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with complex momentum representation

Xue-Neng Cao,1 Ke-Meng Ding,1 Min Shi,2 Quan Liu ,1 and Jian-You Guo 1,*

1School of Physics and Materials Science, Anhui University, Hefei 230601, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

(Received 11 April 2020; revised 11 September 2020; accepted 24 September 2020; published 12 October 2020)

The relativistic point-coupling model is combined with the complex momentum representation with
resonances considered by BCS approximation, which is called the RMFPC-CMR-BCS theory. The RMFPC-
CMR-BCS theory can be used to explore exotic structures in nuclei. The resonant levels near the continuum
threshold can be shown to play an important role in the formation of exotic phenomena. The Ce isotopes are
taken as examples, and the energy and width are obtained for the bound states and resonant states in a clear
shell structure. The occupation probabilities of valence nucleons in these orbits close to the Fermi surface are
calculated, and the contributions of every orbit to the nuclear density distribution are compared. It is found
that several resonant levels with low-angular momentum contribute fairly diffuse density distributions, which
result in the appearance of halos and giant halos in the Ce isotopes close to the neutron drip line. 186–190Ce are
suggested to be halo nuclei and 192–198Ce are suggested to be giant halo nuclei, which agrees the relativistic HFB
calculations and is expected to be verified in experiment.

DOI: 10.1103/PhysRevC.102.044313

I. INTRODUCTION

In the past decades, the objective of nuclear physics has
expanded from stable nuclei to exotic nuclei far from the
stability line because of the development of unstable nuclear
beam technologies. Studying properties of nuclei far from
the stability line has become one of the hottest topics in
nuclear physics. Related experimental research and theoretical
progress can be found in the literature; see [1–6] and refer-
ences therein.

Since the Fermi surface in these nuclei is close to the
continuum threshold, the valence nucleons are scattered eas-
ily into the continuum. The continuum, and especially the
resonances in the continuum, play a critical role in the for-
mation of exotic phenomena, such as halos [7], giant halos
[8,9], deformed halos [10,11], and quantum halos [12]. The
contribution of the continuum to the giant resonance mainly
comes from single-particle resonances [13,14]. Hence, it is
necessary to deal reasonably with the resonant states in the
continuum, especially those near the threshold.

Considering the importance of resonances in exotic phe-
nomena, physicists have developed many methods for mod-
eling resonances. In Ref. [11], the coupled channel method
was introduced for resonances in shell model calculations,
the physical mechanism of the deformed halo in 31Ne was
explained, and several possible neutron-halo nuclei heavier
than 37Mg were predicted [15]. In Ref. [16], the complex
scaling method was adopted for resonances in Hartree-Fock
calculations, and the exotic properties of these nuclei in the
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proton drip-line region around the double magic nucleus 48Ni
were described satisfactorily. Moreover, the Berggren repre-
sentation was presented for resonances in the Hartree-Fock
formalism, and the neutron-rich nuclei 20–22O and 84Ni were
described well [17]. The Berggren representation was also
used to explore the quasiparticle resonant states with BCS for
pairings in Ref. [18]. The proper treatment of the continuous
states with the Green’s function method was proposed in
Ref. [19], and the giant halos predicted in the neutron-rich
Zr isotopes were reproduced in Skyrme-Hartree-Fock calcu-
lations [9].

The aforementioned models considering resonances have
achieved success in describing exotic nuclei. To involve
the contribution of resonances in the relativistic mean field
(RMF), which is thought to be considerably successful
in describing nuclear properties, the continuum relativistic
Hartree-Bogoliubov (RHB) theory was developed [7]. The
continuum RHB theory has presented a satisfactory descrip-
tion of halo phenomena in 11Li, and an interesting prediction
of giant halos in the Zr and Ca isotopes [8,20]. Furthermore,
the RHB theory for deformed nuclei was established, and the
deformed halo in 42,44Mg was predicted, where the resonances
were found to play an important role [10]. In Ref. [21],
the scatter-phase shift method was proposed for resonances,
and the developed RMF-rBCS formalism agrees with the de-
scription of the giant halo in Ref. [8]. The resonances were
explored by analytic continuation in the coupling-constant
approach, and the giant halo and deformed halo were studied
in the RMF calculations [22,23]. The Green’s function method
was also used to solve the bound and unbound problems in
the RMF framework, and neutron-rich 120Sn was described
satisfactorily [24].
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Recently, the complex momentum representation (CMR)
method has been shown to be very effective for the exploration
of resonances [25]. In combination with the RMF theory, the
developed RMF-CMR method has presented an excellent de-
scription of the ground state properties for 120Sn [25] and the
physical mechanism of deformed halo in 37Mg [26]. Research
on the giant halo in the Zr isotopes [27] supports the predic-
tion in Ref. [8]. In Ref. [28], the CMR method was applied
to explore resonances in 31Ne, suggesting a p-wave halo,
consistent with the coupling-channel calculations [11]. In
Ref. [29], the resonances in the neutron-rich C isotopes were
investigated systemically, and 19C was shown to be a neutron
halo nucleus, which agrees with experimental observations as
well as other theoretical calculations. The RMF-CMR method
was also used to study the neutron-rich Ca isotopes [30],
and the calculated results support the prediction of halos in
Ref. [20].

As there is a difficulty in dealing with the terms of meson
exchange in the usual RMF theory, the RMF model with
point-coupling interactions (RMFPC) [31,32] was developed
in which the meson exchange is replaced by the local four-
point interaction between nucleons. In the RMFPC theory,
the possible physical constraints introduced by the Klein-
Gordon approximation in describing the mean meson field are
avoided. It is easy to study the role of naturalness in effec-
tive theories of nuclear structure-related problems [33,34]. In
addition, the RMFPC theory provides more opportunities to
illuminate its relationship with nonrelativistic methods [35].
In practical calculations, the most widely used nonlinear cou-
pling parameters include PC-LA [31] and PC-F1 [32]. For
the parameter set PC-LA, the pairing effects are not included
in the RMFPC calculations. Although the improved RMFPC
with PC-F1 considers the pairings through a standard BCS
method [32], the isospin dependence of the binding energy
significantly deviates from the experimental data for the iso-
topes or isotonic chains. In Ref. [36], a density-dependent
parametrization DD-PC1 was proposed, with which the bind-
ing energy, deformation, and charge radius of deformed nuclei
were well reproduced. But for the spherical nuclei, the cor-
responding predictions are somewhat large in comparison
with experiment. The newly developed effective interaction
PC-PK1 [37] has improved the isospin dependence descrip-
tion of binding energy along the isotopic or the isotonic
chains.

Since the RMFPC with PC-PK1 holds more advantages,
we have developed the RMFPC-CMR theory for exotic nuclei
with resonances considered by the CMR method [38]. The
single-neutron resonant states in the Sn isotopes were calcu-
lated and the results were compared with calculations by the
Green’s function method, showing excellent agreement. For
exotic nuclei, it is necessary to consider the contributions of
the continuum, especially the resonances in the continuum.
Due to the improper treatment of the continuum, the tradi-
tional BCS is not thought to be reliable for nuclei near the
drip line [39,40]. If one can obtain the physical resonant states
rather than the nonphysical continuum, the BCS is effective.
The earliest work in this respect can be seen in Ref. [41].
The resonant Hartree-Fock-BCS theory was established in
Ref. [42]. Further development of the resonant Hartree-Fock-

BCS theory was provided in Ref. [16]. In Ref. [18], the
Berggren representation was used to explore the quasiparticle
resonance with BCS. In Ref. [21], the scattering phase shift
method was combined with RMF theory, and the contributions
of resonances for exotic nuclei were included by pairing with
the BCS approximation. Considering that the RMFPC theory
is considerably successful in describing nuclear properties
and the CMR is very effective in exploring resonances, it
is interesting to develop the RMFPC-CMR-BCS theory for
exotic nuclei.

In recent years, the study of nuclear structure for the
Ce isotopes has attracted the attention of nuclear physi-
cists. In Ref. [43], the HFB theory with Skyrme force SLy5
was used to investigate the ground state properties of the
Nd, Ce, and Sm isotopes. Based on the relativistic Hartree-
Fock-Bogoliubov (HFB) method, Long et al. have researched
systemically the ground state properties of the Ce isotopes,
and presented the prediction of the neutron drip line N = 140
using the PKA1 interactions. Particularly, they have indicated
the possible existence of halos and giant halos in the Ce
isotopes near the neutron drip line. Namely, 186Ce, 188Ce, and
190Ce are normal halo nuclei, whereas 192Ce, 194Ce, 196Ce,
and 198Ce may be giant halo nuclei because more than two
neutrons occupy halo orbits [5,44]. Hence, further study of
exotic structures in the Ce isotopes is interesting, especially
for exotic phenomena in the neutron-rich Ce isotopes with
N > 126.

In this work, we develop the RMFPC-CMR-BCS theory
and explore exotic structures in Ce isotopes using the theoret-
ical formalism. The results show that the nuclei 186Ce, 188Ce,
and 190Ce have a d-wave halo structure, and 192Ce, 194Ce,
196Ce, and 198Ce have s- and d-wave giant halo structures,
which support the predictions of halos and giant halos in Ce
isotopes from the relativistic HFB calculations. In particular,
the contributions of every resonant level to halos are disclosed
and the physical mechanism of halo formation is clarified. The
theoretical formalism is sketched in Sec. II. The numerical
details and results are presented in Sec. III. A summary is
given in Sec. IV.

II. FORMALISM

For the convenience in the following discussions, we
briefly introduce the RMFPC-CMR-BCS formalism. The
starting point of this formalism is described by the Lagrange
density

L = Lfree + L4 f + Lhot + Lder + Lem, (1)

with

Lfree = ψ̄ (iγμ∂μ − M )ψ,

L4 f = −1

2
αS (ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ψ̄γμψ )(ψ̄γ μψ )

−1

2
αT S (ψ̄ �τψ )(ψ̄ �τψ ) − 1

2
αTV (ψ̄ �τγμψ )(ψ̄ �τγ μψ ),

Lhot =−1

3
βS (ψ̄ψ )3− 1

4
γS (ψ̄ψ )4− 1

4
γV [(ψ̄γ μψ )(ψ̄γμψ )]2,
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Lder = −1

2
δS∂ν (ψ̄ψ )∂ν (ψ̄ψ ) − 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

−1

2
δT S∂ν (ψ̄ �τψ )∂ν (ψ̄ �τψ )

−1

2
δTV ∂ν (ψ̄ �τγμψ )∂ν (ψ̄ �τγ μψ ),

Lem = −1

4
FμνFμν − e

1 − τ3

2
ψ̄γ μψAμ. (2)

The meanings of all the symbols in Eq. (1) are the same
as those in the literature [37]. From the Lagrange density, one
can obtain the Dirac equation for nucleons as

[�α · �p + β(m + S) + V ]ψ = εψ, (3)

where S(�r) and V (�r) are the scalar and vector potentials,
respectively. The bound solutions of Eq. (3) can be obtained
by conventional methods. To obtain the unbound solutions for
physical resonant states, we transform Eq. (3) into momentum
representation as∫

d�k′〈�k∣∣H ∣∣�k′〉ψ(�k′) = εψ
(�k)

. (4)

Equation (4) can be solved by the separation of variables with
the wave functions for spherical nuclei as

ψ
(�k) =

(
f (k)φl jm j (�k )
g(k)φl̃ jm j

(�k )

)
. (5)

Then, the Dirac equation (4) becomes{
M f (k) − kg(k) + ∫

k′2dk′V+(k, k′) f (k′) = ε f (k),
−k f (k) − Mg(k) + ∫

k′2dk′V_(k, k′)g(k′) = εg(k),
(6)

with

V+(k, k′) = 2

π

∫
r2dr[V (r) + S(r)] jl (k

′r) jl (kr), (7)

V−(k, k′) = 2

π

∫
r2dr[V (r) − S(r)] jl̃ (k

′r) jl̃ (kr). (8)

By solving Eq. (6) in complex momentum space, one can
obtain not only bound states but also resonant states. Based on
the available bound and resonant states, the pairings are dealt
with in the BCS approximation. The details can be seen in
Refs. [25,27]. For the convenience of readers, several primary
formulas are sketched here. In the BCS approximation, the
energy gap equation with resonant states becomes
∑

b

�b√
(εb−λ)2+�2

+
∑

r

�r

∫
gr (ε)√

(ε−λ)2 + �2
dε = 2

G
,

(9)

and the particle number equation is

∑
b

�b

[
1 − εb − λ√

(εb − λ)2 + �2

]

+
∑

r

�r

∫
gr (ε)

[
1 − ε − λ√

(ε − λ)2 + �2

]
dε = N, (10)

where �(G) is the pairing energy gap (strength), N is the
particle number, �σ = jσ + 1

2 with σ = b for bound states

FIG. 1. The calculated neutron single-particle levels for states
close to the continuum threshold in the Ce isotopes. The upper
(lower) panel represents the energies (widths). These states are la-
beled as nl j with n, l , and j the radial, orbital, and total angular
momentum quantum numbers, respectively. The chemical potential
is marked by the dashed line.

and σ = r for resonant states, and

gr (ε) = 1

π

�/2

(ε − εr )2 + �2/4
, (11)

with the real part of resonance energy εr and the width �. The
solutions of Eq. (9) and (10) give us the occupation probabil-
ities for the bound and resonant levels. With the occupations,
the contributions of resonances to the density distributions and
the total energy are considered naturally.

Compared with the relativistic HFB, the advantage of the
present approach is that the physical mechanism of halos can
be revealed from the contributions of every resonant level.

III. NUMERICAL DETAILS AND RESULTS

Based on the preceding formalism, we explore the exotic
structures in the neutron-rich Ce isotopes. The numerical de-
tails are the same as those in Refs. [25,27]. An empirical
formula � = 12/

√
A is set for the neutron and proton pair-

ings [45]. The improved effective interactions PC-PK1 [37] is
adopted in the RMFPC-CMR-BCS calculations. The available
single-particle energy E = εr − M and width � for these res-
onant states close to the continuum threshold are displayed
in Figs. 1(a) and 1(b), respectively. For comparison, some
bound levels near the continuum threshold are also shown
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TABLE I. The calculated energies of single-particle levels near
the Fermi surface in 178–198Ce in units of MeV.

Nucleus E (4s1/2) E (2g9/2) E (3d5/2) E (3d3/2)

178Ce 1.11762 0.78292 0.97752
180Ce 0.99944 0.7398 0.94011
182Ce 0.88068 0.69188 0.88625
184Ce 0.76092 0.63344 0.82182
186Ce 0.64396 0.55576 0.74911
188Ce 0.52401 0.47658 0.66966
190Ce 0.39636 0.39627 0.58403
192Ce −0.01377 0.30368 0.3241 0.51031
194Ce −0.04387 0.1581 0.23988 0.43824
196Ce −0.08245 0.08022 0.18418 0.38306
198Ce −0.14445 −0.15871 0.05522 0.28234

in Fig. 1(a). Although the quantum numbers of these levels
have been labeled on the right side of the figure, since these
energy levels near the Fermi surface are very dense, we list
their energies in Table I to distinguish the order of these levels,
which is important for the discussion of the halo mechanism
later. From Fig. 1(a) and Table I, it can be seen that there
appear six resonant levels, 3d5/2, 3d3/2, 2g9/2, 2g7/2, 1i11/2,
and 1 j15/2, in the vicinity of the continuum threshold for
the neutron-rich Ce isotopes under consideration. Without a
centrifugal barrier, there does not appear the resonant level
4s1/2 in these even-even Ce isotopes with the mass numbers
from A = 178 to A = 190. From the beginning of A = 192,
there appears a weakly bound level 4s1/2. Below these reso-
nant levels (including the weakly bound level 4s1/2) are six
bound levels, 1i13/2, 3p1/2, 3p3/2, 2 f5/2, 2 f7/2, and 1h9/2.
Between these resonant levels and bound levels, there exists
a large energy gap, which favors a traditional magic number
N = 126. If only the levels below the N = 126 energy gap
are occupied, the halo phenomenon cannot appear. However,
for the extremely neutron-rich Ce isotopes, valence neutrons
may occupy these resonant levels above the N = 126 gap.
From A = 186, where the Fermi surface is very close to the
continuum threshold, several resonant levels are occupied,
partially due to pairings. If these broad resonant levels 3d5/2

and 3d3/2 or the weakly bound level 4s1/2 are occupied par-
tially, the nuclear density distributions become diffuse. From
A = 186 to A = 190, the valence neutrons in the Ce isotopes
can occupy the 3d5/2 and 3d3/2 orbits. Contrary to Ref. [44],
due to a lack of a centrifugal barrier we find no resonant 4s1/2.
In Ref. [44], there is a positive energy state 4s1/2, which is
a canonical single-particle state, not a resonant state. From
A = 192 to A = 198, there appears a weakly bound level
4s1/2. The valence neutrons in these nuclei can occupy the
4s1/2, 3d5/2, and 3d3/2 orbits, which supports the formation of
a halo. Compared with Ref. [44], we have obtained exactly the
resonant levels and shown the mechanism of halo formation in
the Ce isotopes from A = 186 to A = 198.

In Fig. 1(b), we show the widths for the resonant levels
shown in Fig. 1(a). For the broad resonances 3d3/2 and 3d5/2,
their widths are considerably large. For the narrow resonances
1i11/2 and 1 j15/2, their widths are very small. The widths

FIG. 2. The occupation probabilities v2 in the RMFPC-CMR-
BCS for Ce isotopes with mass number A as a function of the
single-particle energy. The blue dots represent different energy lev-
els, and the chemical potential is indicated by a vertical line.

for the resonances 2g7/2 and 2g9/2 lie between them. With
increasing neutron number, these widths decrease monoton-
ically. Compared with the narrow resonances, the widths for
the broad resonances decline faster. Namely, the halos become
more stable with increasing neutron number, especially those
from the broad resonant states 3d3/2 and 3d5/2. These indicate
that halos may be more easily formed in the more neutron-rich
Ce nuclei.

Although these available levels support the appearance of
neutron halos for the extremely neutron-rich Ce isotopes, we
need to know the occupancy of the energy levels to reveal
the physical mechanism of halo formation. In Fig. 2, we have
presented the neutron occupation probabilities near the Fermi
surface (−9.0 < E < 5.0 MeV) for several neutron-rich Ce
isotopes. A vertical line marks the position of the chemical po-
tential. As 184Ce is a magic nucleus with neutron number N =
126, the orbit 1i13/2 is saturated, so we do not need to consider
the contribution of the pairings for this nucleus. Starting from
N = 128, valence neutrons will occupy these resonant levels
above the N = 126 gap. With increasing neutron number, the
occupation probabilities of these resonant levels become more
and more remarkable. From N = 128 to N = 132, the valence
neutrons may occupy the 3d and 2g orbits. As the 3d are broad
resonances with lower centrifugal barrier, the occupation of
these levels supports the formation of a halo. When A � 192,
valence neutrons may occupy the 4s, 3d , and 2g orbits; the
orbits 4s and 3d favor the formation of halo. With increasing
mass number A, the occupation probabilities for the states
4s1/2, 3d3/2, 3d5/2 increase monotonically, which supports the
existence of a possible halo structure in the neutron-rich Ce
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FIG. 3. The relative contributions of different orbits to the full
neutron density for the PC-PK1 effective interaction in the Ce iso-
topes from A = 184 to A = 198. The orbits located near the particle
continuum threshold are marked in different colors.

isotopes. From Fig. 2, we have also observed that the particle
number in the halo orbits does not exceed 2 in the nuclei
186Ce, 188Ce, and 190Ce, which are usually called halo nuclei.
For 192Ce, 194Ce, 196Ce, and 198Ce, the particle number in
the halo orbits gradually increases and exceeds two particles,
hence these are called giant halo nuclei. This prediction is con-
sistent with that obtained in the relativistic HFB calculations
[44].

To figure out whether these orbits can contribute a diffuse
density distribution, we plot the relative contributions of dif-
ferent orbits to the total neutron density in Fig. 3. With the
increasing radius r, the weakly bound and resonant states
4s1/2, 3d5/2, 3d3/2, 2g9/2, and 2g7/2 display diffuse density
distributions, while the density distributions of the other states
quickly drop to zero. As these orbits around the particle
continuum threshold 4s1/2, 3d5/2, 3d3/2, 2g9/2, and 2g7/2 are
gradually occupied with the increasing neutron number, the
diffuse matter distributions for 186–190Ce come mainly from
the contributions of the low-l states 3d5/2 and 3d3/2, and that
for 192–198Ce isotopes is mostly caused by the states 4s1/2,
3d5/2, and 3d3/2. The detailed observations show that the dif-
fuse density distributions in 192–198Ce originate mainly from
the resonant levels 3d5/2 and 3d3/2. The contributions from the
weakly bound level 4s1/2 to the diffuse density distributions
are relatively small, which is different from Ref. [44] [see
Fig. 1(b)], where the level 4s1/2 is shown to play the most
important role for the halo in 198Ce. Considering that the
4s1/2 is a weakly bound level, its contribution to the density
distribution should decay as the radius increases. This result,
the halo coming mainly from the resonant levels 3d5/2 and
3d3/2 for 192–198Ce, may be more reasonable. Due to a large
centrifugal barrier, the contributions of the states 2g9/2 and
2g7/2 to the diffuse density distributions are relatively small.
Nevertheless, the existence of high-l states near halo orbits is
particularly important because they produces considerable en-
ergy level density around the Fermi surface and significantly
enhance the pairing effect to stabilize halo isotopes.

FIG. 4. Wave functions of the states 1i13/2, 4s1/2, 3d5/2, 3d3/2,
2g7/2, and 2g9/2 in 198Ce. The black solid and red dashed lines
represent the real and imaginary parts of the upper component f (r).
The olive dotted and blue dash-dotted lines represent the real and
imaginary parts of the lower component g(r).

To understand the reason why these broad resonances can
contribute more disperse density distributions, in Fig. 4 we
have plotted the wave functions of single-particle states for
198Ce. The real and imaginary parts of the upper and lower
components of the Dirac spinors are shown in Fig. 4, respec-
tively. For the bound state 1i13/2, the upper component f (r)
and the lower component g(r) decrease quickly to 0 with the
increase of r. For the weakly bound state 4s1/2, as without
the centrifugal barrier, the decay of the upper component f (r)
with the radius r is relatively slow. Its contribution to the
dispersed density distributions is observable. Nevertheless,
the wave function of the 4s1/2 decays as the radius increases
since it is a bound state. Compared with the upper component
f (r), the contribution of the lower component g(r) to the
density distributions is unimportant for the level 4s1/2. For the
broad resonant states 3d5/2 and 3d3/2, regardless of the real
part or the imaginary part, the upper component f (r) of their
wave functions extends to a large range. The diffuse density
distributions in 198Ce come mainly from the contributions of
the two resonant states. Similarly to the weakly bound state
4s1/2, the contribution of the lower component g(r) to the
density distributions is insignificant. For these narrow reso-
nant states 2g7/2 and 2g9/2, the decay of the upper component
f (r) with the radius r is very fast because they are bound
by the high centrifugal barrier. Hence, these two states do
not contribute to the diffuse density distributions, although
the occupation probabilities of the 2g9/2 orbit are relatively
large. These indicate that the diffuse density distributions orig-
inate mainly from the broad resonant states 3d5/2 and 3d3/2.
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FIG. 5. The neutron density distributions of the even-even Ce
isotopes from A = 184 to A = 198. For comparison, the proton den-
sity distributions are also shown.

The weakly bound state 4s1/2 also contributes to the diffuse
density distributions to a certain extent. The narrow resonant
and bound states almost do not contribute to the dispersion
density distributions. The reason why exotic halo phenom-
ena occur in 192–198Ce is the existence of broad resonances
3d5/2 and 3d3/2.

Since there are broad resonant states in the vicinity of
the continuum threshold, it is not surprising that exotic halo
phenomena may occur in the neutron-rich Ce isotopes. To
make this clear, we draw the neutron density distributions in
Fig. 5. For comparison, the proton density distributions are
also displayed there. Although 184Ce is a neutron-rich nucleus,
its neutron density distributions do not show a long tail for
the magic nucleus (N = 126). From A = 186 to A = 198, the
neutron density distributions become more dispersed with the
increase of mass number A. In comparison with the proton
density distributions, which fall quickly with increasing ra-
dius, the neutron density distributions show a long tail, which
is direct and obvious evidence of a halo. This shows that
186–198Ce are neutron halo nuclei, which we expect to be
verified in experiment.

IV. SUMMARY

The relativistic point-coupling model is combined with
complex momentum representation with resonances consid-
ered by BCS approximation, which is called the RMFPC-
CMR-BCS theory. The RMFPC-CMR-BCS theory is used to
study the ground state properties of the even-even Ce isotopes.
The resonances are considered by BCS approximation with
the magic nucleus 184Ce as core. The available single-particle
levels including the bound states and resonant states display
a clear shell structure. The large gap appearing between the
bound levels and resonant levels supports a traditional magic
number N = 126 in the extremely neutron-rich Ce isotopes.
The occupation probabilities of valence nucleons in these
orbits close to Fermi surface are calculated, and the con-
tributions of every orbit to nuclear density distributions are
obtained. Several resonant orbits with low-angular momen-
tum are found to contribute fairly diffuse density distributions.
Compared with the contributions of different orbits to the
total neutron density distribution, it is found that the dif-
fuse density distributions in 186–198Ce come mainly from the
contribution of the broad resonant states 3d5/2 and 3d3/2 al-
though the weakly bound state 4s1/2 has also the contribution
to the diffuse density distributions in 192–198Ce. This causes the
total neutron density distributions to become more and more
diffuse with the increase of mass number A from A = 186 to
198. Particularly, the occupation number in halo orbits is more
than two nucleons in 192–198Ce. These suggest that 186–190Ce
are halo nuclei and 192–198Ce giant halo nuclei. The calculated
wave functions and neutron, proton, and matter density dis-
tributions support the conclusion. The prediction on exotic
structures in the Ce isotopes is expected to be verified in
experiment.
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