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Effects of shell correction on α-decay systematics
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Within the generalized liquid drop model (GLDM), the effects of the Strutinsky shell correction on α decay
processes have been systematically studied. Before the scission point, the shell correction energy Esh, which
brings noticeable change to potential barriers for most nuclei, varies with nuclear deformation described by
quasimolecular shapes (QMSs). To investigate the subsequent influence on α decay, we performed systematic
calculations involving more than 400 favored ground-to-ground α emissions with atomic number Z = 52 to
118. We found that the shell correction remarkably reduces the notorious deviation between theoretical and
experimental half-lives around the neutron shell closure N = 126. It will also shed new light on predicting
α-decay half-life of superheavy nuclei.
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I. INTRODUCTION

For heavy and superheavy nuclei, the most important decay
mode is α radioactivity. In 1911, Geiger and Nuttall presented
a simple empirical law to illustrate the relationship between α

decay half-lives, Tα , and Q values, Qα [1,2]. In 1928, Gamow
proposed that α particles would possibly tunnel through the
Coulomb barrier [3]. Now we know the simple form of the
Geiger-Nattall law that can be derived from Gamow’s theory
in which the nuclear Coulomb barrier penetrability plays an
important role. Later on, researchers took many other factors
into account to refine the theory, like the centrifugal barrier,
the proximity force, and the shape evolution of parent nuclei,
not only for a reasonable agreement with α-decay experi-
mental data but also for a better understanding of nuclear
structures. However, these refinements leave one problem un-
solved, namely the evident deviation between theoretical and
experimental results near shell closures, especially around the
neutron magic number N = 126.

It is well known that α decay systematics around N =
126 will change abruptly and thus undermine the predictive
power of many α-decay theories. For example, the univer-
sal decay law, which is derived from the R-matrix theory,
as well as many semiclassical approaches show systematic
discrepancy from experimental α decay half-lives, T exp

1/2 , at
N = 126 [4,5, and references therein]. Numerous attempts
have been made to improve the predictive power in this re-
gion. One notable example is the semFIS formula [6], which
explicitly depends on valence nucleons and can effectively
smooth the increased deviations in the neighbor of magic
numbers of nucleons [7,8]. Also, the systematic deviations
could be minimized by using empirical formulas of prefor-
mation factors that change with changing valence nucleon
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number [9–11]. The cluster-formation model can give pre-
formation factors that naturally suppress such shell effects,
which are determined by the interaction between surface nu-
cleons [12–14]. In short, these successes suggest that the
single-particle characteristics of nuclei are the key to the
problem.

In the macroscopic-microscopic method, different parts of
the total energy are connected with different bulk properties
or microscopic structures of nuclei. The shell correction en-
ergy is associated with the density of single-particle levels
at the Fermi energy [15] and has been proved to be vital
for a better explanation of ground-state deformation [16,17],
fission [18], and many other phenomena where shell effects
dominate. Some α-decay or cluster emission models assume
the difference between Qtheo

α and Qexp
α to be the correction

energy related to the ground states of parent and daughter
nuclei, e.g., the analytical superasymmetric fission model
(ASAF) [19] and the generalized liquid drop model (GLDM)
[20]. So in these models, a semiempirical shape-dependent
shell correction term scaled by Qtheo

α − Qexp
α is introduced

into one-body barriers. But the obtained results still show
large discrepancies from experimental results at N = 126. A
macroscopic-microscopic model by Poenaru et al. illustrates
the effects of microscopic corrections on potential barriers,
but still only when using the semFIS formula can the dis-
crepancies of half-lives be effectively reduced [21]. In our
previous studies [22,23], the Myers’ shell correction for-
mula [16,24] is applied in the GLDM to study the effects of
shell correction on α-decay properties. However, the outcome
merely shows an increasing trend of Tα for most nuclei and
others virtually remain the same.

In this work, we incorporate the Strutinsky shell correction
method into the GLDM and study its effects on α-decay
systematics. Section II briefly revisits the shell correction
method, the shape parametrizations as well as the GLDM.
The evaluation procedure of Tα is slightly modified and thus
is discussed in detail. In Sec. III, we compare and analyze
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the results of potential barriers, α preformation factors, and
half-lives, where the role of the shell correction is emphasized.
Finally, conclusions are summed up in Sec. IV

II. METHOD

A. Shape parametrization

The QMSs (quasimolecular shapes) that reasonably de-
scribe one-body shape evolution are given by [25]

R(θ ) =
⎧⎨
⎩c1

√
1 + (1 − s−2

1 ) cos2 θ, 0 � θ < π
2 ,

c2

√
1 + (1 − s−2

2 ) cos2 θ, π
2 � θ < π.

(1)

Assuming volume conservation, the two parameters s1 = a/c1

and s2 = a/c2 completely define the shape. c1 and c2 are the
two radial elongations and a is the neck radius. We use R =
(1.28A1/3 − 0.76 + 0.8A−1/3) to determine the sharp radius of
spherical nuclei with an atomic number A. For a given decay
channel, the ratio η = R2/R1 between the radii of the future
fragments allows us to connect s1 and s2 through

s2 = s2
1

s2
1 + (1 − s2

1)η2
(s1, s2 � 0, η � 1).

Also, to calculate single particle levels of axially defromed
Woods-Saxon potential, we expand Eq. (1) into multipoles:

R(θ ) = r(θ ; β ) = C(β )R0

[
1 +

M∑
λ=λ0

βλYλ0(cos θ )

]
, (2)

where C(β) is a scaling factor constrained by volume con-
servation. R0 denotes the radius of the spherical nucleus with
identical volume. The maximal order M = 6. All coefficients
constitute the parameter set {βi} that replaces the original
parameter set {si} in Eq. (1). Details of the evaluation of these
parameters can be found in Ref. [26]. Here we briefly discuss
the choice of λ0. It has been mentioned that dipole distortion
is important for hyperdeformed nuclei with large elongation
and necking [27]. So, we choose λ0 = 1, which also means
that the center of mass is free to move when performing the
analytical conversion. The β parametrized shape obtained this
way can perfectly match the original QMS. Finally, as was
done in Ref. [27], the β parametrized shape will be shifted as
a whole to keep its mass center at the coordinate origin.

B. Deformation energy

For a deformed nucleus, the total energy is constructed in
a macro-microscopic manner

E = EV + ES + EC + EProx + Esh + Epair. (3)

The volume energy EV, surface energy ES, Coulomb energy
EC and proximity energy EProx take the forms adopted in
studies of fission, cluster emission, proton radioactivity, and
so on [28–31]. The shape-dependent pairing energy is eval-
uated with the expressions extracted from the finite-range
droplet model, and the specific formula is the same as that
in Ref. [30,32].

To obtain the shell correction energy Esh, the standard
Strutinksy procedure is performed. Single-particle energies

{εi} of deformed nuclei are determined using the WSBETA

code [33], and the central potential is in axially deformed
Woods-Saxon form,

V (r) = V0

1 + exp
[ r−R(θ )

a

] . (4)

Here r − R(θ ) represents the distance from certain point r
to the nuclear surface in Eq. (2). The diffuseness parameter
is denoted by a. V0 is the depth of the central potential.
The spin-orbit potential is also included in single-particle
potential. We use the universal parametrization set for the
potential in Ref. [33]. Then, the single-particle density g(ε) =∑

εiδ(ε − εi ) is smoothed by expansion into Gauss-Hermit
polynomials up to the sixth order [15,26,34]. The smoothing
width γ = 1.2h̄ω0. h̄ω0 = 41A−1/3 MeV is the mean distance
between the gross shells. The outcome of the Strutinksy pro-
cedure is

δEsh =
N,Z∑
i=1

εi −
∫ λ̃

−∞
εg̃(ε)dε, (5)

where the λ̃ is the Fermi energy related to smoothed distribu-
tion g̃(ε). At last, the shell correction energy is

Esh = c δEsh, (6)

where c is a non-negative scaling factor that adjusts the divi-
sion between the macroscopic and microscopic parts [17,23].
In this work c is evaluated as 0.4.

C. Half-life

The half-life against α decay is calculated by T1/2 = ln 2/λ

in which the decay constant λ = P0νP. The assault frequency
ν has been taken in a microscopic way [35–37],

ν =
(
G + 3

2

)
h̄

1.2πμR2
(7)

where the principal quantum number G is obtained by Wilder-
muth rule as [36,37] G = 18 if N � 82, G = 20 if 82 < N �
126, and G = 22 in the region N > 126.

According to the Wentzel-Kramers-Brillouin (WKB) ap-
proximation, the barrier penetrability P is written as

− ln P = −(ln Pin + ln Pout )

=
∫ 0

Sin

K (s)ds +
∫ Rout

Rs

K (r)dr (8)

in which K (x) = 2
h̄

√
2μ[V (x) − Q]. The reduced mass μ =

A1A2/A. Here s denotes either s1 or s2 in Eq. (1). r is the mass
center distance between the separated spherical fragments
[38]. Classical turning points are pinned down by V (Sin ) =
V (Rout ) = Q. The scission configuration where s = 0 and r =
Rs = Rd + Rα divides the total penetrability P into internal
and external (or outer) parts, denoted as Pin and Pout in Eq. (8).
Such a division naturally leads to

T1/2 = ln 2

P0PinνPout
. (9)

In Eq. (8), two different integration variables are used for
the one-body and two-body stages. The reason is that different
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FIG. 1. The liquid drop energy V of 212Po for one-body shapes
described by QMS, which includes only Ec, Es, and Ev for clarity.
r and 
 are two different shape-dependent variables. If the mass
asymmetry is large (say in α decay), V (r) will overlap with itself
if r > Rs. This could be avoided by replacing r with 
.

QMSs might correspond to the same mass center distance r.
As a result, V (r) will overlap with itself when r exceeds Rs,
as shown in Fig. 1. Here we define an alternative variable to r
as


 =
∫ ∣∣∣∣dr(s)

ds

∣∣∣∣ds, (10)

which “unfolds” the overlaping area between the vertical
dashed lines and, meanwhile, makes it convenient for us to
put the inner and outer barriers together.

III. CALCULATIONS

The shell correction term has an evident impact on de-
formation barriers, which is illustrated with Fig. 2. If Esh
for a spherical nucleus is negative, the nucleus will usually
be stable against deformation. For spherical 212Po, the cor-
rection energy E sph

sh = −3.30MeV. So when 212Po is slightly
distorted, the deformation energy goes up almost vertically.
A 212Po nucleus can decay into a doubly magic 208Pb. The
E sph

sh of 208Pb is −6.32MeV, which will increase potential
energy near the scission point. As a result, there is a stronger
hindrance effect brought by such negative E sph

sh via the inner
barrier. By contrast, a positive E sph

sh makes slightly deformed
shapes favorable. For example, E sph

sh = 5.99 MeV for 256Fm
and 6.22 MeV for 252Cf. In this case, the inner turning point
moves forward, which will add to the barrier penetrability.
In both cases, the outer barriers remain the same because
daughter nuclei are assumed to be spherical. In the following
discussion, we will focus on the influences of the Strutinsky
shell correction on Pin and Tα . Systematic calculations are
performed for about 400 ground-to-ground α-decay processes
with data available in NUBASE2016 [39]. Though an experi-
mental determination of spin and/or parity is lacking for some
nuclei, all the relevant α decays are assumed to be favored
ones.

FIG. 2. The alterations of potential barriers for α emitters 212Po
and 256Fm.

First, we will analyze the results of preformation factors
Pα . When the predicted half-life T calc

1/2 = ln 2/νPout, a prefor-
mation probability Pα would be missing when compared with
T exp

1/2 , which indicates that

T exp
1/2 = ln 2

PανPout
. (11)

So in the GLDM, Pα can be extracted in an empirical way:

PE ≡ ln 2

T exp
1/2 νPout

. (12)

Its value ranges approximately from 0.1 to 0.01, as shown in
Fig. 3(a). The shell effect of PE around N = 126 is apparent.
Roughly speaking, PE decreases gradually from 0.1 to 0.01
as N approaches 126, but after that it abruptly returns to 0.1.
It is worth noting that such an abrupt change of PE across
shell closure N = 126 might be model independent [40]. In
the GLDM, a semiempirical formula has been proposed to
reproduce PE and has been frequently used to improve the pre-
cision of Tα [10,41–43]. For clarity, Pα given by the formula
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FIG. 3. α preformation probability Pα by different methods (see text for details) versus the neutron number of the emitter, N . Horizontal
solid lines in panels (a) and (c) represent Pα = 0.045. Vertical dashed lines mark the position of N = 126.

is denoted as PF:

PF ≡ exp[a + b(Z − Z1)(Z2 − Z )

+ c(N − N1)(N2 − N ) + dA]. (13)

Zi and Ni are the nearest magic numbers for protons and
neutrons. The inclusion of valence nucleon numbers means
that the formula contains shell structure information.

Besides, apart from complex formulas, PE could also be
approximated as a global constant. It is sometimes implicitly
included in ν [35]. We searched for the optimal value of such
a global preformation factor giving the least rms deviation
between the constant Pα and the extracted PE. It turned out
to be 0.045, marked by horizontal lines in Fig. 3.

Then, comparing Eqs. (9) and (11), we can find that P0Pin

plays the same role as Pα , which for clarity is denoted by

PIN ≡ P0Pin. (14)

Needless to say, PIN and Pin will always distribute in a similar
pattern since P0 is simply a positive constant. In the present
study P0 = 0.22, evaluated through a fitting procedure where
the least rms deviation between PIN without shell correction
and PE is obtained. It might be a coincidence that Pα of
212Po evaluated by the cluster-formation model also equals
0.22 [12,14,44]. In Fig. 3(c), after N crosses 126, PIN will
suddenly become several times larger. This is mainly caused
by an abrupt increase of Qexp

α . On the whole, PIN is virtually
flat, which leads to the fact that PIN without shell correction is
close to 0.045.

Here, to introduce shell correction, the scaling factor c in
Eq. (6) would be evaluated as 0.4 according to Fig. 4. Just

as how one can obtain the coefficients in Eq. (13) of PF,
the factor c is determined through minimization of a quantity√∑

(ln PIN − ln PE)2/n for 414 α emitters. The range of PIN

obtained this way, shown in Fig. 3(d), accords well with that of
PE. They are also similar in pattern of distribution. Overall, the
theoretical results obtained with shell correction are in good
agreement with experimental data.

FIG. 4. The optimal value of the scaling factor c is determined as
0.4. These dots on the curve are obtained by varying c from 0 to 1
with a step size of 0.01.

044308-4



EFFECTS OF SHELL CORRECTION ON α-DECAY … PHYSICAL REVIEW C 102, 044308 (2020)

FIG. 5. Deviations between theoretical and experimental Tα on logarithmic scale versus the neutron number, N , of the emitter. The value of
Pα used in each panel is annotated. Magic numbers N = 82 and 126 are marked by the vertical dashed lines. The upper horizontal dashed line
represents T calc

α /T expt
α = 3.16, while the lower one represents T calc

α /T expt
α = 0.316. Detailed results can be found in the Supplemental Material

[48].

By comparison, PIN with shell correction is obviously
closer to PE. But PE are still more scattered than PIN in the
regions N ≈ 100 and N > 130. One possible explanation is
that the daughter nuclei of these emitters should be distorted.
For example, the octupole deformation is evident in ground-
state shapes at N = 130, and so is hexadecapole deformation
around N = 140 [45]. It has been pointed out that considering
the deformation effect can improve the theoretical description
of α-decay half-lives [46,47]. We will explore its influence
within the GLDM in future studies after finding a way to
smoothly connect QMSs of parent nuclei and shapes of dis-
torted fragments, where the orientation of daughter nuclei
matters. One thing worth noting is that such deformation
effect would not affect our current discussion about α emitters
located around magic numbers in Fig. 3 because the relevant
nuclei are virtually free of distortion [45].

Having compared different types of preformation factors,
we present the results of theoretical half-lives T calc

1/2 . The
deviations between T calc

1/2 and T exp
1/2 for each of the 414 nu-

clei are illustrated in Fig. 5. In Fig. 5(b), high precision is
achieved by PF except at N ≈ 130 and N > 155. In addition,
Figs. 5(a) and 5(c) are quite similar as expected and both show
the largest deviation at N = 126. By contrast, the Strutinksy
shell correction significantly improves the accuracy of T calc

1/2 .
Most points lie between ±0.5 in Fig. 5(d), which means
0.316 < T calc

1/2 /T exp
1/2 < 3.16. Generally speaking, the inclusion

of Esh will increase α decay half-lives around the neutron
shell closure at N = 126. Hence, for isotopes of Z = 84-87

in Fig. 6, the obvious shell effect is diminished. But instead
of following a simple upward pattern [22,23], T calc

1/2 starts
decreasing roughly when N > 130 due to a positive Esh. This
trend could be clearly observed in the Z = 90-93 isotopic
chains presented in Fig. 7.

At last, the systematic discrepancy is quantified both by the
rms deviation

σ =
√

1

n

∑ (
ln T calc

1/2 − ln T exp
1/2

)2

in Table I and by the average absolute deviation

σA = 1

n

∑ ∣∣ln T calc
1/2 − ln T exp

1/2

∣∣
in Table II. As is shown, the total average deviation σA is
instantly reduced by 25.7%. Also, we can adopt a factor S =

TABLE I. The rms deviations σ of T calc
1/2 from T exp

1/2 for different
evaluation methods of Pα .

σ

Nuclide Pα= 0.045 PF PIN PIN w/i Esh

Even-even (184) 0.372 0.281 0.354 0.254
Doubly odd (52) 0.505 0.506 0.402 0.266
Odd-A (178) 0.372 0.498 0.376 0.326

Total (414) 0.391 0.417 0.370 0.288
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FIG. 6. The same as Fig. 5 but only for Pα = PIN with or without
shell correction. Shell effects for isotopes of Z = 84-87 are sup-
pressed after introducing Esh.

10σA to measure absolute deviations as was done in Ref. [47].
For 184 even-even nuclei, σA = 0.188 and S ≈ 1.54, which
means T cacl

1/2 are statistically within the range 35% smaller to
54% larger than T exp

1/2 . The improvements of σ are similar,
which is also reduced by 22%. The average deviations for
even-even α emitters obtained with different models are listed
in Table III for comparison.

IV. CONCLUSION

The Strutinsky shell correction has been incorporated into
the GLDM and significantly improves the accuracy of pre-
dicting α-emission half-lives. To obtain the shape-dependent
correction energy, we perform an analytical conversion from

TABLE II. The same as Table I but for average deviations σA.

σA

Nuclide Pα= 0.045 PF PIN PIN w/i Esh

Even-even (184) 0.303 0.199 0.275 0.188
Doubly odd (52) 0.369 0.366 0.288 0.200
Odd-A (178) 0.282 0.384 0.283 0.232

Total (414) 0.302 0.300 0.280 0.208

FIG. 7. The same as Fig. 6 but for isotopes of Z = 90-93. If Esh is
introduced, T calc

α will decrease approximately when N exceeds 130.

asymmetric QMS into β parametrization. Then we perform
the standard Strutinsky procedure, which is vital for eval-
uating the correction energy. After properly evaluating the
global scaling factor of shell correction energy, we compare
the preformation factors extracted from experimental data and
those given by the inner penetrability with shell correction.
A similarity between them is manifested. As a consequence,
we can effectively reproduce the abrupt change of α decay
systematics at N = 126. Besides, the effect of shell correction
might differ for α emitters with different neutron numbers.
While theoretical half-lives around N = 126 increase a lot,
in regions far from neutron magic numbers (especially when
130 < N < 160) the half-lives will decrease. Overall, the sta-
tistical deviations between the calculated and experimental

TABLE III. Comparison of average deviations of the density-
dependent cluster model (DDCM) [46], the dynamic double-folding
potential (DDFP) approach [47], the modified Royer’s formula
(MRF) [49] and this work. Only results of even-even α emitters are
listed below.

DDCM DDFP MRF This work

Number 157 135 137 184
σA 0.209 0.210 0.198 0.188

044308-6



EFFECTS OF SHELL CORRECTION ON α-DECAY … PHYSICAL REVIEW C 102, 044308 (2020)

half-lives are minimized by the Strutinsky shell correction.
For instance, the average absolute and the rms deviation are
reduced by 22% and 26% respectively. In conclusion, the
Strutinsky shell correction is indispensable for an accurate
description of α decay within the GLDM. In future studies,
we should take into account ground-state deformations of
daughter nuclei to refine the method, which might further
improve the results where such deformation effect is obvious.
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APPENDIX: SUPPLEMENTAL MATERIAL

Experimental Q values, shell corrections of spherical
nuclei, and calculated and experimental half-lives used
to produce Fig. 5 can be found in the Supplemental
Material [48].

[1] H. Geiger and J. Nuttall, London Edinburgh Dublin Philos.
Mag. J. Sci. 22, 613 (1911).

[2] H. Geiger, Z. Phys. 8, 45 (1922).
[3] G. Gamow, Z. Phys. 51, 204 (1928).
[4] O. A. P. Tavares, S. B. Duarte, O. Rodríguez, F. Guzmán, M.

Gonçalves, and F. García, J. Phys. G: Nucl. Part. Phys. 24, 1757
(1998).

[5] C. Qi, A. N. Andreyev, M. Huyse, R. J. Liotta, P. Van Duppen,
and R. A. Wyss, Phys. Rev. C 81, 064319 (2010).

[6] D. N. Poenaru, M. Ivascu, and D. Mazilu, Comput. Phys.
Commun. 25, 297 (1982).

[7] D. N. Poenaru, I.-H. Plonski, and W. Greiner, Phys. Rev. C 74,
014312 (2006).

[8] D. N. Poenaru, H. Stöcker, and R. A. Gherghescu, Eur. Phys. J.
A 54, 14 (2018).

[9] Y. Hatsukawa, H. Nakahara, and D. C. Hoffman, Phys. Rev. C
42, 674 (1990).

[10] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo, and
J. Q. Li, Phys. Rev. C 80, 057301 (2009).

[11] W. M. Seif, J. Phys. G: Nucl. Part. Phys. 40, 105102 (2013).
[12] S. M. Saleh Ahmed, R. Yahaya, S. Radiman, and M. Samudi

Yasir, J. Phys. G: Nucl. Part. Phys. 40, 065105 (2013).
[13] D. Deng, Z. Ren, D. Ni, and Y. Qian, J. Phys. G: Nucl. Part.

Phys. 42, 075106 (2015).
[14] D. Deng and Z. Ren, Phys. Rev. C 93, 044326 (2016).
[15] V. Strutinsky, Nucl. Phys. A 95, 420 (1967).
[16] W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
[17] N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010).
[18] M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M.

Strutinsky, and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).
[19] D. N. Poenaru, M. Ivascu, and A. Sandulescu, J. Phys. G: Nucl.

Phys. 5, L169 (1979).
[20] G. Royer and R. Moustabchir, Nucl. Phys. A 683, 182 (2001).
[21] D. N. Poenaru, I. H. Plonski, R. A. Gherghescu, and W. Greiner,

J. Phys. G: Nucl. Part. Phys. 32, 1223 (2006).
[22] J. Zhang, E. De-Jun, and H.-F. Zhang, Chin. Phys. C 42, 094101

(2018).
[23] Z. Ge, C. Li, J. Li, G. Zhang, B. Li, X. Xu, C. A. T. Sokhna, X.

Bao, H. Zhang, Y. S. Tsyganov, et al., Phys. Rev. C 98, 034312
(2018).

[24] W. D. Myers and W. J. Swiatecki, Anomalies in Nuclear Masses
(University of California, Berkeley, 1966).

[25] G. Royer and B. Remaud, Nucl. Phys. A 444, 477 (1985).

[26] H. Zhang, H. Zhang, J. Li, X. Bao, and N. Ma, Phys. Rev. C 90,
054313 (2014).

[27] P. Jachimowicz, M. Kowal, and J. Skalski, Phys. Rev. C 87,
044308 (2013).

[28] J. M. Dong, H. F. Zhang, and G. Royer, Phys. Rev. C 79, 054330
(2009).

[29] X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, and J. Q. Li, J. Phys.
G: Nucl. Part. Phys. 39, 095103 (2012).

[30] X. Bao, H. Zhang, G. Royer, and J. Li, Nucl. Phys. A 906, 1
(2013).

[31] G. Royer, A. Escudie, and B. Sublard, Phys. Rev. C 90, 024607
(2014).

[32] P. Möller, J. Nix, W. Myers, and W. Swiatecki, At. Data Nucl.
Data Tables 59, 185 (1995).

[33] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T. Werner,
Comput. Phys. Commun. 46, 379 (1987).

[34] V. Strutinsky and F. Ivanjuk, Nucl. Phys. A 255, 405 (1975).
[35] H. F. Zhang, G. Royer, and J. Q. Li, Phys. Rev. C 84, 027303

(2011).
[36] C. Xu and Z. Ren, Phys. Rev. C 69, 024614 (2004).
[37] J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, Phys. Rev. C 76,

044326 (2007).
[38] G. Royer, N. Mokus, and J. Jahan, Phys. Rev. C 95, 054610

(2017).
[39] G. Audi, F. G. Kondev, M. Wang, W. Huang, and S. Naimi,

Chin. Phys. C 41, 030001 (2017).
[40] Y. Qian and Z. Ren, Sci. China: Phys., Mech. Astron. 56, 1520

(2013).
[41] J. M. Wang, H. F. Zhang, and J. Q. Li, J. Phys. G: Nucl. Part.

Phys. 40, 045103 (2013).
[42] J. M. Wang, H. F. Zhang, and J. Q. Li, J. Phys. G: Nucl. Part.

Phys. 41, 075109 (2014).
[43] X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Phys. Rev. C

95, 034323 (2017).
[44] D.-M. Deng and Z.-Z. Ren, Nucl. Sci. Technol. 27, 150 (2016).
[45] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data

Nucl. Data Tables 109-110, 1 (2016).
[46] C. Xu and Z. Ren, Phys. Rev. C 73, 041301(R) (2006).
[47] D. Deng, Z. Ren, and N. Wang, Phys. Lett. B 795, 554 (2019).
[48] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevC.102.044308 for details regarding Fig. 5.
[49] D. T. Akrawy, H. Hassanabadi, S. Hosseini, and K. Santhosh,

Nucl. Phys. A 975, 19 (2018).

044308-7

https://doi.org/10.1080/14786441008637156
https://doi.org/10.1007/BF01329570
https://doi.org/10.1007/BF01343196
https://doi.org/10.1088/0954-3899/24/9/009
https://doi.org/10.1103/PhysRevC.81.064319
https://doi.org/10.1016/0010-4655(82)90025-X
https://doi.org/10.1103/PhysRevC.74.014312
https://doi.org/10.1140/epja/i2018-12469-6
https://doi.org/10.1103/PhysRevC.42.674
https://doi.org/10.1103/PhysRevC.80.057301
https://doi.org/10.1088/0954-3899/40/10/105102
https://doi.org/10.1088/0954-3899/40/6/065105
https://doi.org/10.1088/0954-3899/42/7/075106
https://doi.org/10.1103/PhysRevC.93.044326
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0029-5582(66)90639-0
https://doi.org/10.1103/PhysRevC.81.044322
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1088/0305-4616/5/10/005
https://doi.org/10.1016/S0375-9474(00)00454-1
https://doi.org/10.1088/0954-3899/32/9/002
https://doi.org/10.1088/1674-1137/42/9/094101
https://doi.org/10.1103/PhysRevC.98.034312
https://doi.org/10.1016/0375-9474(85)90464-6
https://doi.org/10.1103/PhysRevC.90.054313
https://doi.org/10.1103/PhysRevC.87.044308
https://doi.org/10.1103/PhysRevC.79.054330
https://doi.org/10.1088/0954-3899/39/9/095103
https://doi.org/10.1016/j.nuclphysa.2013.03.002
https://doi.org/10.1103/PhysRevC.90.024607
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/0010-4655(87)90093-2
https://doi.org/10.1016/0375-9474(75)90688-0
https://doi.org/10.1103/PhysRevC.84.027303
https://doi.org/10.1103/PhysRevC.69.024614
https://doi.org/10.1103/PhysRevC.76.044326
https://doi.org/10.1103/PhysRevC.95.054610
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1007/s11433-013-5159-5
https://doi.org/10.1088/0954-3899/40/4/045103
https://doi.org/10.1088/0954-3899/41/7/075109
https://doi.org/10.1103/PhysRevC.95.034323
https://doi.org/10.1007/s41365-016-0151-1
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1103/PhysRevC.73.041301
https://doi.org/10.1016/j.physletb.2019.06.045
http://link.aps.org/supplemental/10.1103/PhysRevC.102.044308
https://doi.org/10.1016/j.nuclphysa.2018.04.001

