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Neutron-proton pairing correction in the extended isovector and isoscalar pairing model
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An extended OST (8) model with multi- j orbits is constructed based on the angular momentum decomposition
with “pseudo”-spin S for valence nucleons in a j orbit. It is shown that the isovector S = 0 and T = 1 pairs
are exactly the J = 0 and T = 1 pairs in a given j orbit, while the isoscalar S = 1 pairs are linear combinations
of J = odd pairs, with which the pairing Hamiltonian can be used to estimate isovector and isoscalar pairing
interactions. As an example of the model application, some low-lying J = 0+ level energies of even-even and
odd-odd A = 18–28 nuclei up to the half-filling in the ds shell above the 16O core are fit by the model and
compared with the fitting results of the same Hamiltonian in the OLST (8) form. It has been verified from the
fitting of both the models that the isoscalar pairing interaction can be neglected in the lower-energy part of
the spectra of these ds-shell nuclei as far as binding energies and a few J = 0+ excited levels of these nuclei
are concerned. With the mean-field plus isovector pairing interaction only, neutron-neutron, proton-proton, and
neutron-proton pairing contributions at the ground or the lowest J = 0+ state of these nuclei are estimated. It is
shown that the isovector np pairing contribution to the binding in the odd-odd N = Z nuclei is systematically
larger than that in the even-even nuclei. Furthermore, the isoscalar np pair content at the lowest J = 0+ state
of these nuclei is also estimated. In both the OST (8) and OLST (8) models, it is clearly shown that the isoscalar
pair content in the lowest J = 0+ state of the N = Z and N = Z ± 2 nuclei increases with increasing of the
valence nucleons, especially in those even-even nuclei, which indicates the isoscalar pairing correlation to be of
importance at low-lying states of N = Z and N = Z ± 2 nuclei, especially in those even-even nuclei with more
valence nucleons up to the half-filling, even though the isoscalar pairing interaction is negligible.

DOI: 10.1103/PhysRevC.102.044306

I. INTRODUCTION

It is shown from both theoretical and experimental stud-
ies that, besides the isovector pairing, isoscalar pairing may
also be of importance in N ≈ Z nuclei [1–7]. Besides studies
in the framework of Hartree-Fock-Bogoliubov theory [1,3],
shell-model calculations with effective interactions focusing
on the isovector and isoscalar pairing mainly for N ≈ Z f p-
shell nuclei were carried out extensively [4,7–13]. The α-like
quartet structure of the isovector plus isoscalar pairing ground
state has also been studied [14–17]. The O(8) algebraic con-
struction of the isovector plus isoscalar pairing realized in the
LST -coupling scheme was proposed in Ref. [18], of which the
matrix representation was derived explicitly in Refs. [19,20].
Further analysis and applications of the OLST (8) model were
then made in Refs. [21–23]. Exact solution of the charge-
independent mean-field with l-orbit-dependent single-particle
energies plus isovector and isoscalar pairing was presented
[24,25], in which the isovector and isoscalar pairing strengths
were assumed to be the same. However, the single-particle
energy term in the OLST (8) model as used in Refs. [19,21–24]
cannot properly reproduce the mean-field part of the ground-
state energy mainly due to the fact that the model space is
restricted within the L = 0 configuration only, of which the
basis vectors are incomplete. An extension of the original
OLST (8) model including L �= 0 states is necessary, of which,

however, the model calculation becomes tedious with other
state vectors outside of the OLST (8) prescription.

In this work, similar to the original OLST (8) model in the
LST -coupling scheme, we consider a different angular mo-
mentum decomposition for a valence nucleon in a single- j
orbit, which enables us to realize an extended OST (8) model
with multi- j orbits. The paper is organized as follows. The
construction of the extended OST (8) model is presented in
Sec. II. In Sec. III, based on the results shown in Sec. II,
the model Hamiltonian in the ds shell is diagonalized in the
tensor product subspace of OST (8) in the ON (2) ⊗ OST (6)
basis. Application of the model to even-even and odd-odd
ds-shell nuclei in analyzing the isovector and isoscalar pairing
correlation is made in Sec. IV. A brief summary is presented
in Sec. V.

II. OST (8) IN THE UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT(2) BASIS

Let {a†
jm tmt

, a jm tmt } be a set of creation and annihilation
operators for a valence nucleon with isospin t = 1/2 in a
j orbit. To realize a similar pair structure of the OLST (8)
model for a j orbit, the angular momentum j is decomposed
as j = 2� + s, where s = 1/2 is the “pseudo”-spin of a va-
lence nucleon in the j orbit, while � = 0, 1/2, 1, 3/2, 2, . . .

serves as a parameter of the decomposition. Thus, for a given
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j = 2� + s, we set

a†
j j tmt

= a†
��;s 1

2 ;tmt
,

a†
j j−1 tmt

= a†
��;s− 1

2 ;tmt
, . . . , a†

j− j+1 tmt
= a†

�−�;s 1
2 ;tmt

, (1)

a†
j − j tmt

= a†
�−�;s− 1

2 ;tmt
.

It should be noted that m� in a†
�m�;sms;tmt

can be taken as
one of the 2� + 1 values −�, −� + 1, . . . , �. Thus, Eq (1)
provides the one-to-one correspondence between {a†

�m�;sms;tmt
}

and {a†
jm tmt

} with 4 j + 2 = 8� + 4 of them in each set. Fur-
thermore, it should be stated that the decomposition with
the “pseudo”-spin and the quasi angular momentum with its
quantum number � = ( j − 1/2)/2 are not the same as the
pseudo-spin and the pseudo-orbital angular momentum de-
composition proposed previously [26].

Within the present decomposition scheme, the S = 0, T =
1 and S = 1, T = 0 pair creation operators can be written as

P†
μ =

√
1

2
(a†

� s t a†
� s t )

01
0μ, D†

μ =
√

1

2
(a†

� s t a†
� s t )

10
μ0, (2)

respectively, where

(a†
� s t a†

� s t )
S T
MSMT

=
�∑

m�=−�

∑
msm′

smt m′
t

〈sms, sm′
s|SMS〉

× 〈tmt , tm′
t |T MT 〉a†

�m�;sms;tmt
a†

� −m�;sm′
s;tm′

t
,

(3)

in which the related Clebsch-Gordan coefficients are involved.
Similarly, the number-conserving generators of UST (4) can be
expressed as

n̂ = 2(a†
� s t ã� s t )

00
00, Tμ = (a†

� s t ã� s t )
01
0μ,

Sμ = (a†
� s t ã� s t )

10
μ0, Wμ,μ′ = (a†

� s t ã� s t )
11
μμ′, (4)

where the �-part coupling is the same as that given in Eq. (3),
and

ã�m�; sms; tmt = (−1)1+ms+mt a� −m�; s −ms; t −mt . (5)

Using the correspondence shown in Eq. (1), one can check that
S = 0, T = 1 pair operators P†

μ (μ = −1, 0, 1) are exactly
the J = 0, T = 1 pair operators in the j orbit with

P†
μ =

√
1

2
(a†

� s t a†
� s t )

01
0μ =

√
2 j + 1

2
(a†

j, t a†
j, t )

01
0μ. (6)

However, due to the special decomposition (1), S = 1, T = 0
pair operators D†

μ are a linear combination of J = odd, T = 0
pair operators with J = 1, 3, . . . , 2 j. For example, when j =
3/2,

(a†
� s t a†

� s t )
10
00 =

√
2

5
(a†

j, t a†
j, t )

1 0
0 0 +

√
8

5
(a†

j, t a†
j, t )

3 0
0 0,

(a†
� s t a†

� s t )
1 0
±1 0 =

√
6

5
(a†

j, t a†
j, t )

1 0
±1 0 +

√
4

5
(a†

j, t a†
j, t )

3 0
±1 0. (7)

Therefore, if S = 1, T = 0 D pair operators are involved in a
Hamiltonian, the total angular momentum J and spin S are not
good quantum numbers when j � 3/2. The only exception is

the j = 1/2 case, in which D†
μ =

√
2 j+1
2 (a†

j, t a†
j, t )

1 0

μ 0
are just

the J = 1 and T = 0 pairing operators. Anyway, similar to
the OLST (8) case, the pairing operators Pμ, P†

μ, Dμ, and D†
μ

shown in Eq. (2) and the number-conserving generators of
U(4) defined in Eq. (4) obey the same commutation relations
as those of generators of O(8), which is called OST (8) in the
following.

The OST (8) irrep is denoted as (� − v
2 , p1, p2, p3), where,

instead of �l = 2l + 1 in the original OLST (8) model, � =
j + 1/2 for a given j orbit, v is the OST (8) seniority number
indicating that there are v nucleons free of the pairs defined
in Eq. (3), (p1, p2, p3) is an intrinsic OST (6) irrep, which
can also be expressed as the corresponding UST (4) irrep
[ω1, ω2, ω3, ω4] satisfying

∑4
i=1 ωi = v and ω1 � ω2 � ω3 �

ω4 � 0 with

p1 = 1
2 (ω1 + ω2 − ω3 − ω4),

p2 = 1
2 (ω1 − ω2 + ω3 − ω4),

p3 = 1
2 (ω1 − ω2 − ω3 + ω4).

(8)

For the OST (8) seniority-zero and -one cases, due to the local
isomorphism of UST (4) with ON (2) ⊗ OST (6), where N is
related to the total number of valence nucleons with N =
� − n̂/2 for a given j orbit, the related branching rules of
OST (8) ⊃ UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) can be ex-
pressed as those of OST (8) ⊃ ON (2) ⊗ OST (6) ⊃ ON (2) ⊗
SUS (2) ⊗ SUT (2):

OST (8) ↓ ON (2) ⊗ OST (6)

(�, 0) = ⊕4�
n=even ⊕[(�−|�−n/2|)/2]

σ0=0 (N = � − n/2) ⊗ (� − |� − n/2| − 2σ0, 0),(
� − 1

2 , 1
2 , 1

2 , 1
2

) = ⊕�−1
σ=0 ⊕�−1−σ

i=0 [N = � − (2σ + 4i + 1)/2] ⊗ (
σ + 1

2 , 1
2 , 1

2

)
⊕�−1

σ=0 ⊕�−1−σ
i=0 [N = � − (2σ + 4i + 3)/2] ⊗ (

σ + 1
2 , 1

2 ,− 1
2

)
, (9)

OST (6) ↓ SUS (2) ⊗ SUT (2)

(σ, 0) = ⊕σ
i=0 ⊕[i/2]

q=0 (S = σ − i) ⊗ (T = i − 2q),(
σ − 1

2 , 1
2 , 1

2

) ∼ (
σ − 1

2 , 1
2 ,− 1

2

) = ⊕[(2σ+1)/2]
i=1 ⊕[(2i−1)/2]

q=0

(S = σ − i + 1
2

) ⊗ (
T = i − q − 1

2

)
, (10)
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where [y] denotes the integer part of y. The closed expressions of the branching rules shown in Eqs. (9) and (10) are consistent
with the results presented in Refs. [19,27,28] and can be checked by using the dimension formulas of O(8) and O(6):

dim[(�, 0), O(8)] = (2� + 6)(� + 5)!

6!�!
, dim

[(
� − 1

2
,

1

2
,

1

2
,

1

2

)
, O(8)

]
= (� + 5)!

90(� − 1)!
,

dim[(σ, 0, 0), O(6)] = (σ + 2)(σ + 3)!

12σ !
, dim

[(
σ − 1

2
,

1

2
,

1

2

)
, O(6)

]
= dim

[(
σ − 1

2
,

1

2
,−1

2

)
, O(6)

]
= (σ + 3)!

3!(σ − 1)!
. (11)

III. DIAGONALIZAING THE OST (8) MODEL
HAMILTONIAN

The extended charge-independent OST (8) model Hamilto-
nian is given by

Ĥ0 =
p∑

i=1

ε ji n̂ ji − G1

∑
ρ

P†
ρ Pρ − G0

∑
ρ ′

D†
ρ ′Dρ ′ , (12)

where p is the number of j orbits considered, n̂ ji =∑
mmt

a†
jim;tmt

a jim;tmt is the valence-nucleon number operator
in the ji orbit, ε ji is the valence-nucleon single-particle energy
of the ji orbit, P†

ρ = ∑p
i=1 P†

ρ (i), D†
ρ = ∑p

i=1 D†
ρ (i), and Pρ =∑p

i=1 Pρ (i), Dρ = ∑p
i=1 Dρ (i) are collective (S = 0, T = 1)

and (S = 1, T = 0) pairing operators, G1 > 0 and G0 > 0
are isovector and isoscalar pairing interaction strength, re-
spectively. When G0 = 0, the Hamiltonian (12) is exactly the
mean-field plus the J = 0, T = 1 pairing one [29–33]. The
related OST (8) irrep for a given j orbit in this case can also
be decomposed according to the OST (8) ⊃ OT (5) ⊗ OS (3)
branching [28]. In this case, though the Hamiltonian of the
OST (8) model is the same as that of the O(5) isovector pair-

ing model, the configuration subspaces of the two models
are different. For example, if the Hamitonian is diagonalized
in the OST (8) seniority-zero tensor product subspace, which
includes both J = 0, T = 1 and J = odd, T = 0 pair states,
the eigenstates should be different from those of the same
Hamiltonian diagonalized in the seniority-zero O(5) subspace
with J = 0, T = 1 pair states only. Though the total angular
momentum quantum number J turns to be not a good quantum
number, the Hamiltonian (12) can be used to estimate J = 0,
T = 1 and J = odd, T = 0 pairing strengths, especially at the
ground state in even-even and odd-odd nuclei described by
the model with any number of j orbits considered, of which
the situation is quite similar to the deformed mean-field plus
K = 0 pairing model [34], where K is the quantum number of
the angular momentum projection in the intrinsic frame.

The Hamiltonian (12) is diagonalized in the subspace of
the tensor product ⊗p

i=1O(i)
ST (8) basis when p j-orbits are

included, in which each copy of the OST (8) irrep is adapted to
the OST (8) ⊃ UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) chain.
Though the procedure for the OST (8) seniority nonzero cases
is the same, in this work only the OST (8) seniority-zero con-
figuration is considered. Eigenstates of Eq. (12) within the
OST (8) seniority-zero subspace are denoted as

|ζ ; n,SMS T MT 〉 =
∑

niσiSiTiξ

C
ζ ; n1 σ1,..., npσp

S1,T1,...,Sp,Tp, ξ

∣∣∣∣∣
(�1, 0); . . . ; (�p, 0)

n1 σ1; . . . ; np σp;

S1, T1; . . . ; Sp, Tp

ξ SMS T MT

〉
, (13)

where the eigenstate |ζ ; n,SMS T MT 〉 with the total num-
ber of valence nucleons n = ∑p

i=1 ni, “pseudo”-spin S and
isospin T is expended in terms of the tensor product basis of
the p copies of OST (8) irreps ⊗p

i=1(�i, 0) in the OST (8) ⊃
UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) labeling scheme, ξ is
a set of the S and T multiplicity labels needed in the coupling,
C

ζ ; n1 σ1,..., npσp

S1,T1,...,Sp,Tp, ξ
is the corresponding expansion coefficient, and

ζ labels the ζ th eigenstate with the same n, S , and T . Ma-
trix elements of each term involved in Eq. (12) under the
OST (8) tensor product basis of ⊗p

i=1(�i, 0) in the OST (8) ⊃
UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) labeling scheme can
be evaluated by using the results shown in Refs. [19,22,35],
of which the explicit expressions are also provided in the
Appendix 1.

Using the analytical expressions of the reduced matrix el-
ements A(i)† in the U(4) ⊃ ON (2) ⊗ SU(2) ⊗ SU(2) labeling
scheme shown in the Appendix, Sec. 1, where A(i)† = P(i)† or
A(i)† = D(i)†, one can verify that eigenvalues of the isovector

pairing Hamiltonian ĤP = ∑
ρ P†

ρ Pρ , those of the isoscalar
pairing one ĤD = ∑

ρ D†
ρDρ , and those of the UST (4)-

limit one ĤUST (4) = ∑
ρ (P†

ρ Pρ + D†
ρDρ ) in the OST (8) tensor

product basis adapted to the UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗
SUT (2) chain in the OST (8) seniority-zero subspace are al-
ways integers or 0 in both the original OLST(8) and the
extended OST (8) models, of which S = S = 0 cases of n � 6
particles over three j-orbits with j1 = 1/2, j2 = 3/2, and
j3 = 5/2, together with the corresponding ones in the OLST (8)
model for n � 6 particles over two l-orbits with l1 = 0 and
l2 = 5, are shown in Table I as examples. This feature is quite
similar to that in the O(5) isovector pairing model and can
be used to check the validity of the computation code. In
addition, the dimensions of the model subspaces are greatly
reduced in the original OLST (8) model because the OLST (8)
configuration is restricted within the L = 0 subspace only.
It can be observed from the eigenvalues of ĤP, ĤD, and
ĤP + ĤD for given n, T , and S = S = 0 that the subset of
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TABLE I. Eigenvalues of ĤP, ĤD, and ĤP + ĤD in the OST (8) model for n � 6 particles over three j-orbits, with j1 = 1/2, j2 = 3/2, and
j3 = 5/2, and those of the OLST (8) model over l1 = 0 and l2 = 5 orbits within the seniority-zero subspace of each model with S = S = 0 and
isospin T , where the dim[OST (8)] and the dim[OLST (8)] columns provide the corresponding dimensions of the subspaces in diagonalizing the
corresponding pairing Hamiltonian, the superscript r of the eigenvalues indicates that the corresponding eigenvalue occurs r times if r � 2,
and “—” denotes that the corresponding state does not exist in the OLST (8) model.

n, T dim[OST (8)] EP ED EP+D dim[OLST (8)] EP ED EP+D

2, 1 3 6, 02 03 6, 02 2 6, 0 02 6, 0
4, 0 11 13, 72 08 13, 72, 08 16, 103, 42, 05 5 13, 7, 03 13, 7, 03 16, 102, 4, 0
4, 1 3 62, 0 03 62, 0 1 6 0 6
4, 2 5 10, 42, 02 05 10, 42, 02 2 10, 4 02 10, 4
6, 0 2 6, 0 6, 0 6, 6 –
6, 1 27 17, 114, 72 113, 65, 019 20, 144, 12, 7 17, 112, 43, 0 112, 6, 04 20, 142, 12, 9, 6, 4

5, 48, 011 102, 92, 8, 62

52, 43, 3, 22, 06

6, 2 6 92, 52, 3, 0 06 92, 52, 3, 0 1 9 0 9
6, 3 6 12, 62, 22, 0 06 12, 62, 22, 0 2 12, 6 02 12, 6

the eigenvalues of one of the aforementioned Hamiltonians in
the OST (8) model overlaps with the whole set of eigenvalues
of the corresponding one of the OLST (8) model, especially
the highest eigenvalue of one of the Hamiltonians of both the
models, which is most important for the ground-state energy
of the system, is exactly the same. The fact that there are more
eigenvalues of any one of the Hamiltonians in the OST (8)
model is because the dimension of the OST (8) tensor product
subspace is always greater than that of the corresponding
OLST (8) one. Therefore, the OST (8) pairing Hamiltonian in
the S = 0 subspace is indeed quite the same as that of the
OLST (8) model in the S = 0 subspace. Anyway, the OST (8)
model should provide results similar to those of the OLST (8)
model, especially those within the seniority-zero subspace.

IV. MODEL APPLICATIONS TO EVEN-EVEN AND
ODD-ODD ds-SHELL NUCLEI

In the OST (8) seniority-zero subspace as considered, the
OST (8) model with G0 = 0 is equivalent to the mean-field
plus isovector pairing Hamiltonian diagonalized within the
O(5) seniority-zero and -nonzero configurations including
isoscalar np pairs, while the OLST (8) model is equivalent to
the aforementioned calculation restricted within the L = 0
subspace. When G0 �= 0, the total angular momentum J is not
a good quantum number of the model. The standard angular
momentum projection [36] is required, with which one can
calculate the mean value of excitation energies of the model
for a given J . Because the eigenenergy of the model increases
with S , it can be expected that the lowest mean value of energy
with J = 0 is mainly contributed from the lowest eigenenergy
with S = 0 in the OST (8) model, especially when G0 > 0 is
small.

As an example of the OST (8) model application, some low-
lying J = 0+ level energies of even-even and odd-odd A =
18–28 nuclei up to the half-filling in the ds shell above the
16O core is fit by the Hamiltonian (12) with G1 = G(1 + x)/2
and G0 = G(1 − x)/2 in the OST (8) seniority-zero and S = 0
subspace, where G is the overall pairing strength, x is within
the closed interval x ∈ [−1, 1]. Comparison to the fitting re-

sults of the same Hamiltonian in the OLST (8) form is also
made. To fit binding energies of these nuclei, in addition to the
mean-field plus isovector and isoscalar pairing, the Coulomb
energy and the symmetry energy with the isospin-dependent
part of the Wigner energy contribution to the binding are con-
sidered, leading to the expression of the model Hamiltonian
similar to that used in the isovector pairing model [37]:

Ĥ = −BE (16O) + ε(n̂) n̂ + Ĥ0 + Ec(A, N, Z ) − Ec(16, 8, 8)

+ αsym(A, N, Z ) T · T, (14)

where Ĥ0 is the mean-field plus the isovector and isoscalar
pairing Hamiltonian of either the OST (8) form given by
Eq. (12) or the OLST (8) form shown in Refs. [19–22],
BE (16O) = 127.619 MeV is the binding energy of the 16O
core taken as the experimental value, ε(n) is the average bind-
ing energy per valence nucleon in the ds shell, of which the
valence-nucleon number dependent form is determined from
a best fit to binding energies of all ds-shell nuclei considered,

Ec(A, N, Z ) = 0.699
Z (Z − 1)

A1/3

(
1 − 0.76

[Z (Z − 1)]1/3

)
(MeV)

(15)
is the Coulomb energy [38], and

αsym(A, N, Z ) = 1

A

(
134.4 − 203.6

A1/3

)
(MeV) + δα(A) (16)

is the parameter of the symmetry energy and the isospin-
dependent part of the Wigner energy contribution, of which
the first term is taken to be the empirical global symme-
try energy paramter provided in Ref. [38], while δα(A) is
adjusted according to the experimental binding energy of the
nuclei with given mass number A needed to account for local
deviation from the first term when Eq. (14) is used. To get
a better fitting quality for low-lying J = 0+ level energies,
the overall pairing strength is taken as G = 1 MeV in both
the models for all the nuclei fitted, which is very close to
the value used in Ref. [39] with G = 20/A MeV. The ex-
perimentally deduced single-particle energies above the 16O
core with ε1 = ε1s1/2 = −3.27 MeV, ε2 = ε0p3/2 = 0.94 MeV,
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TABLE II. The values of the parameters (in MeV) in Eq. (18) and
δ(A) (in MeV) of Eq. (16) used in the overall fitting to the binding
energies and low-lying J = 0+ level energies of even-even and odd-
odd A = 18–26 nuclei.

a b c

OST (8) −2.3325 −0.2000 −0.0125
OLST (8) −3.2325 −0.2000 −0.0125
A: 18 20 22 24 26 28
δ(A) −0.025 −0.750 −0.940 −0.500 1.900 −0.005

and ε3 = ε0d5/2 = −4.14 MeV [37] are used for the mean-field
in the OST (8) model. In the OLST (8) model, for a given l
orbit in the ds shell, by using the angular momentum cou-
pling and recoupling techniques and Wigner-Racah calculus,
reduced matrix elements of the single-particle energy term in
the OLST (8) tensor product basis can finally be expressed as

〈α′
1S′

1T ′
1 ; α′

2S′
2T ′

2 , S′T ′||
∑

j

ε j n̂ j ||α1S1T1; α2S2T2, ST 〉

=
2∏

q=1

δα′
qαqδS′

qSqδT ′
q TqδS′SδT ′T

∑
j

ε j
(2 j + 1)nl

2�l
, (17)

where the sum is over j = l − 1/2 and j = l + 1/2 if l �= 0,
and j = 1/2 if l = 0, nl is the total number of particles in the
l orbit, for which the OLST (8) single-particle reduced matrix
element related to the OLST (8) seniority-one states shown
in Ref. [27] and the related OLST (8) ⊃ SON (2) ⊗ OST (6)
single-particle isoscalar factors listed in Table 3 of Ref. [27]
have been used. Detailed derivation of Eq. (17) is provided
in the Appendix, Sec. 2. Equation (17) shows that the results
of Refs. [19,22] are consistent with those of the actual ds-
and f p-shell model calculations if εl = ∑

j ε j
2 j+1
2�l

is taken
for each l orbit. The best fit of both the models requires a
quadratic form of ε(n̂) with

ε(n̂) = a + b n̂ + c n̂2. (18)

The parameters in Eq. (18) adopted after the fitting are shown
in the first part of Table II. It can be seen that the first constant
a in the OST (8) model is very close to the value of the average
binding energy per valence nucleon with εavg = −2.301 MeV
used in the O(5) isovector pairing model [37], while a larger
value of |a| is needed in the OLST (8) model due to the fact
that the model is restricted within the L = 0 subspace. The
contribution from the second term of Ref. (18) to the binding
is related to the two-body interaction, while the third term is
related to three-body interaction as further correction. The pa-
rameter δ(A) for both the models used in the fitting is provided
in the second part of Table II.

The best fit of both the models requires x = 1, which in-
dicates that the isoscalar pairing interaction can be neglected
in the lower-energy part of the spectra of these ds-shell nuclei
as far as binding energies and a few J = 0+ excited levels of
these nuclei are concerned. Though |x| = 1 can be taken for
the ground state of the N = Z nuclei, x = +1 must be taken
for excited J = 0+ levels and the adjacent N �= Z nuclei to
keep the fitting quality of both the binding energies and the

TABLE III. Binding energies BE th (in MeV) of 22 even-even and
odd-odd nuclei with valence nucleons confined to the ds shell up to
the half-filing fitted by the OST (8) model Hamiltonian (14) and the
same Hamiltonian in the OLST (8) form with x = 1 and other parame-
ters shown in the text and Table II, where n is the number of valence
nucleons in the corresponding nucleus, and the experimental binding
energy BE exp (in MeV) of these nuclei is taken from Ref. [41].

BE th

Nucleus n Isospin OST (8) OLST (8) BE exp

18
8 O10 2 T = 1 140.000 139.978 139.808
18
9 F9 2 T = 1 137.313 137.292 137.369
18
10Ne8 2 T = 1 132.035 132.013 132.143
20
8 O12 4 T = 2 151.43 151.550 151.371
20
9 F11 4 T = 1 154.395 154.402 154.403
20
10Ne10 4 T = 0 160.405 160.323 160.645
20
11Na9 4 T = 1 146.065 145.465 145.970
20
12Mg8 4 T = 2 134.139 134.189 134.561
22
8 O14 6 T = 3 161.446 161.799 162.037
22
10Ne12 6 T = 1 178.228 178.204 177.770
22
11Na11 6 T = 1 174.144 174.140 174.145
22
12Mg10 6 T = 1 168.858 168.834 168.581
22
14Si8 6 T = 3 133.328 133.681 133.276
24
10Ne14 8 T = 2 191.563 191.871 191.840
24
11Na13 8 T = 1 192.780 193.519 193.522
24
12Mg12 8 T = 0 198.845 198.806 198.257
24
13Al11 8 T = 1 183.583 183.589 183.590
24
14Si10 8 T = 2 171.484 171.793 172.013
26
12Mg14 10 T = 1 216.775 217.022 216.681
26
13Al13 10 T = 1 211.890 212.137 211.894
26
14Si12 10 T = 1 206.088 206.335 206.042
28
14Si14 12 T = 0 247.665 248.064 247.737

σBE = 0.32 MeV 0.33 MeV

low-lying J = 0+ level energies. Because the OST (8) model
Hamiltonian (14) with x = 1 is equivalent to the mean-field
plus isovector J = 0 pairing Hamiltonian diagonalized within
the O(5) seniority-zero and -nonzero configurations including
isoscalar np pairs, the total angular momentum J is a good
quantum number in the eigenstate (13) when x = 1. To verify
that the eigenstates (13) with S = 0 in this case are those with
J = 0, numerical diagonalization of the Hamiltonian (14) in
the O(5) seniority-zero tensor-product subspace, of which the
matrix elements were calculated by using the results shown
in Ref. [40], is also performed, which shows that the first few
eigenenergies of the Hamiltonian (14) with S = 0 for a given
number of particles n and isospin T are exactly the corre-
sponding ones with J = 0 in the O(5) seniority-zero subspace.
Therefore,

|ζ ; n,S = MS = 0 T MT 〉 ≡ |ζ ; n, J = MJ = 0 T MT 〉 (19)

when x = 1. In fact, there are more eigenstates of Eq. (14) in
the O(8) seniority-zero and S = 0 subspace in comparison to
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FIG. 1. A few of the lowest J = 0+ level energies of the 22 even-even and odd-odd ds-shell nuclei fitted by both the OST (8) (middle in
blue) and OLST (8) (right in red) models with x = 1, where Tξ on the right of each level denotes the ξ th excited level with isospin T , the label
g denotes the ground state, and the experimental level energies (left in black) are taken from Ref. [41]. The corresponding numerical data are
provided in Table IV.

those in the O(5) seniority-zero subspace. These eigenstates
are higher in energy and lie in the O(5) seniority-nonzero
subspace, of which the level energies are not considered in
comparison to the experimental data here.

The fitting results of the binding energies of even-even
and odd-odd A = 18–28 nuclei up to the half-filling in the
ds shell with the root-mean-square deviation of the OST (8)
model for binding energies σBE = 0.32 MeV and that of the
OLST (8) model σBE = 0.33 MeV are shown in Table III ex-
cept 22F and 22Al, for which J = 0+ level energies are not
available experimentally. Figure 1 shows the lowest experi-
mentally known J = 0+ level energies of these even-even and
odd-odd ds-shell nuclei fitted by both the models with the
same model parameters as used in fitting the binding ener-
gies, of which the corresponding numerical data are provided

in Table IV. The root-mean-square deviation of the fitting
to these excited J = 0+ level energies is σlevel = 1.30 MeV
in the OST (8) model and σlevel = 1.52 MeV in the OLST (8)
model, while the average deviation of the excited level en-
ergies φ = ∑

i |Ei
Th − Ei

Exp|/
∑

i E i
Exp, where the sum runs

over all the excited level energies of these nuclei fitted, ap-
pears to be φ = 16% in the OST (8) model and φ = 21%
in the OLST (8) model. Therefore, the overall fitting quality
of both the models is quite the same. The fitting results of
both the models show that the isovector np pairing interac-
tion, at least, prevails over the isoscalar pairing interaction
in the ground state and the low-lying J = 0+ excited states
of the ds-shell nuclei. In addition, the fitting quality of the
OLST (8) model, which is restricted within the L = 0 subspace,
is comparable with that of the OST (8) or the O(5) isovector
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TABLE IV. A few of the lowest J = 0+ level energies (in MeV) of the 22 even-even and odd-odd ds-shell nuclei fitted by both the OST (8)
and OLST (8) models with x = 1 as displayed in Fig. 1, where “–” denotes the corresponding level is not observed experimentally, and the model
parameters are the same as those used in fitting the binding energies shown in Table III (see text).

18O Exp OST (8) OLST (8) 18F Exp OST (8) OLST (8) 18Ne Exp OST (8) OLST (8)

0+ (Tξ=1g) 0 0 0 0+ (Tξ=11) 1.04 1.04 1.04 0+ (Tξ=1g) 0 0 0
0+ (Tξ=12) 3.63 5.71 4.78 0+ (Tξ=12) 4.75 6.75 5.81 0+ (Tξ=12) 3.58 5.71 4.78

20O Exp OST (8) OLST (8) 20F Exp OST (8) OLST (8) 20Ne Exp OST (8) OLST (8)

0+ (Tξ=2g) 0 0 0 0+ (Tξ=11) 3.53 1.12 0.92 0+ (Tξ=0g) 0 0 0
0+ (Tξ=22) 4.46 5.07 5.66 0+ (Tξ=21) 6.52 6.49 6.45 0+ (Tξ=02) 6.73 5.89 4.68

0+ (Tξ=11) 13.64 11.22 10.93
0+ (Tξ=21) 16.73 16.59 16.46

20Na Exp OST (8) OLST (8) 20Mg Exp OST (8) OLST (8)

0+ (Tξ=11) 3.09 1.47 0.66 0+ (Tξ=2g) 0 0 0
0+ (Tξ=21) 6.53 6.84 6.19 0+ (Tξ=22) – 5.07 5.66

22O Exp OST (8) OLST (8) 22Ne Exp OST (8) OLST (8) 22Na Exp OST (8) OLST (8)

0+ (Tξ=3g) 0 0 0 0+ (Tξ=1g) 0 0 0 0+ (Tξ=11) 0.66 0.36 0.38
0+ (Tξ=32) 4.91 4.35 6.43 0+ (Tξ=12) 6.24 5.03 4.64 0+ (Tξ=12) – 5.39 5.02
22Mg Exp OST (8) OLST (8) 22Si Exp OST (8) OLST (8) 28Si Exp OST (8) OLST (8)

0+ (Tξ=1g) 0 0 0 0+ (Tξ=3g) 0 0 0 0+ (Tξ=0g) 0 0 0
0+ (Tξ=12) 5.95 5.03 4.64 0+ (Tξ=02) 4.98 4.25 6.57

0+ (Tξ=11) 10.27 10.27 12.26
24Ne Exp OST (8) OLST (8) 24Na Exp OST (8) OLST (8) 24Mg Exp OST (8) OLST (8)

0+ (Tξ=2g) 0 0 0 0+ (Tξ=11) 3.68 0.37 0.95 0+ (Tξ=0g) 0 0 0
0+ (Tξ=22) 4.77 4.70 4.69 0+ (Tξ=21) 5.97 6.28 5.97 0+ (Tξ=02) 6.43 5.15 5.72

0+ (Tξ=11) 13.04 10.48 11.02
0+ (Tξ=21) 15.44 16.38 16.04

24Al Exp OST (8) OLST (8) 24Si Exp. OST (8) OLST (8)

0+ (Tξ=11) – 0.47 1.06 0+ (Tξ=2g) 0 0 0
0+ (Tξ=21) 5.96 6.38 6.07
26Mg Exp OST (8) OLST (8) 26Al Exp OST (8) OLST (8) 26Si Exp OST (8) OLST (8)

0+ (Tξ=1g) 0 0 0 0+ (Tξ=11) 0.23 0.23 0.23 0+ (Tξ=1g) 0 0 0
0+ (Tξ=12) 3.59 4.24 5.60 0+ (Tξ=12) 3.75 4.47 5.83 0+ (Tξ=12) 3.36 4.24 5.60
0+ (Tξ=13) 4.97 5.13 6.61 0+ (Tξ=13) 5.20 5.36 6.84 0+ (Tξ=13) 4.83 5.13 6.61

pairing model, which indicates the L = 0 truncation adopted
in the OLST (8) model is indeed acceptable for the ds-shell
nuclei.

Table V shows isovector nn, pp, and np pairing contribu-
tions at the ground state or the lowest eigenstate of the OST (8)
model with x = 1 for these nuclei defined by

E (1)
np = G 〈ζ = 1, n,S = 0 T MT |P†

0 P0|ζ = 1, n,S = 0 T MT 〉,

E (1)
nn = G 〈ζ = 1, n,S = 0 T MT |P†

−1P−1|ζ = 1, n,S = 0 T MT 〉,

E (1)
pp = G 〈ζ = 1, n, ,S = 0 T MT |P†

1 P1|ζ = 1, n,S = 0 T MT 〉,
(20)

where |ζ = 1, n,S = 0 T MT 〉 is just the lowest J = 0+ state
of these nuclei, and the percentage of the isovector np pairing
energy contribution to the binding energy with respect to the

total isovector pairing energy is obtained by

ηnp = E (1)
np

/(
E (1)

np + E (1)
nn + E (1)

pp

)
. (21)

It can be observed that E (1)
nn in the N = Z + 2 nuclei is the

same as E (1)
pp in the Z = N + 2 mirror nuclei, while E (1)

nn =
E (1)

pp in the N = Z nuclei due to the charge-independent
isovector pairing adopted. However, E (1)

np = E (1)
nn = E (1)

pp in
even-even N = Z nuclei, while E (1)

np > E (1)
nn = E (1)

pp in odd-odd
N = Z nuclei, which leads to the isovector np pairing energy
contribution to the binding energy being the largest in odd-odd
N = Z nuclei. Besides 18F with ηnp = 100% because there is
no nn or pp pair, ηnp in the other two odd-odd N = Z nuclei
22Na and 26Al is always greater than 61%, while it is 33.33%
in even-even N = Z nuclei, 20Ne, 24Mg, and 28Si.

Moreover, similar to the analysis of the isovector pairing
[42], the number of the isoscalar np pairs may be estimated
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TABLE V. The isovector np, nn, and pp pairing contributions (in MeV) to the binding energy of the 22 even-even and odd-odd ds-shell
nuclei; the percentage of the isovector np pairing energy contribution with respect to the total isovector pairing energy at the ground state or
the lowest J = 0+ state defined in Eq. (20); the expectation value of the isoscalar np pairing at the lowest J = 0+ state defined in Eq. (22); and
the ratio related to the number of isoscalar np pairs to that of the isovector np pairs in the lowest J = 0+ state defined in Eq. (23).

Nucleus n Isospin E (1)
np E (1)

nn E (1)
pp ηnp Ẽ (1)

np [OST (8)] Ẽ (1)
np [OLST (8)] χnp

18
8 O10 2 T = 1 0 5.036 0 0% 0 0 –
18
9 F9 2 T = 1 5.036 0 0 100% 0 0 0
18
10Ne8 2 T = 1 0 0 5.036 0% 0 0 –
20
8 O12 4 T = 2 0 7.945 0 0% 0 0 –
20
9 F11 4 T = 1 2.568 2.568 0 50% 0 0 0
20
10Ne10 4 T = 0 3.707 3.707 3.707 33.33% 0.957 0.801 0.51
20
11Na9 4 T = 1 2.568 0 2.568 50% 0 0 0
20
12Mg8 4 T = 2 0 0 7.945 0% 0 0 –
22
8 O14 6 T = 3 0 8.666 0 0% 0 0 –
22
10Ne12 6 T = 1 2.226 7.356 4.444 15.87% 1.582 1.267 0.84
22
11Na11 6 T = 1 9.573 2.226 2.226 68.25% 1.582 1.267 0.41
22
12Mg10 6 T = 1 2.226 4.444 7.356 15.87% 1.582 1.267 0.84
22
14Si8 6 T = 3 0 0 8.666 0% 0 0 –
24
10Ne14 8 T = 2 1.600 8.393 4.756 10.85% 2.187 1.713 1.17
24
11Na13 8 T = 1 5.061 4.167 2.681 42.49% 1.978 1.364 0.63
24
12Mg12 8 T = 0 6.000 6.000 6.000 33.33% 3.148 2.448 0.72
24
13Al11 8 T = 1 5.061 2.681 4.167 42.49% 1.978 1.364 0.63
24
14Si10 8 T = 2 1.600 4.756 8.393 10.85% 2.187 1.713 1.17
26
12Mg14 10 T = 1 3.615 7.917 7.186 19.31% 4.359 3.353 1.10
26
13Al13 10 T = 1 11.489 3.615 3.615 61.38% 4.359 3.353 0.62
26
14Si12 10 T = 1 3.615 7.186 7.917 19.31% 4.359 3.353 1.10
28
14Si14 12 T = 0 6.847 6.847 6.847 33.33% 6.506 4.963 0.97

by the expectation value of D† · D. The expectation values of
the isoscalar np pairing at the lowest J = 0+ state defined by

Ẽ (1)
np [OST (8)] = 〈ζ = 1, n,S = 0 T MT |D†

· D|ζ = 1, n,S = 0 T MT 〉,
Ẽ (1)

np [OLST (8)] = 〈ζ = 1, n, S = 0 T MT |D†

· D|ζ = 1, n, S = 0 T MT 〉, (22)

for the two models, together with the ratio

χnp = (
G Ẽ (1)

np [OST (8)]/E (1)
np

)1/2
, (23)

are also shown in Table V, where χnp roughly estimates the
relative ratio of the number of isoscalar np pairs to that
of the isovector np pairs in the lowest J = 0+ state. It can
be seen that the isoscalar pair content becomes noticeable
in the ground state of 20Ne. With further increasing of the
number of valence nucleons up to the half-filling, the ratio
χnp increases not only in N = Z nuclei but also in adjacent
N = Z ± 2 nuclei, especially in those even-even nuclei, while
χnp in odd-odd N = Z nuclei is comparatively small. Thus, we
conclude that the isoscalar pairing correlation is still important
at low-lying states of N = Z and N = Z ± 2 nuclei described
by both the O(8) models, especially in those even-even nuclei

with more valence nucleons up to the half-filling, even though
the isoscalar pairing interaction is negligible.

V. SUMMARY

In this work, similar to the original OLST (8) model in
the LST -coupling scheme, an extended OST (8) model with
multi- j orbits is constructed based on the angular momentum
decomposition with “pseudo”-spin S for valence nucleons
in a given single- j orbit. It is shown that the S = 0 and
T = 1 pairs are exactly the J = 0 and T = 1 pairs in a
given j orbit, while isoscalar S = 1 pairs are linear combi-
nations of J = odd pairs, with which the angular momentum
of the system is not a conserved quantity. Nevertheless, the
new pairing Hamiltonian can be used to estimate T = 1
and T = 0 pairing interaction contributions, especially at the
ground state in even-even and odd-odd nuclei described by
the model with any number of j orbits, of which the situa-
tion is quite similar to the deformed mean-field plus pairing
model [34]. The usefulness of the OST (8) model lies in the
fact that the shell-model mean-field plus isovector pairing
Hamiltonian diagonalized in the OST (8) seniority-zero sub-
space is quite similar to the O(5) isovector pairing model
diagonalized within the O(5) seniority-zero and -nonzero
configurations including isoscalar np pairs, from which the
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isoscalar pair content of any state in the OST (8) model can
easily be estimated. Moreover, the matrix elements of the
OST (8) Hamiltonian have closed expressions in the OST (8) ⊃
UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) basis in the O(8)
seniority-zero subspace, while more algebraic work is needed
for the O(5) isovector pairing model [40], especially when the
O(5) senority-nonzero configurations are included.

For multi- j orbits, it is observed that a subset of the
eigenvalues of the pure pairing Hamiltonian in any one of
the OT (5), UST (4), and OS (5) limiting cases overlaps with
the whole set of eigenvalues of the corresponding OT (5),
UST (4), and OS(5) limiting cases [28] of the OLST (8) model,
especially when the lowest eigenvalue of both the models in
each limiting case is exactly the same. The fact that there are
more eigenvalues of each limiting case in the OST (8) model is
because the dimension of the OST (8) tensor product subspace
is always greater than that of the OLST (8) model. Therefore,
the OST (8) pairing Hamiltonian in the S = 0 subspace is
indeed quite the same as that of the OLST (8) model within the
S = 0 subspace.

As an example of the OST (8) model application, some
low-lying J = 0+ level energies of even-even and odd-odd
A = 18–28 nuclei up to the half-filling in the ds shell above
the 16O core are fit by the model within the OST (8) seniority-
zero and S = 0 subspace and compared with the fitting results
of the same Hamiltonian in the OLST (8) form. It has been
verified from the fitting of both the models that the isoscalar
pairing interaction can be neglected in the ground state and
the lower-energy part of the spectra of these ds-shell nuclei
as far as binding energies and a few J = 0+ excited levels of
these nuclei are concerned. Thus, the OST (8) model within the
OST (8) seniority-zero subspace in this case is quite the same
as the mean-field plus isovector pairing model diagonalized
within the O(5) seniority-zero and -nonzero configurations
including isoscalar np pairs, while the OLST (8) model in this
case is equivalent to the mean-field plus isovector pairing
model within the same configurations restricted to the L = 0
subspace. With the mean-field plus isovector pairing interac-
tion only, isovector nn, pp, and np pairing contributions at the
ground state or the lowest J = 0+ state of these nuclei in the
OST (8) model are estimated. It is shown that the isovector np
pairing contribution to the binding energy in the odd-odd N =
Z nuclei is systematically larger than that in the even-even

nuclei, which leads to the conclusion that the isovector np
pairing is more favored in odd-odd N = Z nuclei. Most im-
portantly, the number of the isoscalar np pairs at the lowest
J = 0+ state of these nuclei is estimated. It is clearly shown
that the isoscalar pair content in the lowest J = 0+ state of
the N = Z and N = Z ± 2 nuclei increases with increasing
of the valence nucleons, especially in those even-even nuclei.
It is concluded that the isoscalar pairing correlation is still
important at low-lying states of N = Z and N = Z ± 2 nuclei,
especially in those even-even nuclei with more valence nucle-
ons up to the half-filling, even though the isoscalar pairing
interaction is negligible.

Because the isovector and isoscalar np pair contents are
estimated by the expectation values of the corresponding two-
body pairing term, the values may be quite different from
the actual numbers of isovector and isoscalar np pairs in the
ground state of the system. To resolve this issue, one may
evaluate these values exactly with the help of the Bargmann
variables in representing these pair operators as shown in
Ref. [20], for which the analysis and further applications of
this model with more j orbits or in other major shells will be
a part of our future work.
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APPENDIX: SOME RELEVANT MATRIX ELEMENTS

1. The reduced matrix elements of the pairing operators

Matrix elements of each term involved in the Hamiltonian
(12) under the OST (8) tensor product basis of ⊗p

i=1(�i, 0) in
the OST (8) ⊃ UST (4) ⊃ ON (2) ⊗ SUS (2) ⊗ SUT (2) label-
ing scheme can be evaluated by using the results shown in
Refs. [19,22,35]. Specifically, for the p = 3 case, we have

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||

p∑
i=1

ε ji n̂ ji ||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T

3∏
q=1

δα′
q′αq′ δS′

qSqδT ′
q TqδS ′

12S12δT ′
12T12

p∑
i=1

ε ji ni, (A1)

where, and in the following, αi ≡ {ni, σi},
〈α′

1S ′
1T ′

1 ; α′
2S ′

2T ′
2 , S ′

12T ′
12; α′

3S ′
3T ′

3 ;S ′T ′||P(i)† · P(i)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T

3∏
q′ �=i

δα′
q′αq′

3∏
q=1

δS ′
qSqδT ′

q TqδS ′
12S12δT ′

12T12

∑
α′′

i T ′′
i

〈α′
iSiTi||P(i)†||α′′

i SiT
′′

i 〉〈α1SiTi||P(i)†||α′′
i SiT

′′
i 〉, (A2)
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for i = 1, 2, 3,

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(1)† · P(2)||α1S1T1; α2S2T2, S12T12; α3S3T3; ST 〉

= δS ′SδT ′T δα′
3α3δT ′

3 T3

3∏
q=1

δS ′
qSqδS ′

12S12δT ′
12T12 (−1)T1+T2+T12 [(2T ′

1 + 1)(2T2 + 1)]1/2
{

T1 T ′
1 1

T ′
2 T2 T12

}

×〈α′
1S1T ′

1 ||P(1)†||α1S1T1〉〈α2S2T2||P(2)†||α′
2S2T ′

2 〉, (A3)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(2)† · P(1)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
3α3δT ′

3 T3

3∏
q=1

δS ′
qSqδS ′

12S12δT ′
12T12 (−1)T ′

1 +T ′
2 +T ′

12 [(2T1 + 1)(2T ′
2 + 1)]1/2

{
T ′

1 T1 1
T2 T ′

2 T ′
12

}

×〈α1S1T1||P(1)†||α′
1S ′

1T ′
1 〉〈α′

2S2T ′
2 ||P(2)†||α2S2T2〉, (A4)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(1)† · P(3)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
2α2δT ′

2 T2

3∏
q=1

δS ′
qSqδS ′

12S12 (−1)T3+T12+T [(2T ′
12 + 1)(2T3 + 1)]1/2

{
T12 T ′

12 1
T ′

3 T3 T

}
〈α3S3T3||P(3)†||α′

3S3T ′
3 〉

×(−1)T ′
1 +T12+T2+1[(2T ′

1 + 1)(2T12 + 1)]1/2
{

T ′
12 T12 1

T1 T ′
1 T2

}
〈α′

1S1T ′
1 ||P(1)†||α1S1T1〉, (A5)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(2)† · P(3)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
1α1δT ′

1 T1

3∏
q=1

δS ′
qSqδS ′

12S12 (−1)T3+T12+T [(2T ′
12 + 1)(2T3 + 1)]1/2

{
T12 T ′

12 1
T ′

3 T3 T

}
〈α3S3T3||P(3)†||α′

3S3T ′
3 〉

×(−1)T ′
12+T1+T2+1[(2T ′

2 + 1)(2T12 + 1)]1/2
{

T ′
12 T12 1

T2 T ′
2 T1

}
〈α′

2S2T ′
2 ||P(2)†||α2S2T2〉, (A6)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(3)† · P(1)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
2α2δT ′

2 T2

3∏
q=1

δS ′
qSqδS ′

12S12 (−1)T ′
3 +T ′

12+T ′
[(2T12 + 1)(2T ′

3 + 1)]1/2
{

T ′
12 T12 1

T3 T ′
3 T ′

}
〈α′

3S3T ′
3 ||P(3)†||α3S3T3〉

×(−1)T1+T ′
12+T ′

2 +1[(2T1 + 1)(2T ′
12 + 1)]1/2

{
T12 T ′

12 1
T ′

1 T1 T2

}
〈α1S1T1||P(1)†||α′

1S1T ′
1 〉, (A7)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||P(3)† · P(2)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
1α1δT ′

1 T1

3∏
q=1

δS ′
qSqδS ′

12S12 (−1)T ′
3 +T ′

12+T ′
[(2T12 + 1)(2T ′

3 + 1)]1/2
{

T ′
12 T12 1

T3 T ′
3 T ′

}
〈α′

3S3T ′
3 ||P(3)†||α3S3T3〉

×(−1)T12+T ′
1 +T ′

2 +1[(2T2 + 1)(2T ′
12 + 1)]1/2

{
T12 T ′

12 1
T ′

2 T2 T1

}
〈α2S2T2||P(2)†||α′

2S2T ′
2 〉, (A8)

and

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(i)† · D(i)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T

3∏
q′ �=i

δα′
q′ αq′

3∏
q=1

δS ′
qSqδT ′

q TqδS ′
12S12δT ′

12T12

∑
α′′

i S ′′
i

〈α′
iSiTi||D(i)†||α′′

i S ′′
i Ti〉〈αiSiTi||D(i)†||α′′

i S ′′
i Ti〉 (A9)

for i = 1, 2, 3,

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(1)† · D(2)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
3α3δS ′

3S3

3∏
q=1

δT ′
q TqδS ′

12S12δT ′
12T12 (−1)S2+S1+S12 [(2S ′

1 + 1)(2S2 + 1)]1/2
{S1 S ′

1 1
S ′

2 S2 S12

}

×〈α′
1S ′

1T1||D(1)†||α1S1T1〉〈α2S2T2||D(2)†||α′
2S ′

2T2〉, (A10)
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〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(2)† · D(1)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
3α3δS ′

3S3

3∏
q=1

δT ′
q TqδS ′

12S12δT ′
12T12 (−1)S

′
2+S ′

1+S ′
12 [(2S1 + 1)(2S ′

2 + 1)]1/2
{S ′

1 S1 1
S2 S ′

2 S ′
12

}

×〈α1S1T1||D(1)†||α′
1S ′

1T1〉〈α′
2S ′

2T2||D(2)†||α2S2T2〉, (A11)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(1)† · D(3)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
2α2δS ′

2S2

3∏
q=1

δT ′
q TqδT ′

12T12 (−1)S3+S12+S[(2S ′
12 + 1)(2S3 + 1)]1/2

{S12 S ′
12 1

S ′
3 S3 S

}
〈α3S3T3||D(3)†||α′

3S ′
3T3〉

×(−1)S
′
1+S12+S2+1[(2S ′

1 + 1)(2S12 + 1)]1/2
{S ′

12 S12 1
S1 S ′

1 S2

}
〈α′

1S ′
1T1||D(1)†||α1S1T1〉, (A12)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(2)† · D(3)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
1α1δS ′

1S1

3∏
q=1

δT ′
q TqδT ′

12T12 (−1)S3+S12+S [(2S ′
12 + 1)(2S3 + 1)]1/2

{S12 S ′
12 1

S ′
3 S3 S

}
〈α3S3T3||D(3)†||α′

3S ′
3T3〉

×(−1)S
′
12+S1+S2+1[(2S ′

2 + 1)(2S12 + 1)]1/2
{S ′

12 S12 1
S2 S ′

2 S1

}
〈α′

2S ′
2T2||D(2)†||α2S2T2〉, (A13)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(3)† · D(1)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
2α2δS ′

2S2

3∏
q=1

δT ′
q TqδT ′

12T12 (−1)S
′
3+S ′

12+S ′
[(2S12 + 1)(2S ′

3 + 1)]1/2
{S ′

12 S12 1
S3 S ′

3 S ′

}
〈α′

3S ′
3T3||D(3)†||α3S3T3〉

×(−1)S1+S ′
12+S ′

2+1[(2S1 + 1)(2S ′
12 + 1)]1/2

{S12 S ′
12 1

S ′
1 S1 S2

}
〈α1S1T1||D(1)†||α′

1S ′
1T1〉, (A14)

〈α′
1S ′

1T ′
1 ; α′

2S ′
2T ′

2 , S ′
12T ′

12; α′
3S ′

3T ′
3 ;S ′T ′||D(3)† · D(2)||α1S1T1; α2S2T2, S12T12; α3S3T3;ST 〉

= δS ′SδT ′T δα′
1α1δS ′

1S1

3∏
q=1

δT ′
q TqδT ′

12T12 (−1)S
′
3+S ′

12+S ′
[(2S12 + 1)(2S ′

3 + 1)]1/2
{S ′

12 S12 1
S3 S ′

3 S ′

}
〈α′

3S ′
3T3||D(3)†||α3S3T3〉

×(−1)S12+S ′
1+S ′

2+1[(2S2 + 1)(2S ′
12 + 1)]1/2

{S12 S ′
12 1

S ′
2 S2 S1

}
〈α2S2T2||D(2)†||α′

2S ′
2T2〉. (A15)

For any j orbit, within the OST (8) seniority-zero subspace, the “pseudo”-spin and isospin reduced matrix elements of AS0T0†,
where P† = A01† and D† = A10†, can be expressed as [19,20]

〈(�, 0)nσ ′ST ||AS0T0†||(�, 0)n′σS ′T ′〉

= δn′n−2
1

2

(
δσ ′σ+1

√
σ ′(� − σ ′ + N + 2)(� + σ ′ − N + 4)

σ ′ + 2
+ δσ ′σ−1

√
(σ ′ + 4)(� + σ ′ + N + 6)(� − σ ′ − N )

σ ′ + 2

)

×
〈
[σσ ] [11]
S ′T ′ S0T0

∣∣∣∣[σ ′σ ′]
ST

〉
, (A16)

where N = � − n
2 , and 〈[σσ ] [11]

S ′T ′ S0T0
|[σ

′σ ′]
ST

〉 is the SU(4) ⊃ SUS (2) ⊗ SUT (2) isoscalar factors [35] with

〈
[σσ ] [11]
S ′T ′ S0T0

∣∣∣∣[σ ′σ ′]
ST

〉
= −

√
(S + 1)(σ − S + T + 2)(σ − S − T + 1)

2(σ + 1)(σ + 2)(2S + 1)
δS ′S+1δT ′T δS01δT00δσ ′σ+1

−
√

(T + 1)(σ + S − T + 2)(σ − S − T + 1)

2(σ + 1)(σ + 2)(2T + 1)
δS ′SδT ′T +1δS00δT01δσ ′σ+1

+
√

T (σ + S + T + 3)(σ − S + T + 2)

2(σ + 1)(σ + 2)(2T + 1)
δS ′SδT ′T −1δS00δT01δσ ′σ+1
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+
√
S (σ + S + T + 3)(σ + S − T + 2)

2(σ + 1)(σ + 2)(2S + 1)
δS ′S−1δT ′T δS01δT00δσ ′σ+1

+
√

(S + 1)(σ + S − T + 2)(σ + S + T + 3)

2(σ + 2)(σ + 3)(2S + 1)
δS ′S+1δT ′T δS01δT00δσ ′σ−1

−
√

(T + 1)(σ − S + T + 2)(σ + S + T + 3)

2(σ + 2)(σ + 3)(2T + 1)
δS ′SδT ′T +1δS00δT01δσ ′σ−1

+
√

T (σ − S − T + 1)(σ + S − T + 2)

2(σ + 2)(σ + 3)(2T + 1)
δS ′SδT ′T −1δS00δT01δσ ′σ−1

−
√
S (σ − S − T + 1)(σ − S + T + 2)

2(σ + 2)(σ + 3)(2S + 1)
δS ′S−1δT ′T δS01δT00δσ ′σ−1. (A17)

By using Eq. (A16), the quantities appearing in Eqs. (A2) and (A9) can be expressed explicitly as∑
n′′

i σ ′′
i T ′′

i

〈�in
′
iσ

′
i SiTi||P(i)†||�in

′′
i σ

′′
i SiT

′′
i 〉〈�iniσiSiTi||P(i)†||�in

′′
i σ

′′
i SiT

′′
i 〉

= δnin′
i
δσ ′

i ,σi−2

√
(σi + Si + Ti + 2)(σi + Si − Ti + 1)(σi − Si + Ti + 1)(σi − Si − Ti )

1024 (σi + 2)(σi + 1)2 σi

×
√

(ni − 2σi + 4)(ni + 2σi + 8)(4�i − ni + 2σi + 8)(4�i − ni − 2σi + 4)

+ δnin′
i
δσ ′

i ,σi+2

√
(σi + Si + Ti + 4)(σi + Si − Ti + 3)(σi − Si + Ti + 3)(σi − Si − Ti + 2)

1024 (σi + 2)(σi + 3)2 (σi + 4)

×
√

(ni − 2σi )(ni + 2σi + 12)(4�i − ni + 2σi + 12)(4�i − ni − 2σi ) + δnin′
i
δσ ′

i ,σi

× (σi + 3)(2σi + ni + 8)(4�i − ni − 2σi + 4)(σ 2
i + σi −S2

i −Si + T 2
i + Ti ) + (σi + 1)(ni − 2σi )(4�i + 2σi − ni + 12)

(
σ 2

i + 7σi −S2
i −Si + T 2

i + Ti + 12
)

32(σi + 1)(σi + 2)(σi + 3)
,

(A18)
∑

n′′
i σ ′′

i S ′′
i

〈�in
′
iσ

′
i SiTi||D(i)†||�in

′′
i σ

′′
i S ′′

i Ti〉〈�iniσiSiTi||D(i)†||�in
′′
i σ

′′
i S ′′

i Ti〉

= −δnin′
i
δσ ′

i ,σi−2

√
(σi + Si + Ti + 2)(σi + Si − Ti + 1)(σi − Si + Ti + 1)(σi − Si − Ti )

1024 (σi + 2)(σi + 1)2 σi

×
√

(ni − 2σi + 4)(ni + 2σi + 8)(4�i − ni + 2σi + 8)(4�i − ni − 2σi + 4)

− δnin′
i
δσ ′

i ,σi+2

√
(σi + Si + Ti + 4)(σi + Si − Ti + 3)(σi − Si + Ti + 3)(σi − Si − Ti + 2)

1024 (σi + 2)(σi + 3)2 (σi + 4)

×
√

(ni − 2σi )(ni + 2σi + 12)(4�i − ni + 2σi + 12)(4�i − ni − 2σi ) + δnin′
i
δσ ′

i ,σi

× (σi + 3)(2σi + ni + 8)(4�i − ni − 2σi + 4)
(
σ 2

i + σi +S2
i +Si − T 2

i − Ti
) + (σi + 1)(ni − 2σi )(4�i + 2σi − ni + 12)

(
σ 2

i + 7σi +S2
i +Si − T 2

i − Ti + 12
)

32(σi + 1)(σi + 2)(σi + 3)
.

(A19)

Though the expressions of the diagonal parts of the reduced matrix elements are quite different, it can be checked that Eqs. (A18)
and (A19) are consistent with the results shown in Ref. [22], in which some typos of Ref. [19] were corrected. The above results
are also valid in the OLST (8) model with � = 2l + 1 for a given l orbit.

2. Matrix elements of the single-particle energy term in the OLST (8) model

In the OLST (8) model, the single-particle energy term can be expressed as∑
i

∑
ji m mt

ε ji a†
jimtmt

a jimtmt =
∑

i

∑
ji

ε ji

√
(2t + 1)(2 ji + 1)

(
a†

(li s) ji t × ã(li s) ji t
)00

00
=

∑
i

U 00(i), (A20)

where s = t = 1/2 are the spin and the isospin of the valence nucleons, respectively, and i runs over all l orbits considered, which
obviously is a total angular momentum and isospin scalar in the j-coupling scheme. Because the orbital angular momentum is
always zero, the basis vector |α1S1T1; α2S2T2; ST 〉 in the OLST (8) tensor product subspace is equivalent to the corresponding one
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in the j-coupling scheme,

|α1S1T1; α2S2T2; ST 〉 ≡ |α1(0S1)J1 = S1, T1; α2(0S2)J2 = S2, T2; J = S, T 〉, (A21)

where αi ≡ {ni, σi}. Therefore, the reduced matrix elements of the angular momentum and the isospin scalar in the ith l orbit,
U 00(i), can be expressed as

〈α′
1S′

1T ′
1 ; α′

2S′
2T ′

2 ; S′T ′||U 00(i)||α1S1T1; α2S2T2; ST 〉 = δS′SδT ′T

2∏
q=1

δTqT ′
q
δSqS′

q

2∏
q′ �=i

δα′
q′αq′

〈
α′

i (0Si )SiTi||U 00(i)||αi(0Si )SiTi
〉
. (A22)

The reduced matrix element 〈α′
i (0Si )SiTi||U 00(i)||αi(0Si )SiTi〉 can further be expressed as

〈α′
i (0Si )SiTi||U 00(i)||αi(0Si )SiTi〉

=
∑

ji

ε ji (2 ji + 1)
∑

α′′
i S′′

i T ′′
i J ′′

i

2J ′′
i + 1

2li + 1

{
ji s li
S′′ J ′′

i Si

}2

〈α′
i0SiTi||a†

list
||α′′

i liS
′′
i T ′′

i 〉〈αi0SiTi||a†
list

||α′′
i liS

′′
i T ′′

i 〉

=
∑

ji

ε ji
2 ji + 1

(2li + 1)(2s + 1)

∑
α′′

i S′′
i T ′′

i

〈α′
i0SiTi||a†

list
||α′′

i liS
′′
i T ′′

i 〉〈αi0SiTi||a†
list

||α′′
i liS

′′
i T ′′

i 〉, (A23)

where the sum rule of the 6 j-symbol for J ′′
i is used. Because a†

list
is the O(8) (1/2) ≡ ( 1

2 , 1
2 , 1

2 , 1
2 ) tensor operator, therefore α′′

i

must belong to the O(8) seniority-one irrep (�i − 1
2 ) ≡ (�i − 1

2 , 1
2 , 1

2 , 1
2 ). Thus, by using the Racah factorization lemma, the

reduced matrix element 〈αi0SiTi||a†
list

||α′′
i liS′′

i T ′′
i 〉 can further be expressed as

〈αi0SiTi||a†
list

||α′′
i liS

′′
i T ′′

i 〉 = δn′′
i ni−1

〈
�i|||a†

li
|||

(
�i − 1

2

)
, li

〉〈
(�i − 1/2) (1/2)
ni − 1 [σ ′′

i ] 1[1]

∣∣∣∣ �i

ni [σiσi]

〉〈
[σ ′′

i ] [1]
S′′

i T ′′
i s t

∣∣∣∣[σiσi]
Si Ti

〉
, (A24)

where [σ ′′
i ] stands for the possible SU(4) irrep involved, and the O(8) single-particle reduced matrix element is given by [27]〈

�|||a†
li
|||(� − 1

2

)
, li

〉 = −
√

4(2li + 1). (A25)

After substituting Eq. (A24) into Eq. (A23) and summing over n′′
i , S′′

i , and T ′′
i , Eq. (A23) can be simplified as

〈α′
i (0Si )SiTi||U 00(i)||αi(0Si )SiTi〉 = δσ ′

i σiδn′
ini

∑
ji

ε ji 2(2 ji + 1)
∑
[σ ′′

i ]

〈
(�i − 1/2) (1/2)
ni − 1 [σ ′′

i ] 1[1]

∣∣∣∣ �i

ni [σiσi]

〉2

. (A26)

Finally, using the single-particle isoscalar factors of O(8) ⊃ U(4) shown in Table 3 of Ref. [27], one obtains

〈α′
i (0Si )SiTi||U 00(i)||αi(0Si )SiTi〉 = δσiσ

′
i
δn′

ini

∑
ji

ε ji
(2 ji + 1)ni

2�i
, (A27)

where ni ≡ nli is the number of valence nucleons in the li orbit. By substituting Eq. (A27) into Eq. (A22), the final result is used
in Sec. IV for the single-particle energy term in the OLST (8) model.
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