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Nuclear energy level complexity: Fano factor signature of chaotic behavior of nearest-neighbor
time-series analysis
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Background: The Fano factor is used to characterize statistical noises, in quantum optics to determine correla-
tions and anticorrelations, in transport theory to characterize the limit of quantum chaos experienced by electrons
in a mesoscopic cavity. However, to our knowledge, it has not been used in nuclear physics to study the spectral
fluctuations.
Purpose: In the present contribution, we applied the square root of the Fano factor ( f̂ ) to random matrix theory
and to the energy level statistics of the nuclear excitation spectrum to determine if the Fano factor can be used to
study nuclear energy spectra distributions.
Methods: We studied the fluctuation of the excited states of 48Ca, 48Ti, and 46Ti with symmetry JP = 3+ as well
as the Wigner distribution and the Fourier power spectrum of the energy level spacings for different quadrupole
interactions so we can determine when we have a chaotic distribution. Later on we compared with the Fano
factor of the same distributions.
Results: The Fano factor agrees with that obtained by the other methods. We show that f̂ = 0.5 corresponds to
quantum chaos for the energy levels in the nuclear spectra.
Conclusions: The Fano factor can be used in nuclear physics (and other areas of science) to determine quantum
chaos.
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I. INTRODUCTION

Our limited capacities on the prediction of complex dy-
namic systems have led us to study the behavior of their
fluctuations in order to obtain more information about their
complexity. In the last century several methods have been
developed to classify and determine them, such as the Fano
factor, the second-order correlation function, the Wigner dis-
tribution, and the Fourier power spectrum, for example. Using
these methods the fluctuations can be classified as the well
known Brown noise, Poisson noise, or chaotic noise. It is
important to remark that limitations inherent to each method
have made it difficult to study the types of noises with more
than one or two methods. In particular, the quantum chaotic
noise of nuclear spectra has been studied by the Wigner distri-
bution [1–4], by the random matrix theory (RMT) [5–8], and,
most recently, by the Fourier power spectrum [9–11]. Here
we will explore if the Fano factor can be used also to study
quantum chaotic noise of nuclear spectra.
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The Fano factor [12,13], defined as the ratio of the variance
to the average number of events in a defined time interval, is
normally used to study the correlation of identical events that
come from certain types of phenomena. Using this method the
fluctuations can be classified as correlated, uncorrelated, and
anticorrelated, which correspond to super-Poissonian, Pois-
sonian, and sub-Poissonian noises, respectively. The noise
associated to the appearance of individual uncorrelated events
is known as shot noise [14]. The magnitude of this noise
grows above the shot noise for correlated events and decreases
below the shot noise for anticorrelated events. The value of
the Fano factor is F = 1 for shot noise and F = 2 for twin
uncorrelated events. An example of twin uncorrelated events
are the statistics associated to the detection of pairs of particles
(electrons or photons) appearing randomly. The absence of
noise is given by F = 0, which indicates that identical events
in the particle number always appear at the same time interval,
i.e., with a perfect anticorrelation.

The Fano factor has been used in several areas of science
such as the study of electrical spikes in neuronal activity
[15,16], spanning of earthquakes [17], and chemical reac-
tions [18], among other applications. Additionally, it has been
widely used in quantum optics, where the square root of the
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Fano factor is applied [19] to characterize the type of photon
source through the fluctuations in the average number of pho-
tons, n̄:

f̂ = σn√
n̄
, (1)

where σn is the root mean square. It is well known that f̂P = 1
for series that follow Poisson distribution, such as laser time
series and 0 � f̂Q < 1 for nearly identical events, like quan-
tum light source time series. The Fano factor has been also
used to study quantum chaos. The first studies that relate a
distinct value of the Fano factor with quantum chaos were
performed on the electronic transport theory in mesoscopic
cavities [20–25], where it was established that quantum chaos
corresponds to F = 1/4. To our knowledge, the Fano factor
has not been used to study the fluctuations of nuclear energy
level spacings.

In this article we show that the Fano factor can be used
as a criterion to determine quantum chaos statistics in atomic
nuclei. We will show that a signature of quantum chaos in the
cases of 46Ti, 48Ti, and 48Ca is f̂Q ≈ 1/2, in agreement with
ballistic billiards theory. In fact we use the most simple form
of the Fano factor shown in Eq. (1).

The organization of this article is the following: We obtain
the energy spectra for 46Ti, 48Ti, and 48Ca, then we apply the
Wigner and Poisson surmises to the fluctuations of nuclear en-
ergy level spacings for nearest-neighbors. In the next section,
we make a similar analysis using the Fourier power spectrum
method. Finally we apply the Fano factor and we compare the
three methods for the description of quantum chaos in order
to outline the efficacy of the Fano factor method.

II. NUCLEAR ENERGY LEVELS
AND THE WIGNER SURMISE

Here we studied the fluctuations of the excited states of
48Ca, 48Ti, and 46Ti with symmetry JP = 3+ using the shell
model calculation [26,27] in the full p f shell. This was
achieved using the schematic Hamiltonian

ĤSM = Ĥm − χQ̂ · Q̂ + gPP̂ · P̂, (2)

which contains a monopolar field (Ĥm) [28,29] and two 2-
body interactions, one of a pairing type (P̂) and another of a
quadrupole type (Q̂). The pairing interaction was applied with
a coefficient gP ≈ 0.45, whereas the quadrupole interaction
was modulated by a parameter χ , which can be modified to
span the limits of Poisson and chaotic statistics.

Figure 1 shows the results for the diagonalization corre-
sponding to a transition in the quadrupole interaction from
χ = 0.005 to 0.25 for 46Ti, 48Ti, and 48Ca.

The individual energy sequences Ei were unfolded, in such
a way that the system-dependent global trend is excluded and
only the local fluctuations εi around the average trend are re-
tained [30]. Then, the normalized energy level spacings were
calculated, si = εi+1 − εi, with i = 1, . . . , N − 1, and the dis-
tribution P(s) of these normalized energy level spacings was
obtained for different values of the quadrupole-quadrupole
interaction χ . It is important to note that 48Ca has very well

(a)

(b)

(c)

FIG. 1. Eigenvalue sequence Ei as function of the number of
states for (a) 46Ti, (b) 48Ti, and (c) 48Ca with J = 3 for different
quadrupole strengths (χ ). Discontinuous jumps in the energy se-
quences are found for weak interactions, but seem more intense in
48Ca.
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defined jumps for weak interactions [see the inset in Fig. 1(c)].
This behavior is perceptible for 46–48Ti [insets in Figs. 1(a) and
1(b)]. The jumping behavior in the energy distribution comes
from a bunching effect of the energy levels that we will discuss
later.

In Fig. 2 we show the nearest-neighbor distributions
P(s) as function of the energy level spacing s for different
quadrupole-quadrupole interactions for (a) 46Ti, (b) 48Ti, and
(c) 48Ca. In this figure we can see clearly that the behav-
ior of P(s) for values χ < 0.01 in the three nuclei agrees
best with the Poisson distribution, whereas P(s) behavior for
χ > 0.01 agrees with the Wigner distribution for the 48Ca
nucleus. However, for 46–48Ti, the statistics seem to be in the
middle, i.e., between Poisson and Wigner distributions. In
particular for 46Ti the distribution approximates more closely
the Poisson distribution than the Wigner distribution for all
interactions when compared with 48Ti. This indicates that
the number of valence nucleons affects the distribution P(s).
Furthermore, when comparing 48Ti with 48Ca we observe that
the interplay between proton and neutron shells, and even
between shells of the same isospin number, also modifies the
distributions of the energy level spacing.

III. THE FOURIER POWER SPECTRUM (PS) METHOD

We obtained the fluctuations of the nuclear energy spec-
tra by considering the time series

∑n
i=1 (si − 〈s〉) = ∑n

i=1 wi,
where the quantity wi represents the fluctuations of the ith
spacing si from its mean value 〈s〉 and where the order number
n = 1, . . . , N − 1 takes the place of time. Following this line
of thought [9], we calculated its Fourier transform. If the sys-
tem follows a power law, there exists a relationship between
the density of frequencies and the power β: PS = 1/ f β , where
f is the frequency. The classical limit (Poisson distribution)
and the chaotic limit (Wigner distribution) correspond to β =
2 and β = 1, respectively.

Figure 3 shows the power β as function of the χ parameter
of the Q̂ · Q̂ interaction, for the three nuclei in consideration.
The results are very similar to the previous conclusions for the
statistics of nearest-neighbor energy level spacings. For weak
interactions all nuclei follow the Poisson distribution, but for
high interactions there are several differences. The Fourier
power spectrum of 48Ca is closer to 1/ f noise, while 46Ti and
48Ti are closer to 1/ f 2. However, 48Ti has a faster transition
from β = 2.2 to β ≈ 1.3. Furthermore, the β for 48Ti is closer
to chaotic behavior than Poisson for high Q̂ · Q̂ interactions,
while the β for 46Ti for the same values is closer to Poisson
behavior than chaotic. It is also important to note that 48Ti
drops to Poisson behavior faster than 48Ca. In general, the
information obtained from the nearest-neighbor distribution
method is confirmed by the PS method.

All results till now indicate we have nuclear systems com-
posed by nucleons filling energy levels following the rules
of the harmonic oscillator with the corresponding degrees
of degeneration. The degeneration is broken for two kind
of interactions, for one and two bodies. These interactions
produce repulsion among levels; then if these interactions
are strong enough, neighboring levels are repelled. This is
different between Poisson and Wigner, because the Poisson
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FIG. 2. Nearest-neighbor distributions P(s) as function of the
energy level spacings si for different quadrupole interactions χ , for
(a) 46Ti, (b) 48Ti, and (c) 48Ca. Only 48Ca fits very well the Wigner
surmise.

distribution corresponds to 1/ f 2, while Wigner corresponds
to 1/ f noises, respectively.
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FIG. 3. Fourier power spectrum analysis for 48Ca, 48Ti, and 46Ti
as function of the intensity χ of the Q̂ · Q̂ interaction.

IV. FANO FACTOR

We also calculated the square root of the Fano factor f̂ =
σs/

√
s̄ for the unfolded nuclear energy levels, for different

quadrupole-quadrupole interactions. In Fig. 4 we show f̂ as
function of the intensity χ . For χ � 0.04 the Fano factor of
48Ca is f̂ = 0.52 ± 0.04, whereas the Fano factor is f̂ = 0.67
and f̂ = 0.7 for 48Ti and 46Ti, respectively, with similar uncer-
tainties. As we stated before, f̂ = √

F = 1/2 corresponds to
quantum chaos. Therefore, the 48Ca behavior for large values
of χ is closer to quantum chaotic behavior than 48Ti and
46Ti behaviors. These results imply consistency between the
different methods: nearest-neighbor energy level distribution,
the Fourier power spectrum, and the Fano factor.

The behavior of the Fano factor for χ � 0.04 shows a
statistic transition for each nucleus. 46–48Ti start from f̂ =
2 for χ ≈ 0.01, which means the presence of energy level
bunching or the remainder of the broken quantum oscillator
energy degeneration. In these terms, for weak interactions
48Ca presents a larger energy level bunching than 46–48Ti.

With the objective to complete the generalization of the the
criterion f̂ = 1/2 for quantum chaos, we applied the Fano
factor method to some emblematic ensembles of the RMT.
We generated ensembles of ten random matrices of dimen-
sion 2000 × 2000 for the following symmetries: Gaussian
diagonal (GDE) and Gaussian orthogonal (GOE) ensembles.
The distributions of nearest-neighbor energy level spacings
of GDE and GOE correspond with the Poisson limit and the
chaotic limit, respectively.
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FIG. 4. Fano factor f̂ as function of the quadrupole intensity χ

for the the three nuclei 46–48Ti and 48Ca.

Applying Eq. (1) to the two ensembles, we obtain the
following results. For the GDE ensemble, using ten matrices,
we obtained the value f̂GDE = 1.004 ± 0.003, which corre-
sponds to the Poisson limit. For the GOE ensemble we found
f̂GOE = 0.54 ± 0.01, which confirms our conjecture that it
corresponds to quantum chaos.

V. CONCLUSION

We have shown that quantum chaos behavior in nuclear
physics using the definition of the Fano factor is consistent
with the theory of electronic transport (ballistic billiards),
RMT and other surmises such as Wigner and Poisson den-
sities, and the Fourier power spectrum method; therefore we
can speculate that f̂ = 1/2 can represent another criterion
to measure quantum chaos in atomic nuclei. Maybe in the
future we can obtain a more complete theory where the Fano
factor will depend in the interaction parameter χ . The result
presented in this article could be important for other areas of
science where the Fano factor is commonly used and do not
know how interpret Fano factor values lower than 1.
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