁸¹ Au	¹⁷⁷ Ir	5.75	2	2.7	1.56	0.0734	0.0331	3.04
¹⁸³ Au	¹⁷⁹ Ir	5.47	0	3.89	2.59	0.0498	0.0369	4.02
¹⁸⁵ Au	¹⁸¹ Ir	5.18	0	4.98	4.05	0.1167	0.0342	5.51
¹⁷¹ Hg	¹⁶⁷ Pt	7.67	2	-4.15	-4.9	0.1808	0.0612	-3.68
¹⁷³ Hg	¹⁶⁹ Pt	7.38	2	-3.1	-4.04	0.1146	0.0549	-2.78
¹⁷⁷ Hg	¹⁷³ Pt	6.74	2	-0.82	-1.92	0.08	0.0452	-0.58
¹⁷⁹ Hg	¹⁷⁵ Pt	6.36	0	0.14	-0.87	0.098	0.0507	0.43
¹⁸¹ Hg	¹⁷⁷ Pt	6.28	2	1.12	-0.27	0.0401	0.0358	1.17
¹⁸³ Hg	¹⁷⁹ Pt	6.04	0	1.9	0.42	0.0326	0.0389	1.83
¹⁸⁵ Hg	¹⁸¹ Pt	5.77	0	2.91	1.58	0.0473	0.0352	3.03
¹⁷⁷ Tl	¹⁷³ Au	7.07	0	-1.61	-2.97	0.0432	0.0651	-1.79
177Tl ^m	173 Au ^m	7.66	0	-3.44	-4.91	0.0343	0.0571	-3.66
¹⁷⁹ Tl	¹⁷⁵ Au	6.71	0	-0.36	-1.75	0.0407	0.0594	-0.52
¹⁷⁹ Tl ^m	¹⁷⁵ Au ^m	7.38	0	-2.85	-4.07	0.0607	0.0509	-2.77
181 Tl ^m	177 Au ^m	6.97	2	-0.46	-2.42	0.0109	0.0387	-1.01
¹⁸³ Tl	¹⁷⁹ Au	5.98	0	2.54	1.16	0.0422	0.0502	2.46
¹⁸³ Tl ^m	¹⁷⁹ Au	6.61	3	0.54	-0.83	0.0429	0.0326	0.66
^{18/} Tl ^m	¹⁸³ Au	5.66	2	4	2.87	0.0732	0.0317	4.37
^{1/9} Pb	¹⁷⁵ Hg	7.6	2	-2.41	-4.06	0.0224	0.0522	-2.78
¹⁸⁵ Pb ^m	¹⁷⁹ Hg	7.02	3	-0.38	-1.93	0.0283	0.0382	-0.51
¹⁸⁵ Pb ^m	181 Hg ^m	6.56	0	0.91	-0.82	0.0187	0.0463	0.51
¹⁰ /Pb	¹⁸⁵ Hg	6.39	2	2.2	0.06	0.0072	0.0333	1.54
¹⁸ /Pb ^m	¹⁸⁵ Hg ^m	6.21	0	2.18	0.53	0.0223	0.0419	1.9
¹⁰⁹ Pb	¹⁸⁵ Hg	5.92	2	3.99	2.1	0.0128	0.0311	3.61
¹⁹¹ Pb ^m	¹⁸⁷ Hg ^m	5.4	0	5.82	4.29	0.0297	0.0358	5.73
¹⁰⁷ Bi	¹⁸⁵ Tl	7.78	5	-1.43	-3.24	0.0154	0.0262	-1.66
¹⁰⁷ B1 ^m	185/TI	7.89	0	-3.43	-5.02	0.0261	0.0394	-3.61
¹⁰⁹ B1	¹⁸⁵ TI	7.27	5	-0.18	-1.64	0.0351	0.0239	-0.01
¹⁹¹ B1	187 TIm	6.45	0	1.36	-0.07	0.0374	0.0356	1.38
¹⁹³ D:	189mm	7.02	0	-0.78	-2.26	0.0327	0.0323	-0.77
193 D:m	189701	6.02	0	3.26	1.68	0.0267	0.0325	3.17
195D:	191 mm	6.61	0	0.56	-0.8	0.0439	0.0292	0.74
195 D.m	191701	5.54	0	5.76	4.01	0.0178	0.0302	5.53
209 D:	205 771	6.23	0	2.42	0.73	0.0207	0.0264	2.31
211 D:	207 11	3.14	5	26.8	24.29	0.003	0.0107	26.26
213D:	209 701	6.75 5.00	5	2.11	-0.21	0.0048	0.0198	1.49
187 D-	-** 11 183 DL	5.99	5	5.12	2.96	0.007	0.0215	4.63
189 Do	185 DL	7.98 7.60	2	-2.85	-4.01	0.01/5	0.0415	-3.23
195 Do	191 Dh	1.09	2	-2.42	-3./8	0.0439	0.0303	-2.34
195 Dom	191 DL m	0.75	0	0.09	-0.89	0.0239	0.0303	0.02
197 Do	193 DL	0.84	0	0.33	-1.20	0.0238	0.0301	0.26
197 D om	193 DLm	0.41	0	2.08	0.43	0.0225	0.02/1	ے 1 50
199 Do	195 DL	0.31	0	1.48	0.02	0.0343	0.0207	1.39
199 D o ^m	195 DL m	0.08	0	3.04	1.84	0.0139	0.0241	3.40 2.00
201 Do	197 DL	0.18	0	3.02	1.30	0.022	0.0237	2.98 1 72
PU	PD	J.ð	U	4.92	5.05	0.0157	0.0215	4.73

TABLE III. (Continued.)

ANALYTIC FORMULA FOR ESTIMATING THE ...

				INDEE III. (Co	minucu.)			
α tran	sition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
²⁰¹ Po ^m	¹⁹⁷ Pb ^m	5.9	0	4.34	2.55	0.0162	0.0209	4.23
²⁰³ Po	¹⁹⁹ Pb	5.5	2	6.29	4.86	0.037	0.0156	6.67
²⁰³ Po ^m	¹⁹⁹ Pb	6.14	5	5.05	2.92	0.0073	0.0112	4.87
²⁰⁵ Po	²⁰¹ Pb	5.33	0	7.18	5.46	0.0191	0.0164	7.25
²⁰⁷ Po	²⁰³ Pb	5.22	0	7.99	6.06	0.0117	0.0141	7.91
²⁰⁹ Po	205 Pb ^m	4.98	0	9.59	7.46	0.0073	0.0124	9.36
²¹¹ Po ^m	²⁰⁷ Pb	9.06	13	1.4	-0.66	0.0087	0.0026	1.93
²¹³ Po	²⁰⁹ Pb	8.54	0	-5.43	-6.94	0.0312	0.0444	-5.58
²¹⁵ Po	²¹¹ Pb	7.53	0	-2.75	-3.99	0.0572	0.0479	-2.67
²¹⁹ Po	²¹⁵ Pb	5.92	0	3.34	2.19	0.0702	0.0568	3.43
¹⁹¹ At	$^{187}\mathrm{Bi}^\mathrm{m}$	7.71	0	-2.68	-3.77	0.0816	0.0476	-2.44
¹⁹¹ At ^m	¹⁸⁷ Bi	7.88	2	-2.66	-4	0.0457	0.0386	-2.58
¹⁹³ At	¹⁸⁹ Bi ^m	7.39	0	-1.54	-2.76	0.0595	0.0419	-1.39
¹⁹³ At ^m	¹⁸⁹ Bi	7.58	2	-1.68	-3.11	0.0371	0.0339	-1.64
¹⁹³ At ⁿ	¹⁸⁹ Bi	7.62	3	-0.93	-2.93	0.0101	0.0312	-1.42
¹⁹⁵ At	¹⁹¹ Bi ^m	7.1	0	-0.54	-1.79	0.0561	0.0367	-0.35
¹⁹⁷ At	¹⁹³ Bi	7.11	0	-0.39	-1.84	0.0361	0.0311	-0.33
¹⁹⁷ At ^m	¹⁹³ Bi ^m	6.84	Õ	0.3	-0.87	0.0674	0.0321	0.62
¹⁹⁹ At	¹⁹⁵ Bi	6.78	Õ	0.89	-0.64	0.0291	0.0274	0.92
¹⁹⁹ At ^m	¹⁹⁵ Bi	7.02	5	1.44	-0.12	0.0275	0.0174	1.64
²⁰¹ At	¹⁹⁷ Bi	6.47	0	2.07	0.51	0.027	0.0241	2.12
²⁰³ At	¹⁹⁹ Bi	6.21	0 0	3.15	1.6	0.0282	0.021	3.28
²⁰⁵ At	²⁰¹ Bi	6.02	Ő	4.3	2.45	0.014	0.0183	4.18
²⁰⁷ At	²⁰³ Bi	5.87	0 0	4.81	3.12	0.0201	0.0158	4.92
²⁰⁹ At	²⁰⁵ Bi	5.76	Ő	5.67	3.66	0.0097	0.0136	5.53
²¹¹ At	²⁰⁷ Bi	5.98	Ő	4.79	2.49	0.005	0.0113	4.44
²¹³ At	²⁰⁹ Bi	9.25	Ő	-6.9	-8.4	0.032	0.0415	-7.02
²¹⁵ At	²¹¹ Bi	8.18	Õ	-4	-5.6	0.0249	0.0444	-4.25
²¹⁷ At	²¹³ Bi	7.2	Ő	-1.49	-2.52	0.0933	0.0483	-1.2
²¹⁹ At	²¹⁵ Bi	6.34	Ő	1.78	0.74	0.0925	0.0531	2.02
¹⁹³ Rn	¹⁸⁹ Po	8.04	2	-2.94	-4.15	0.0618	0.0412	-2.76
¹⁹⁵ Rn	¹⁹¹ Po	7.69	0	-2.15	-3.39	0.0586	0.0437	-2.03
¹⁹⁵ Rn ^m	¹⁹¹ Po ^m	7.71	Õ	-2.22	-3.45	0.059	0.0436	-2.09
¹⁹⁷ Rn	¹⁹³ Po	7.41	Õ	-1.27	-2.49	0.0604	0.0381	-1.07
¹⁹⁷ Rn ^m	¹⁹³ Po ^m	7.51	Õ	-1.59	-2.82	0.059	0.0377	-1.4
²⁰³ Rn	¹⁹⁹ Po	6.63	0	1.82	0.29	0.0293	0.025	1.89
203 Rn ^m	¹⁹⁹ Po ^m	6.68	0	1.55	0.08	0.0333	0.0249	1.68
²⁰⁵ Rn	²⁰¹ Po	6.39	2	2.84	1.57	0.0537	0.0179	3.31
²⁰⁷ Rn	²⁰³ Po	6.25	0	3.42	1.84	0.0267	0.0187	3.57
²⁰⁹ Rn	²⁰⁵ Po	6.16	0	4	2.25	0.0176	0.016	4.04
²¹¹ Rn	²⁰⁷ Po	5.97	2	5.28	3.34	0.0114	0.0114	5.28
²¹³ Rn	²⁰⁹ Po	8.25	5	-1.71	-4.03	0.0048	0.0154	-2.22
²¹⁵ Rn	²¹¹ Po	8.84	0	-5.64	-7.06	0.0382	0.0415	-5.67
²¹⁷ Rn	²¹³ Po	7.89	0	-3.27	-4.38	0.0767	0.0442	-3.03
²¹⁹ Rn	²¹⁵ Po	6.95	2	0.6	-0.95	0.0282	0.0288	0.59
²²¹ Rn	²¹⁷ Po	6.16	2	3.84	2.27	0.0266	0.0316	3.77
²²³ Rn	²¹⁹ Po	5.28	2	8.56	6.73	0.0146	0.0368	8.16
¹⁹⁷ Fr	¹⁹³ At ^m	7.88	0	-2.63	-3.64	0.0992	0.0463	-2.3
¹⁹⁹ Fr	¹⁹⁵ At	7.82	0	-2.18	-3.45	0.0537	0.0396	-2.05
¹⁹⁹ Fr ^m	¹⁹⁵ At ^m	7.83	0	-2.19	-3.51	0.0481	0.0396	-2.1
²⁰¹ Fr	¹⁹⁷ At	7.52	0	-1.2	-2.54	0.0462	0.0344	-1.07
201 Fr ^m	¹⁹⁷ At ^m	7.6	0	-1.77	-2.81	0.0909	0.0342	-1.34
²⁰³ Fr	¹⁹⁹ At	7.27	0	-0.26	-1.73	0.0341	0.0297	-0.2
²⁰³ Fr ^m	¹⁹⁹ At ^m	7.39	0	-0.68	-2.14	0.0347	0.0295	-0.61
²⁰⁵ Fr	²⁰¹ At	7.05	0	0.58	-0.95	0.0292	0.0257	0.64
²⁰⁷ Fr	²⁰³ At	6.89	0	1.19	-0.37	0.0276	0.0221	1.29
²⁰⁹ Fr	²⁰⁵ At	6.78	0	1.75	0.06	0.0203	0.019	1.78
²¹¹ Fr	²⁰⁷ At	6.66	0	2.33	0.45	0.0131	0.0163	2.23

TABLE III. (Continued.)

JUN-GANG DENG AND HONG-FEI ZHANG

				IADLE III. (Co	minuea.)			
α tran	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
²¹³ Fr	²⁰⁹ At	6.91	0	1.54	-0.53	0.0085	0.0139	1.32
²¹⁵ Fr	²¹¹ At	9.54	0	-7.07	-8.42	0.044	0.0388	-7.01
²¹⁹ Fr	²¹⁵ At	7.45	0	-1.7	-2.62	0.1193	0.0452	-1.28
²²¹ Fr	²¹⁷ At	6.46	2	2.46	1.43	0.0928	0.0304	2.94
²²³ Fr	²¹⁹ At	5.56	4	7.34	6.36	0.1047	0.023	8
²⁰¹ Ra	¹⁹⁷ Rn	8	0	-1.7	-3.7	0.01	0.0422	-2.32
201 Ra ^m	197Rn ^m	8.07	0	-2.22	-3.89	0.0212	0.0421	-2.52
²⁰³ Ra	¹⁹⁹ Rn	7.74	0	-1.44	-2.89	0.0359	0.0364	-1.45
203 Ra ^m	199 Rn ^m	7.76	0	-1.6	-2.98	0.0419	0.0364	-1.54
²⁰⁷ Ra	²⁰³ Rn	7.27	2	0.21	-1.06	0.0547	0.0223	0.6
²⁰⁹ Ra	²⁰⁵ Rn	7.14	0	0.67	-0.91	0.0259	0.0232	0.72
²¹³ Ra	209 Rn	6.86	2	2.31	0.35	0.011	0.0141	2.2
²¹³ Ra	²¹¹ Rn ²¹³ P	8.86	5	-2.78	-5.09	0.0048	0.0137	-3.23
²¹⁷ Ra	²¹⁵ Rn ²¹⁵ D	9.16	0	-5.79	-7.22	0.0371	0.0386	-5.8
²¹⁹ Ra ²²¹ D	²¹³ Rn ²¹⁷ D	8.14	2	-2	-4.17	0.0068	0.0247	-2.56
²²¹ Ra ²²³ D	²¹⁷ Rn ²¹⁹ D	6.88	2	1.45	0.14	0.049	0.0286	1.68
205 A -	²⁰¹ E.n	5.98	2	5.99	4.04	0.0112	0.0325	5.53
207 A c	203 E.	7.9	3	-1.1	-2.48	0.0411	0.0296	-0.95
211 A c	207 F	7.63	0	-1.31	-2.92	0.0392	0.0552	-1.44
215 A c	211 Er	7.02	0	-0.07	-2.23	0.0202	0.0244	-0.04
²¹⁷ Ac	²¹³ Fr	0.83	0	-7.16	-2.75 -8.45	0.0513	0.018	-0.99
$^{217}Ac^{m}$	²¹³ Fr	9.85 11.84	11	-7.10 -4.77	-7.07	0.0049	0.0303	-7.01 -4.49
²¹⁹ Ac	²¹⁵ Fr	8.83	0	-4.93	-6.04	0.0045	0.0020	-4.62
²²¹ Ac	²¹⁷ Fr	7 78	0	-1.28	-2.95	0.0215	0.0302	-1.57
²²³ Ac	²¹⁹ Fr	6.78	2	2.1	0.93	0.0664	0.0278	2.48
²²⁵ Ac	²²¹ Fr	5.94	2	5.93	4.72	0.0613	0.0313	6.23
²²⁷ Ac	²²³ Fr	5.04	0	10.7	9.38	0.0488	0.063	10.59
²⁰⁹ Th ^m	205 Ra ^m	8.28	0	-2.51	-3.91	0.0401	0.0354	-2.45
²¹⁵ Th	²¹¹ Ra	7.67	2	0.08	-1.79	0.0136	0.0185	-0.05
²¹⁷ Th	²¹³ Ra	9.44	5	-3.61	-5.9	0.005	0.0123	-3.99
²¹⁹ Th	²¹⁵ Ra	9.51	0	-5.99	-7.44	0.0354	0.0356	-5.99
²²¹ Th	²¹⁷ Ra	8.63	2	-2.75	-4.87	0.0075	0.0222	-3.22
²²³ Th	²¹⁹ Ra	7.57	2	-0.22	-1.6	0.0423	0.0245	0.02
²²⁵ Th	²²¹ Ra	6.92	2	2.77	0.78	0.0104	0.0257	2.37
²²⁷ Th	²²³ Ra	6.15	2	6.21	4.08	0.0075	0.0283	5.63
²²⁹ Th	²²⁵ Ra	5.17	2	11.4	9.4	0.0101	0.0346	10.86
²³¹ Th	²²⁷ Ra	4.21	2	17.36	16.34	0.0959	0.0458	17.68
²¹⁵ Pa	²⁰⁹ Ac	8.4	0	-2.15	-3.97	0.0154	0.0327	-2.48
²¹³ Pa ²¹⁷ P	²¹¹ Ac	8.24	0	-1.85	-3.52	0.0217	0.028	-1.96
²¹⁷ Pa ²²¹ D	²¹³ Ac	8.49	0	-2.46	-4.31	0.014	0.0243	-2.7
²²³ D-	219 AC	9.25	0	-5.23	-6.48	0.0565	0.0349	-5.02
²²⁷ Do	²²³ A 2	8.33 6.59	0	-2.29	-3.93	0.0228	0.0369	-2.5
229 Do	225 A c	0.38	0	5.45 7.42	2.29	0.0718	0.044	5.04 7.25
га 219 _{1 I}	²¹⁵ Th	0.04	1	1.43	5.91	0.0302	0.0304	1.55
221 U	²¹⁷ Th	9.94	0	-4.20	-7.68	0.0030	0.0328	-4.55
225 ₁₁	²²¹ Th	8.02	2	-1.21	-2.34	0.0755	0.0320	-0.68
²²⁷ U	²²³ Th	7.23	2	1.82	0.34	0.0333	0.0235	1.97
²²⁹ U	²²⁵ Th	6.48	0	4.24	3.17	0.0863	0.0428	4.54
²³¹ U	²²⁷ Th	5.58	2	9.95	7.99	0.0109	0.03	9.51
²³³ U	²²⁹ Th	4.91	0	12.7	11.87	0.1469	0.0578	13.11
²²⁷ Np	²²³ Pa	7.82	2	-0.29	-1.34	0.0894	0.0215	0.33
²²⁹ Np	²²⁵ Pa	7.02	1	2.55	1.41	0.0733	0.029	2.95
²³¹ Np	²²⁷ Pa	6.36	1	5.14	4.22	0.1188	0.0311	5.73
²³⁵ Np	²³¹ Pa	5.19	1	12.12	10.52	0.025	0.0372	11.95
²³⁷ Np	²³³ Pa	4.96	1	13.83	12.07	0.0173	0.0374	13.5
²³⁹ Np	²³⁵ Pa	4.6	1	16.61	14.68	0.0117	0.0397	16.08

TABLE III. (Continued.)

ANALYTIC FORMULA FOR ESTIMATING THE ...

	TABLE III. (Continued.)										
α tra	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{\rm cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$			
²³¹ Pu	²²⁷ U	6.84	0	3.58	2.46	0.0756	0.0384	3.88			
²³³ Pu	²²⁹ U	6.41	2	6	4.61	0.0406	0.0235	6.24			
²³⁵ Pu	²³¹ U	5.95	0	7.72	6.55	0.0663	0.041	7.93			
²³⁹ Pu	²³⁵ U ^{xm}	5.24	0	11.88	10.6	0.0518	0.0436	11.96			
²⁴¹ Pu	²³⁷ U	5.14	2	13.26	11.54	0.0189	0.025	13.14			
²²⁹ Am	²²⁵ Np	8.14	2	0.3	-1.67	0.0109	0.0197	0.04			
²³³ Am	²²⁹ Np	7.06	1	3.62	2.07	0.0279	0.0258	3.66			
²³⁵ Am	²³¹ Np	6.59	1	5.18	4.01	0.067	0.0266	5.58			
²³⁷ Am	²³³ Np	6.2	1	7.24	5.84	0.04	0.0271	7.41			
²³⁹ Am	²³⁵ Np	5.92	1	8.63	7.24	0.0406	0.0271	8.8			
²⁴¹ Am	²³⁷ Np	5.64	1	10.14	8.8	0.0466	0.0272	10.37			
²⁴³ Am	²³⁹ Np	5.44	1	11.37	9.96	0.0397	0.0269	11.53			
²³³ Cm	²²⁹ Pu	7.47	0	2.13	0.78	0.0453	0.0327	2.27			
²³⁷ Cm	²³³ Pu	6.78	0	4.82	3.5	0.0469	0.0325	4.98			
²⁴¹ Cm	²³⁷ Pu	6.19	3	8.45	6.78	0.0217	0.0156	8.59			
²⁴³ Cm	²³⁹ Pu	6.17	2	8.96	6.57	0.0041	0.0179	8.32			
²⁴⁵ Cm	²⁴¹ Pu	5.62	2	11.42	9.46	0.011	0.0194	11.17			
²⁴⁷ Bk	²⁴³ Am	5.89	2	10.64	8.43	0.0061	0.0171	10.19			
²⁴¹ Cf	²³⁷ Cm ^p	7.46	0	2.75	1.51	0.057	0.0251	3.11			
²⁴³ Cf	²³⁹ Cm	7.42	3	3.66	2.16	0.0312	0.0113	4.1			
²⁴⁵ Cf	²⁴¹ Cm	7.26	0	3.87	2.18	0.0204	0.0225	3.83			
²⁴⁷ Cf	²⁴³ Cm	6.5	2	7.5	5.78	0.0189	0.0148	7.61			
²⁵¹ Cf	²⁴⁷ Cm	6.18	5	10.45	8.38	0.0085	0.0074	10.51			
²⁴⁵ Es	241 Bk ^p	7.87	0	2.22	0.28	0.0115	0.0203	1.97			
²⁴⁷ Es	243 Bk ^p	7.44	1	3.59	1.93	0.0219	0.0152	3.75			
²⁴⁹ Es	$^{245}Bk^p$	6.9	1	6.03	4.2	0.0149	0.0159	6			
²⁵³ Es	²⁴⁹ Bk	6.74	0	6.25	4.77	0.0331	0.0191	6.49			
²⁵⁵ Es	²⁵¹ Bk ^m	6.4	0	7.63	6.3	0.0467	0.0193	8.01			
²⁴³ Fm	²³⁹ Cf	8.7	1	-0.6	-1.98	0.0417	0.0143	-0.13			
²⁴⁷ Fm	²⁴³ Cf	8.26	4	1.69	0.13	0.0278	0.0069	2.29			
²⁴⁷ Fm ^m	²⁴³ Cf	8.31	0	0.76	-0.88	0.0228	0.0176	0.87			
²⁵³ Fm	$^{249}Cf^m$	7.05	2	6.33	4.07	0.0055	0.0108	6.04			
²⁵⁷ Fm	²⁵³ Cf	6.86	2	6.94	4.81	0.0074	0.0097	6.82			
²⁴⁷ Md	²⁴³ Es	8.77	1	0.08	-1.91	0.0103	0.0123	0.001			
247 Md ^m	²⁴³ Es	9.03	3	-0.5	-2.29	0.0164	0.0077	-0.18			
²⁵¹ Md	²⁴⁷ Es	7.96	1	3.4	0.73	0.0021	0.0122	2.64			
²⁵¹ No	²⁴⁷ Fm	8.76	0	-0.02	-1.65	0.0232	0.0145	0.19			
²⁵¹ No ^m	247 Fm ^m	8.82	0	0.01	-1.84	0.0142	0.0143	0.01			
²⁵³ No	²⁴⁹ Fm	8.42	1	2.23	-0.48	0.0019	0.0106	1.49			
²⁵⁵ No	²⁵¹ Fm ^m	8.23	2	2.84	0.26	0.0026	0.0082	2.35			
²⁵⁹ No	²⁵⁵ Fm	7.85	2	3.66	1.56	0.0078	0.0075	3.68			
²⁵³ Lr	²⁴⁹ Md	8.93	0	-0.15	-1.84	0.0204	0.0132	0.04			
²⁵³ Lr ^m	249 Md ^m	8.86	0	0.17	-1.62	0.0162	0.0134	0.25			
²⁵⁵ Lr	251 Md ^p	8.5	0	1.49	-0.54	0.0092	0.0132	1.34			
²⁵⁷ Lr	²⁵³ Md	9.08	4	0.78	-1.58	0.0044	0.0043	0.79			
²⁵⁹ Lr	²⁵⁵ Md ^p	8.58	0	0.9	-0.83	0.0185	0.0112	1.12			
²⁵⁵ Rf	²⁵¹ No	9.06	1	0.54	-1.86	0.0041	0.0091	0.19			
257 Rf ^m	²⁵³ No	9.16	2	0.69	-2.03	0.0019	0.0066	0.15			
²⁵⁹ Rf	²⁵⁵ No ^p	9.03	0	0.46	-1.9	0.0044	0.0105	0.08			
²⁶¹ Rf	²⁵⁷ No	8.65	0	0.9	-0.72	0.0237	0.0104	1.26			
²⁶³ Rf	²⁵⁹ No	8.26	4	3.34	1.36	0.0105	0.0041	3.75			
²⁵⁹ Db	²⁵⁵ L.r ^m	9.58	1	-0.29	-3.11	0.0015	0.0073	-0.97			
259 So	²⁵⁵ Rf	9.77	2	-0.38	-3.14	0.0017	0.0058	-0.9			
$^{259}S\sigma^{m}$	²⁵⁵ Rf ^m	9 71	2	-0.63	-2.97	0.0046	0.0058	-0.74			
²⁶¹ So	²⁵⁷ Rf	9 71	2	-0.73	-3.02	0.0051	0.0054	-0.75			
²⁶³ Sg	²⁵⁹ Rf	9 41	0	0.03	-2.41	0.0036	0.0087	-0.35			
^{261}Bh	²⁵⁷ Db	10.5	3	-1.87	-4.53	0.0022	0.0039	-2.12			

ABLE III.	(Continued.)
-----------	-------------	---

EXECUTE (2) 1
TADIE III (Continued)
nibbb mi (commean)

JUN-GANG DENG AND HONG-FEI ZHANG

α trai	nsition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{\text{cal1}}$	P^{\exp}_{lpha}	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{cal2}$
²⁶⁵ Hs	²⁶¹ Sg	10.47	0	-2.71	-4.7	0.0102	0.0071	-2.55
²⁶⁹ Hs	²⁶⁵ Sg	9.35	0	1.2	-1.62	0.0015	0.0072	0.53
²⁶⁷ Ds	²⁶³ Hs	11.78	0	-5	-7.1	0.008	0.0057	-4.85
²⁶⁹ Ds	²⁶⁵ Hs ^m	11.28	0	-3.64	-6.04	0.004	0.0056	-3.79
²⁷¹ Ds	²⁶⁷ Hs	10.88	5	-1.05	-4.01	0.0011	0.0017	-1.24
271 Ds ^m	²⁶⁷ Hs	10.95	2	-2.77	-5.08	0.0049	0.0032	-2.59
²⁷³ Ds	²⁶⁹ Hs	11.38	3	-3.62	-5.92	0.005	0.0023	-3.28
²⁷⁷ Ds	²⁷³ Hs	10.83	4	-2.22	-4.39	0.0068	0.0017	-1.62
²⁷⁷ Cn	²⁷³ Ds ^m	11.42	0	-3.07	-5.9	0.0015	0.0041	-3.51
²⁸¹ Cn	²⁷⁷ Ds	10.46	4	-0.74	-2.87	0.0075	0.0016	-0.08
²⁸⁹ Fl	²⁸⁵ Cn	9.97	0	0.38	-1.72	0.008	0.0033	0.77

enter the superheavy nuclei regions, P_{α}^{\exp} and P_{α}^{Eq} still decrease while neutron number increases, which is consistent with the decreasing trends of α -particle preformation factors when the neutron numbers approach N = 126 closed shells. This means that both P_{α}^{\exp} and P_{α}^{Eq} obtained by Eq. (21) provide positive signals for the existence of an island of stability for superheavy nuclei.

For a detailed comparison, the α -particle preformation factors extracted from Eq. (20) and estimated by Eq. (21) for Th isotopes are plotted as open dark and solid red circles in Fig. 4. From this figure, we can find that P_{α}^{Eq} can well reproduce P_{α}^{\exp} . The closer the neutron number is to N = 126, the smaller the α -particle preformation factor is. In addition, it is clear that, with the change of neutron number, α -particle preformation factors show the periodic odd-even staggering effect, and this effect becomes more significant after neutron number crosses the N = 126 shell closure. Moreover, P_{α}^{\exp} and P_{α}^{Eq} of odd-A nuclei are less than that of neighboring even-even

nuclei, indicating that the presence of an odd nucleon will inhibit the formation of an α cluster inside its parent nucleus. Therefore, Eq. (21) can correctly reflect microscopic nuclear structure information such as the shell effect and the odd-even staggering effect.

The calculations of α decay half-lives with the α -particle preformation factors obtained by Eq. (21), P_{α}^{Eq} , in GLDM are performed, which are denoted as $\log_{10} T_{1/2}^{\text{cal}2}$ and are listed in Tables II–IV for even-even nuclei, odd-A nuclei, and doubly odd nuclei, respectively. In these three tables, the first four columns represent α decay parent nucleus, daughter nucleus, experimental α decay energy, and the minimum angular momentum carried by the α -particle, while the spin and parity values for α decay parent and daughter nuclei are taken from the latest evaluated nuclear properties table NUBASE2016 [83]. The fifth column is the experimental α decay half-life. The sixth column represents the calculated α decay half-life within GLDM with $P_{\alpha} = 1$. The seventh column is the extracted experimental α -particle preformation factor using

FIG. 1. The extracted experimental α -particle preformation factor P_{α}^{exp} from Eq. (20) and the estimated one P_{α}^{Eq} by Eq. (21) of even-even nuclei. The open dark and solid red circles denote P_{α}^{exp} and P_{α}^{Eq} , respectively.

FIG. 2. Same as Fig. 1, but depicting the extracted experimental α -particle preformation factor P_{α}^{\exp} from Eq. (20) and the estimated one P_{α}^{Eq} by Eq. (21) of odd-*A* nuclei.

TABLE IV.	Same as Tables II and III	but for α decay of double	v odd nuclei.
	Sume us fuoles if and in	, out for a accuy of abudy	y oud macien.

α t	ransition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	P^{\exp}_{lpha}	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{\rm cal2}$
¹⁴⁸ Eu	¹⁴⁴ Pm	2.69	0	14.98	13.77	0.0614	0.0509	15.06
¹⁵² Ho	¹⁴⁸ Tb	4.51	Ő	3.12	1.83	0.0511	0.0433	3.19
¹⁵² Ho ^m	$^{148}\text{Tb}^{m}$	4.58	Ő	2.66	1.44	0.0595	0.0434	2.8
¹⁵⁴ Ho	¹⁵⁰ Tb	4.04	Ő	6.56	4.65	0.0123	0.0397	6.05
¹⁵⁴ Tm	¹⁵⁰ Ho	5.09	Ő	1.17	-0.16	0.0466	0.0405	1 23
154Tm ^m	¹⁵⁰ Ho ^m	5.18	Ő	0.75	-0.54	0.0506	0.0406	0.85
¹⁵⁶ Tm	¹⁵² Ho	4 35	Ő	5.12	3.88	0.0586	0.0366	5 32
¹⁵⁶ Lu ^m	152 Tm ^m	5 72	Ő	-0.68	-1.96	0.0526	0.0382	-0.54
¹⁵⁸ Ta	¹⁵⁴ Lu	6.13	Ő	-1.29	-2.71	0.0384	0.0359	-1.27
¹⁵⁸ Ta ^m	¹⁵⁴ Lu ^m	6.21	Ő	-1.42	-3.01	0.0257	0.036	-1.57
160 Re	¹⁵⁶ Ta	67	2	-2.26	-36	0.0459	0.0203	-1.9
162 Re	¹⁵⁸ Ta	6.25	0	-0.95	-2.32	0.0428	0.0311	-0.81
162 Re ^m	¹⁵⁸ Ta ^m	6.28	Ő	-1.07	-2.32	0.0441	0.0311	-0.92
164 Re ^m	¹⁶⁰ Ta ^m	5 77	0	1.07	-0.43	0.013	0.0282	1.12
164 Ir ^m	160 Re ^m	7.06	0	-2.78	-4.36	0.026	0.0202	-2.84
¹⁶⁶ Ir	¹⁶² Re	6.73	0	-1.95	-3.29	0.020	0.0275	-1.73
¹⁶⁶ Ir ^m	162 Re ^m	6.73	0	-1.81	-3.29	0.0336	0.0275	-1.73
¹⁶⁸ Ir	¹⁶⁴ Re	6 38	0	-0.64	-2.04	0.0350	0.0273	-0.43
¹⁶⁸ Ir ^m	164 Re ^m	6.48	0	-0.68	_2.04 _2.41	0.0401	0.0251	-0.82
¹⁷⁰ Ir	166Re^{p}	5.96	0	-0.08	-2.41 -0.37	0.0245	0.0233	-0.82
170 Ir m	¹⁶⁶ Re	6.27	2	0.35	-0.37 -1.32	0.0245	0.0228	0.54
¹⁷² Ir	¹⁶⁸ Re	5.00	2	2 34	0.06	0.0214	0.014	2.04
172 Jr ^m	¹⁶⁸ Re	6.13	0	1.36	-1.16	0.0032	0.0104	0.51
¹⁷⁴ Ir	¹⁷⁰ Re	5.63	2	3.17	1 31	0.003	0.0217	3 24
¹⁷⁴ Ir ^m	¹⁷⁰ Re	5.82	2	2 29	0.44	0.0137	0.0119	2 37
¹⁷⁰ Δ11	166 Jr	7.18	0	-2.58	-4.03	0.0142	0.0243	-2.57
$^{170}\Delta u^m$	166 Ir ^m	7.10	0	_2.50 _2.84	-4.38	0.0283	0.0245	_2.77
¹⁷⁶ Δ11	¹⁷² Ir	6.44	0	0.14	-1.52	0.0203	0.0245	0.2
¹⁸⁶ Au	¹⁸² Ir	4 91	1	7.89	5 59	0.005	0.0088	7.65
¹⁸⁰ Tl	¹⁷⁶ Au ^m	6.57	3	1.09	-0.62	0.005	0.0079	1 48
¹⁸⁶ Tl ^m	¹⁸² Au	6.02	6	5.66	3.01	0.0022	0.0033	5 49
¹⁸⁶ Bi	¹⁸² Tl	7.76	1	-1.83	-4 51	0.0022	0.0000	-2.54
¹⁸⁶ Bi ^m	$^{182}\text{Tl}^{m}$	7.88	3	-2.01	-4 38	0.0021	0.0071	-2.23
¹⁹⁰ Bi	¹⁸⁶ Tl	6.86	1	0.91	-1.56	0.0012	0.0089	0.49
¹⁹⁰ Bi ^m	¹⁸⁶ Tl ^m	6.97	3	0.94	-1.45	0.0041	0.0058	0.79
¹⁹² Bi	¹⁸⁸ Tl	6 38	1	2 44	0.29	0.0071	0.0050	2 39
¹⁹² Bi ^m	¹⁸⁸ Tl ^m	6 49	3	2.58	0.36	0.006	0.0052	2.65
¹⁹⁴ Bi	¹⁹⁰ Tl	5.92	1	4 31	2.25	0.0086	0.0032	4.4
$^{194}Bi^{n}$	¹⁹⁰ Tl ^m	6.02	3	4 74	2.23	0.0000	0.0047	4 63
¹⁹⁶ Bi	¹⁹² Tl ^p	5.26	0	7 42	5.46	0.0109	0.0083	7 54
¹⁹⁶ Bi ⁿ	$^{192}Tl^{n}$	5 32	2	7.12	5.10	0.0045	0.005	7.51
²¹² Bi	²⁰⁸ Tl	6.21	5	4	1.99	0.0097	0.0058	4.23
²¹⁴ Bi	²¹⁰ Tl	5.62	5	6.75	4.73	0.0094	0.0064	6.92
¹⁹² At	¹⁸⁸ Bi	77	0	-1.94	-3.72	0.0164	0.0117	-1.79
192 At ^m	¹⁸⁸ Bi ^m	7.63	3	-1.06	-2.94	0.0131	0.0056	-0.69
¹⁹⁴ At	¹⁹⁰ Bi ⁿ	7.33	0	-0.54	-2.59	0.009	0.0107	-0.62
¹⁹⁴ At ^m	¹⁹⁰ Bi ^m	7 31	Ő	-0.49	-2.49	0.00	0.0107	-0.52
²⁰⁰ At	¹⁹⁶ Bi	6.6	Ő	1.92	0.06	0.0141	0.0083	2.15
200 At ⁿ	¹⁹⁶ Bi ^m	6.77	3	1.88	-0.05	0.0116	0.0041	2.33
²⁰² At	¹⁹⁸ Bi	6.35	0	3.16	0.99	0.0068	0.0076	3.11
$^{202}At^{m}$	¹⁹⁸ Bi ^m	6.26	0	3.32	1.4	0.012	0.0075	3.52
$^{202}At^n$	¹⁹⁸ Bi ⁿ	6.4	õ	2.68	0.79	0.0128	0.0076	2.91
²⁰⁴ At	²⁰⁰ Bi	6.07	Ő	4 16	2.22	0.0115	0.0069	4 38
²⁰⁶ At	²⁰² Bi	5.89	Ő	5 31	3.06	0.0057	0.0063	5 26
²⁰⁸ At	²⁰⁴ Bi	5 75	Ô	6.02	37	0.0037	0.0059	5 93
²¹⁰ At	²⁰⁶ Bi	5.63	2	7.22	4 52	0.002	0.0032	7 02
²¹² At	²⁰⁸ Bi	7.82	5	-0.5	-3.1	0.0025	0.0041	-0.71
²¹⁸ At	²¹⁴ Bi	6.87	0	0.18	-1.38	0.0277	0.0334	0.09

α tran	sition	Q_{lpha}	l_{\min}	$\log_{10} T_{1/2}^{\exp}$	$\log_{10} T_{1/2}^{cal1}$	$P^{ m exp}_{lpha}$	$P^{ m Eq}_{lpha}$	$\log_{10} T_{1/2}^{\rm cal2}$
²²⁰ At	²¹⁶ Bi ^m	6.05	0	3.43	2.02	0.0382	0.0368	3.45
200 Fr ^m	¹⁹⁶ At ^m	7.71	0	-0.72	-3.11	0.0041	0.0089	-1.06
²¹² Fr	²⁰⁸ At	6.53	2	3.44	1.27	0.0068	0.0033	3.76
²¹⁴ Fr	²¹⁰ At	8.59	5	-2.29	-4.66	0.0042	0.0039	-2.25
²¹⁸ Fr	²¹⁴ At	8.01	0	-3	-4.43	0.0369	0.0341	-2.97
²¹⁸ Fr ^m	$^{214}At^{n}$	7.87	2	-1.66	-3.7	0.009	0.0115	-1.76
²²⁰ Fr	²¹⁶ At	6.8	1	1.44	-0.16	0.0253	0.0198	1.54
²¹⁶ Ac	²¹² Fr	9.24	5	-3.36	-5.74	0.0042	0.0042	-3.36
²¹⁶ Ac ^m	²¹² Fr	9.28	5	-3.36	-5.84	0.0032	0.0041	-3.46
²¹⁸ Ac	²¹⁴ Fr	9.37	0	-6	-7.43	0.0372	0.0394	-6.02
²²² Ac	²¹⁸ Fr	7.14	0	0.7	-0.72	0.0378	0.0375	0.71
²²⁶ Ac	²²² Fr	5.51	2	9.23	6.98	0.0056	0.0112	8.93
²²⁰ Pa	²¹⁶ Ac	9.65	0	-6.11	-7.45	0.045	0.0468	-6.12
²²⁴ Pa	²²⁰ Ac	7.69	2	-0.07	-1.64	0.027	0.0119	0.28
²²⁸ Pa	²²⁴ Ac	6.27	3	6.63	4.25	0.0042	0.0056	6.51
²³⁰ Pa	²²⁶ Ac	5.44	2	10.67	8.27	0.004	0.008	10.37
²⁴² Am ^m	²³⁸ Np	5.64	3	11.99	9.26	0.0018	0.0013	12.15
²⁴⁶ Es	242 Bk ^p	7.5	0	3.66	1.65	0.0099	0.0073	3.79
²⁴⁸ Es	²⁴⁴ Bk	7.16	2	5.76	3.24	0.003	0.0017	6.01
²⁵² Es	²⁴⁸ Bk	6.79	2	7.72	4.83	0.0013	0.001	7.83
²⁵⁴ Es ^m	²⁵⁰ Bk	6.7	1	7.64	4.96	0.0021	0.0012	7.88
²⁵⁶ Md ^m	²⁵² Es	7.91	3	4.7	1.27	0.0004	0.0006	4.49
²⁵⁸ Md	²⁵⁴ Es	7.27	1	6.65	3.29	0.0004	0.001	6.29

TABLE IV. (Continued.)

Eq. (20) with $\log_{10} T_{1/2}^{cal1}$ and $\log_{10} T_{1/2}^{exp}$. The eighth column is the estimated α -particle preformation factor by Eq. (21). The last column is the calculated α decay half-life within GLDM with the estimated α -particle preformation factor by Eq. (21). From these three tables, we can find that for most nuclei, when $P_{\alpha} = 1$, calculated α decay half-lives $\log_{10} T_{1/2}^{cal1}$ are smaller than experimental data by more than an order of magnitude, which shows that the α preformation factors $P_{\alpha} = 1$ are overestimated. Noticeably, one can find that after considering α -particle preformation factors P_{α}^{Eq} estimated by Eq. (21), $\log_{10} T_{1/2}^{\text{cal2}}$ can well reproduce experimental α decay half-lives in the region of 10^{-8} to 10^{26} s.

For the sake of clarity, the differences between the logarithmic values of two calculated α decay half-lives $\log_{10} T_{1/2}^{\text{call}}$ and $\log_{10} T_{1/2}^{\text{call}}$, and experimental data are denoted as solid blue stars and red circles, and are plotted

FIG. 3. Same as Fig. 1, but depicting the extracted experimental α -particle preformation factor P_{α}^{\exp} from Eq. (20) and the estimated one P_{α}^{Eq} by Eq. (21) of doubly odd nuclei.

FIG. 4. Same as Fig. 1, but depicting the extracted experimental α -particle preformation factor P_{α}^{\exp} from Eq. (20) and the estimated one P_{α}^{Eq} by Eq. (21) of Th isotopes.

FIG. 5. The logarithmic differences between two calculated α decay half-lives and experimental data of even-even nuclei. The solid blue star and red circle denote the differences caused by $\log_{10} T_{1/2}^{\text{call}}$ and $\log_{10} T_{1/2}^{\text{call}}$.

in Figs. 5–7 for even-even nuclei, odd-A nuclei, and doubly odd nuclei, respectively. From these figures, we can find that $\log_{10} T_{1/2}^{cal1}$ are significantly lower than experimental data. In particular, $\log_{10} T_{1/2}^{cal1}$ are basically more than two orders of magnitude smaller than experimental data for superheavy nuclei. Noticeably, after considering α -particle preformation factors obtained by Eq. (21), the deviations caused by $\log_{10} T_{1/2}^{cal2}$ are around zero, showing that global $\log_{10} T_{1/2}^{cal2}$ can well reproduce experimental data and significantly reduce the deviations. This formula can be extended to estimate α -particle preformation factors and to predict α

FIG. 6. Same as Fig. 5, but depicting the logarithmic differences between two calculated α decay half-lives and experimental data of odd-*A* nuclei.

FIG. 7. Same as Fig. 5, but depicting the logarithmic differences between two calculated α decay half-lives and experimental data of doubly odd nuclei.

decay half-lives for unsynthesized superheavy nuclei, which would be useful for future experiments in synthesizing new superheavy elements and isotopes. For all 535 nuclei, the standard deviation between $\log_{10} T_{1/2}^{cal2}$ and $\log_{10} T_{1/2}^{exp}$ is $\sigma =$ 0.257, indicating calculated α decay half-lives using GLDM with α -particle preformation factors obtained by our proposed formula can reproduce experimental data within a factor of $10^{0.257} = 1.81$.

IV. SUMMARY

In summary, a bridge between the α decay energy and α particle preformation factor is built. An analytical expression for estimating the α -particle preformation factor is proposed. This formula can help to accurately calculate α decay halflives, and can be extended to estimate α -particle preformation factors as well as predict the α decay half-lives for unsynthesized superheavy nuclei, which would be useful for future experiments in synthesizing new superheavy elements and isotopes. This formula can also shed light on some microscopic nuclear structure information, such as the shell effect and the odd-even staggering effect. It also provides a positive signal for the existence of an island of stability for superheavy nuclei.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grants No. 10775061, No. 11175054, No. 11675066, No. 11665019, and No. 11947229), by the Fundamental Research Funds for the Central Universities (Grants No. lzujbky-2017-ot04 and No. lzujbky-2020-it01), and by the Feitian Scholar Project of Gansu province.

- R. W. Gurney and E. U. Condon, Nature (London) 122, 439 (1928).
- [2] G. Gamow, Z. Phys. 51, 204 (1928).
- [3] D. Geesaman, C. Gelbke, R. Janssens, and B. Sherrill, Annu. Rev. Nucl. Part. Sci. 56, 53 (2006).
- [4] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
- [5] M. Pfützner, M. Karny, L. V. Grigorenko, and K. Riisager, Rev. Mod. Phys. 84, 567 (2012).
- [6] A. N. Andreyev, M. Huyse, P. Van Duppen, C. Qi, R. J. Liotta, S. Antalic, D. Ackermann, S. Franchoo, F. P. Heßberger, S. Hofmann, I. Kojouharov, B. Kindler, P. Kuusiniemi, S. R. Lesher, B. Lommel, R. Mann, K. Nishio, R. D. Page, B. Streicher, Š. Šáro, B. Sulignano, D. Wiseman, and R. A. Wyss, Phys. Rev. Lett. **110**, 242502 (2013).
- [7] L. Ma, Z. Y. Zhang, Z. G. Gan, H. B. Yang, L. Yu, J. Jiang, J. G. Wang, Y. L. Tian, Y. S. Wang, S. Guo, B. Ding, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, and G. Q. Xiao, Phys. Rev. C 91, 051302(R) (2015).
- [8] W. M. Seif, Phys. Rev. C 74, 034302 (2006).
- [9] J. Khuyagbaatar, A. Yakushev, C. E. Düllmann, D. Ackermann, L.-L. Andersson, M. Asai, M. Block, R. A. Boll, H. Brand, D. M. Cox, M. Dasgupta, X. Derkx, A. Di Nitto, K. Eberhardt, J. Even, M. Evers, C. Fahlander, U. Forsberg, J. M. Gates, N. Gharibyan *et al.*, Phys. Rev. Lett. **112**, 172501 (2014).
- [10] R. J. Carroll, R. D. Page, D. T. Joss, J. Uusitalo, I. G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, B. Hadinia, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A.-P. Leppänen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Sarén, C. Scholey, D. Seweryniak, and J. Simpson, Phys. Rev. Lett. **112**, 092501 (2014).
- [11] D. S. Delion, R. J. Liotta, and R. Wyss, Phys. Rev. C 92, 051301(R) (2015).
- [12] W. M. Seif, M. Shalaby, and M. F. Alrakshy, Phys. Rev. C 84, 064608 (2011).
- [13] Y. Ren and Z. Ren, Phys. Rev. C 85, 044608 (2012).
- [14] Y. Qian, Z. Ren, and D. Ni, Phys. Rev. C **89**, 024318 (2014).
- [15] Z. Ren, Phys. Rev. C 65, 051304(R) (2002).
- [16] D. Ni and Z. Ren, Ann. Phys. (NY) 358, 108 (2015).
- [17] M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).
- [18] D. N. Poenaru, I. H. Plonski, R. A. Gherghescu, and W. Greiner, J. Phys. G 32, 1223 (2006).
- [19] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 1363 (2005).
- [20] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, R. A. Henderson, J. M. Kenneally, J. H. Landrum, K. J. Moody, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, and P. A. Wilk, Phys. Rev. C 76, 011601(R) (2007).
- [21] P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, I. Dragojević, J. Dvorak, P. Fallon, C. Fineman-Sotomayor, J. M. Gates, O. R. Gothe, I. Y. Lee, W. D. Loveland, J. P. McLaughlin, S. Paschalis, M. Petri, J. Qian, L. Stavsetra, M. Wiedeking, and H. Nitsche, Phys. Rev. Lett. **105**, 182701 (2010).

- PHYSICAL REVIEW C 102, 044314 (2020)
- [22] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Y. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, and P. A. Wilk, Phys. Rev. Lett. **104**, 142502 (2010).
- [23] J. H. Hamilton., S. Hofmann, and Y. T. Oganessian, Ann. Rev. Nucl. Part. Sci. 63, 383 (2013).
- [24] K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. ichi Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, H. Kudo, T. Ohnishi, A. Ozawa, N. Sato, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, and A. Yoshida, J. Phys. Soc. Jpn. 76, 045001 (2007).
- [25] Y. T. Oganessian, Radiochim. Acta 99, 429 (2011).
- [26] J.-G. Deng, X.-H. Li, J.-L. Chen, J.-H. Cheng, and X.-J. Wu, Eur. Phys. J. A 55, 58 (2019).
- [27] B. Buck, A. C. Merchant, and S. M. Perez, J. Phys. G 17, L91 (1991).
- [28] J.-G. Deng, J.-C. Zhao, P.-C. Chu, and X.-H. Li, Phys. Rev. C 97, 044322 (2018).
- [29] J.-G. Deng, J.-C. Zhao, D. Xiang, and X.-H. Li, Phys. Rev. C 96, 024318 (2017).
- [30] D. S. Delion, Phys. Rev. C 80, 024310 (2009).
- [31] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011).
- [32] J. M. Dong, H. F. Zhang, and G. Royer, Phys. Rev. C 79, 054330 (2009).
- [33] K. Santhosh, S. Sahadevan, B. Priyanka, and M. Unnikrishnan, Nucl. Phys. A 882, 49 (2012).
- [34] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong, and J. Q. Li, J. Phys. G 42, 085101 (2015).
- [35] D. N. Poenaru, H. Stöcker, and R. A. Gherghescu, Eur. Phys. J. A 54, 14 (2018).
- [36] D. N. Poenaru and W. Greiner, Phys. Scr. 44, 427 (1991).
- [37] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, J. Phys. G 40, 105105 (2013).
- [38] D. N. Poenaru and R. A. Gherghescu, Phys. Rev. C 94, 014309 (2016).
- [39] H. F. Zhang and G. Royer, Phys. Rev. C 77, 054318 (2008).
- [40] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Phys. Rep. 294, 265 (1998).
- [41] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37 (1992).
- [42] I. Tonozuka and A. Arima, Nucl. Phys. A 323, 45 (1979).
- [43] G. Dodig-Crnkovic, F. Janouch, and R. Liotta, Nucl. Phys. A 501, 533 (1989).
- [44] K. Varga, R. Lovas, and R. Liotta, Nucl. Phys. A 550, 421 (1992).
- [45] G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, Z. Ren, A. Tohsaki, C. Xu, T. Yamada, and B. Zhou, Phys. Rev. C 90, 034304 (2014).
- [46] C. Xu, Z. Ren, G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C 93, 011306(R) (2016).
- [47] H. F. Zhang, G. Royer, and J. Q. Li, Phys. Rev. C 84, 027303 (2011).
- [48] Y. Qian and Z. Ren, Sci. China Phys., Mech. Astron. 56, 1520 (2013).

- [49] G. L. Zhang, X. Y. Le, and H. Q. Zhang, Phys. Rev. C 80, 064325 (2009).
- [50] J.-G. Deng, J.-H. Cheng, B. Zheng, and X.-H. Li, Chin. Phys. C 41, 124109 (2017).
- [51] J.-G. Deng, J.-C. Zhao, J.-L. Chen, X.-J. Wu, and X.-H. Li, Chin. Phys. C 42, 044102 (2018).
- [52] S. M. S. Ahmed, R. Yahaya, S. Radiman, and M. S. Yasir, J. Phys. G 40, 065105 (2013).
- [53] D. Deng, Z. Ren, D. Ni, and Y. Qian, J. Phys. G 42, 075106 (2015).
- [54] D. Deng and Z. Ren, Phys. Rev. C 93, 044326 (2016).
- [55] S. M. S. Ahmed, Nucl. Phys. A 962, 103 (2017).
- [56] G. Royer, J. Phys. G 26, 1149 (2000).
- [57] G. Royer, Nucl. Phys. A 848, 279 (2010).
- [58] J.-G. Deng, H.-F. Zhang, and G. Royer, Phys. Rev. C 101, 034307 (2020).
- [59] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett. 103, 072501 (2009).
- [60] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C 79, 054614 (2009).
- [61] Z. Y. Wang, Z. M. Niu, Q. Liu, and J. Y. Guo, J. Phys. G 42, 055112 (2015).
- [62] H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 156 (2017).
- [63] D. T. Akrawy, H. Hassanabadi, S. Hosseini, and K. Santhosh, Nucl. Phys. A 971, 130 (2018).
- [64] G. Royer and H. F. Zhang, Phys. Rev. C 77, 037602 (2008).
- [65] D. T. Akrawy and D. N. Poenaru, J. Phys. G 44, 105105 (2017).
- [66] K. Santhosh and C. Nithya, At. Data Nucl. Data Tables 119, 33 (2018).
- [67] K. Santhosh and C. Nithya, At. Data Nucl. Data Tables 121– 122, 216 (2018).

- [68] Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015).
- [69] C. Qi, R. Liotta, and R. Wyss, Prog. Part. Nucl. Phys. 105, 214 (2019).
- [70] H. Zhang, W. Zuo, J. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).
- [71] H. F. Zhang and G. Royer, Phys. Rev. C 76, 047304 (2007).
- [72] Y. Z. Wang, H. F. Zhang, J. M. Dong, and G. Royer, Phys. Rev. C 79, 014316 (2009).
- [73] X. Bao, H. Zhang, H. Zhang, G. Royer, and J. Li, Nucl. Phys. A 921, 85 (2014).
- [74] G. Royer and B. Remaud, Nucl. Phys. A **444**, 477 (1985).
- [75] X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, and J. Q. Li, J. Phys. G 39, 095103 (2012).
- [76] G. Royer and K. Zbiri, Nucl. Phys. A 697, 630 (2002).
- [77] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 2247 (1992).
- [78] B. Buck, A. Merchant, and S. Perez, At. Data Nucl. Data Tables 54, 53 (1993).
- [79] C. Xu and Z. Ren, Phys. Rev. C 73, 041301(R) (2006).
- [80] C. Xu and Z. Ren, Phys. Rev. C 74, 014304 (2006).
- [81] D. Ni and Z. Ren, Phys. Rev. C 81, 024315 (2010).
- [82] Y. Qian, Z. Ren, and D. Ni, Phys. Rev. C 83, 044317 (2011).
- [83] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).
- [84] W. Huang, G. Audi, M. Wang, F. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, 030002 (2017).
- [85] M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).