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Extrapolating lattice QCD results using effective field theory
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Lattice simulations are the only viable way to obtain ab initio quantum chromodynamics (QCD) predictions
for low energy nuclear physics. These calculations are done, however, in a finite box and therefore extrapolation
is needed to get the free space results. Here, we use nuclear effective field theory (EFT), designed to provide a
low energy description of QCD using baryonic degrees of freedom, to extrapolate the lattice results from finite
to infinite volumes. To this end, we fit the EFT to the results calculated with nonphysical high quark masses and
solve it with the stochastic variational method in both finite and infinite volumes. Moreover, we perform similar
EFT calculations of the physical point and predict the finite-volume effects to be found in future lattice QCD
calculations for atomic nuclei with mass number A � 4.
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I. INTRODUCTION

At low energies, characterizing the nuclear structure, quan-
tum chromodynamics (QCD), the fundamental theory of
strong interactions, is nonperturbative. The only feasible way
to obtain ab initio QCD predictions for nuclear physics is
through lattice simulations of QCD, dubbed LQCD [1].

These calculations are done via numerical evaluation of
path integrals on a discrete space- and time-like lattice and
summation over all possible paths. When the volume of the
lattice is taken to be infinitely large and its sites infinitesimally
close to each other, the continuum is recovered.

After years of development, LQCD simulations are ful-
filling their promise of calculating static and dynamical
quantities with controlled approximations. Progress has been
made to a point where meson and single-baryon properties
can be predicted quite accurately; see, e.g., [2–4]. However,
the complexity and peculiar fine-tuning aspects in nuclear
systems make this fundamental approach significantly more
difficult relative to the extraction of single-baryon observ-
ables. For a recent reviews, see, e.g., [5,6].

Currently, a few LQCD collaborations are studying multi-
baryon systems, including HAL QCD [7,8], PACS [9,10],
NPLQCD [11–13], CalLat [14], and the Mainz group [15].
Most teams try to extract the nuclear binding energies directly
from the lattice simulations. The HAL QCD collaboration
takes a different approach, trying to extract the nuclear
interaction from the lattice simulation, and then calculate ob-
servables using standard nuclear physics techniques with the
resulting nucleon-nucleon potential. At this point, HAL QCD
results are different from the results of the other groups.

A more common approach to study nuclear physics is
based on effective field theories (EFTs). In nuclear EFTs,
baryons and mesons replace the quarks and gluons as
the fundamental degrees of freedom. This framework pro-
vides a practical theory to analyze nuclear physics while

incorporating the essential features of QCD. For low energy
aspects of nuclear physics, like the description of light nuclei,
even the mesons are not needed, and one is left with baryonic
EFT, commonly referred to as pionless EFT, which will be
employed here. This EFT is especially appropriate in a heavy
pion mass world, where pion dynamics are suppressed.

The first application of EFT to multibaryon LQCD faced
the challenge of extending LQCD results to study the binding
energies of larger A > 4 nuclei. A pionless EFT was fitted to
the LQCD outcome and then used to predict the ground-state
energies of 5He and 6Li [16], as well as 16O [17].

Here, we would like to use similar EFT to deal with another
aspect of nuclear LQCD calculations. LQCD calculations
necessarily take place in finite volumes, thus affecting their
infrared properties. For two-body systems, it is fair to claim
that the implications of the finite volume on the spectrum are
well understood through the Lüscher formalism [18,19]. The
formalism pertinent for systems beyond the two-body system
has not yet reached this level of maturity, while significant
progress is achieved in recent years, mainly in the three-body
system, see, e.g., [20–26].

The complexity of the problem calls for an alternative road
map towards the determination of infinite-volume quantities.
Such an approach could be constructing a nuclear EFT having
the same boundary conditions as LQCD. This way the EFT is
built directly matching the LQCD results in a finite lattice, and
the extrapolation to the infinite lattice can be easily carried
out through the nuclear EFT. Doing so, LQCD calculations
may be performed with smaller lattice volumes, giving more
accurate results, leaving the extrapolation to be done by the
EFT.

Here, we use the NPLQCD results for pion mass of mπ =
806 MeV [11] to calibrate a leading order pionless EFT at
finite box size and extrapolate the results toward the free space
limit. Moreover, we perform the inverse procedure for the case
of physical pion mass, i.e. we fit our EFT to the experimental
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results in the continuum and then predict the finite-box effect
to be calculated in future LQCD calculations. Calculations are
performed for bound nuclei with mass number A � 4.

II. THEORY

As mentioned above, LQCD calculations are done in a
finite volume, thus finite size effect should be corrected in
order to extract the relevant physical quantities.

The common approach to do so is based on Lüscher’s work
[18,19], which solves the two-body problem in a large box.
This way one can get the first order correction to the free-
space binding energy,

EB − EL = −24π |A|2 e−κL

mL
+ O(e−√

2κL ), (1)

where EB is the free space binding energy, EL is the binding
energy on a lattice with size L, |A|2 ∼ 1 is a normalization
constant, and κ = √

mEB is the binding momentum. To utilize
Lüscher formula one has to calculate the binding energies for
a few lattice sizes and fit the results with Eq. (1) to extract the
free space parameters. Similar method enables the extraction
of free space scattering parameters from finite box bound
state calculations, avoiding the complication of dealing with
continuum states. Another method is to calculate in a single
lattice several boosted states differ by their total momentum.
Using the asymptotic solution of boosted states in a box, the
free space parameters can be extracted [27,28]. A twisted
boundary conditions were also applied and shown to give
better convergence [29].

The three-body case can be solved in some simple cases.
Based on that, several methods to correct the finite lattice
effects were developed [20–25]. The generalization of these
methods to larger systems is an open challenge.

Here, we would like to take a different path, relevant to ar-
bitrary particle number, based on the construction of a relevant
EFT which can be solved in any lattice size.

Effective field theories are a powerful tool to study the
low energy properties of a system whenever a separation of
scales exists between the energy scale of the process under
inspection and the typical scale of the underlying theory.

Weinberg [30] has formulated the idea that in order to cal-
culate low-energy observables of a given theory, it is sufficient
to write down the most general Lagrangian, whose form is
only limited by general properties like analyticity, unitarity,
and the symmetries of the theory under investigation. In the
case of QCD, it is Lorentz symmetry, parity, time reversal,
and charge conjugation. Chiral symmetry, which is an approx-
imated symmetry for the physical u and d quarks, does not
apply in our case of heavy quarks. The fields used as degrees
of freedom in this effective Lagrangian should be those which
are seen as asymptotic states in the regime one is interested
in. For low-energy nuclear physics, the relevant degrees of
freedom are the nucleons.

A general Lagrangian constructed this way contains an
infinite number of terms. The key ingredient to resolve this
obstacle is the scale separation mentioned above: Being only
interested in low-energy observables, one can assume that the

terms in the Lagrangian are ordered by a small parameter,
which is the ratio of the energy scales involved.

Pionless EFT is the resulting theory for baryon-baryon
interactions. It does not contain explicit pions only contact
interactions. The process of establishing the order of terms
in the EFT is called power counting. For pionless EFT it is
well known that the naive power counting, based on counting
powers of momentum, fails due to the emergence of Efimov
physics [31]. The three-body contact term is to be promoted
to leading order [32]; see, however, [33].

The relevant Lagrangian at leading order is, therefore,

L = N†

(
i∂0 + ∇2

2m

)
N − C0

2
(N†N )2 − C1

2
(N†σN )2

− D

6
(N†N )3, (2)

where N is the nucleon field operator, and C0, C1, and D
are the low-energy constants (LECs). This Lagrangian can be
supplemented with terms containing more fields and/or more
derivatives, which are subdominant. Since in this work we
focus on the leading order, such terms will be neglected in
the following.

Contact interactions are singular and therefore regulariza-
tion is needed; here, we use a Gaussian regulator g̃(p) =
exp[−(p/�)2] that suppresses momenta above an ultraviolet
cutoff �. Since the cutoff is not a physical quantity, the theory
observables have to be independent of it. This is achieved
via renormalization, i.e., by fitting the values of the LECs
C0 = C0(�), C1 = C1(�), and D = D(�) to a chosen set of
physical observables.

The leading order interaction in pionless EFT is to be
iterated, which is equivalent to solving the nonrelativistic
Schrödinger equation with the Hamiltonian

H = − 1

2m

∑
i

∇2
i +

∑
i< j

V2(ri j ) +
∑

i< j<k

V3(ri j, r jk ). (3)

Here,

V2(ri j ) = (C0 + C1σiσ j )g�(ri j ) (4)

is the two-body interaction,

V3(ri j, r jk ) = D
∑
cyc

g�(ri j )g�(r jk ) (5)

is the three-body interaction, g�(r) = �3

8π3/2 exp(−�2r2/4),
and

∑
cyc stands for cyclic permutation of {i, j, k}.

Putting our system in a box with periodic boundary condi-
tions, one has to solve the eigenvalue problem

HL�L = EL�L, (6)

where the subscript L denotes the lattice. On the lattice, the
wave function �L is to obey the periodic boundary conditions

�L(r1, r2, . . . ) = �L(r1 + n1L, r2 + n2L, . . . ) (7)

for arbitrary integers trios {n1, n2, . . .}. The Hamiltonian HL

is composed of the regular kinetic energy and the periodic
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potential VL given by

VL(r1, r2, . . .) =
∑

n1,n2,...

V (r1 + n1L, r2 + n2L, . . .) . (8)

For example, the x-axis component of the two-body potential
becomes

exp
[−�2x2

i j

/
4
] −→

∑
q

exp[−�2(xi j − qL)2/4],

where in principle the sum over q runs over all integers from
minus infinity to infinity. In practice, due to the short-range
nature of the interaction, far boxes are negligible and the sum
is limited to −Nbox � q � Nbox. We have verified that our
results are fully converged for Nbox = 5.

III. METHODS

To solve the N-body Schrödinger equation we first note
that with the leading order interactions (4), (5) spin and
isospin are good quantum number. Thus we can write the
wave function as a product of a spatial function times a spin
state χSSz (s) and an isospin state ξT Tz (t ) antisymmetrized to
ensure Fermi statistics. Here, s = (s1, s2, . . . , sA), and t =
(t1, t2, . . . , tA). To satisfy the periodic boundary conditions
we follow Ref. [34] and expand the spatial part of the wave
function using a correlated Gaussians basis. Using the abbre-
viations r = (r1, r2, . . . , rA) for the A-body coordinates, and
x = (x1, . . . , xA) for the x component (same for y, z) these
basis functions are written as a product of periodic functions
in the x, y, z directions:

GL(r) = GLx(x)GLy(y)GLz(z) . (9)

The x-component basis functions GLx (same for GLy, GLz) are
defined by symmetric positive definite A × A matrices Ax, a
positive definite diagonal matrix Bx, and a shift vector d =
(d1, . . . dN ),

GLx =
∑

nx

G(Ax, Bx, dx; x − Lnx ) (10)

with

G = exp
[− 1

2 xT Axx − 1
2 (x − d )T Bx(x − d )

]
, (11)

and nx = (n1, n2, . . . , nA), ni ∈ Z.
The desired solution for the Schrodinger equation is given

by

� =
∑

k

ck
(Ak, Bk, dk; r, s, t), (12)

where


k = Â[GL(Ak, Bk, dk; r)χSSz (s)ξT Tz (t )] (13)

and Â is the antisymmetrization operator. The linear param-
eters ck are obtained by solving the generalized eigenvalue
problem Hc = ENc, where Hi j = 〈
i|H |
 j〉 are the Hamil-
tonian matrix elements, and Ni j = 〈
i|
 j〉 the normalization
matrix elements. One of the advantages of the Gaussian basis
is that the matrix elements can be calculated analytically [34].

TABLE I. Light nuclei binding energies (in MeV) calculated in
Ref. [11] using LQCD with mπ = 806 MeV for different lattice size
L (in fm).

system L = 3.4 L = 4.5 L = 6.7

nn 17.8 ± 3.3 15.1 ± 2.8 15.9 ± 3.8
2H 25.4 ± 5.4 22.5 ± 3.5 19.5 ± 4.8
3H 65.6 ± 6.8 63.2 ± 8.0 53.9 ± 10.7
4He 115 ± 23 107 ± 25 107 ± 25

To optimize our basis we use the stochastic variational
method (SVM) [35]. To add a function to our basis, the el-
ements of Ak , Bk , and dk are chosen randomly one by one,
and the values which give the lowest energy are taken.

IV. RESULTS

A. mπ = 806 MeV

First, we would like to deal with the results of the
NPLQCD collaboration [11]. These calculations assume
SU (3) symmetry, where the mass of the u and d quarks were
enlarged to the value of the s quark mass. The resulting pion
mass was calculated to be mπ = 806 MeV and the nucleon
mass was m = 1634 MeV.

Calculations were done for three lattice sizes, L ≈ 3.4 fm,
4.5 fm, and 6.7 fm. The masses of light nuclei and hypernuclei
with mass number A � 4 and strangeness |s| � 2 were calcu-
lated. Here, we focus on the nuclei, leaving hypernuclei for
future publication.

Given a cutoff value, three data points are needed to cali-
brate the EFT. Here, we choose to use the binding energies of
the deuteron, dineutron (which is found to be bound for such
heavy pion) and triton.

To verify that our results are cutoff independent we per-
form calculations with different cutoff values (from 2 fm−1 to
8 or 10 fm−1). The results of the largest cutoff values, which
are fully converged, are shown hereafter.

Table I summarizes the NPLQCD collaboration results
[11] for the finite-volume binding energies of nuclei with
A � 4 calculated at pion mass of mπ = 806 MeV. three ener-
gies were calculated for each state, corresponding to zero total
momentum as well as to the two lowest boosted states. For the
largest lattice, we use all three states, while for the two smaller
lattices the boosted states deviate from the ground state, and
therefore we did not use them. We checked, however, that our
results do not change substantially when all states are taken
into account.

TABLE II. The low energy constants of Eqs. (4),(5) fitted to the
binding energies of Ref. [11] for mπ = 806 MeV, for different cutoff
values �.

� (fm−1) 2 4 6 8 10

C0(MeV fm3) −773 −277 −161 −113 −86.1
C1(MeV fm3) −30.1 −5.33 −2.13 −1.13 −0.71
D(MeV fm6) 1556 146 37.0 14.6 7.24
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FIG. 1. The dineutron ground state energy as a function of the
lattice size. EFT results (for � = 10 fm−1) are shown in blue curve,
and the NPLQCD results used for fitting are shown in black squares.
The red square shows Ref. [11] estimate for infinite lattice.

Solving the Schrödinger equation for each box size, we
find the LECs that best fit the LQCD results of Table I,
employing least-squares fit. The resulting LECs for several
cutoff values are summarized in Table II.

The continuum binding energies can now be predicted by
solving the Schrödinger equation in the limit of L −→ ∞.

Two systems are bound in the nuclear two-body sector,
namely the deuteron and the dineutron. The dineutron binding
energy calculated from the EFT is shown in Fig. 1 as function
of lattice size. The NPLQCD results, which were used to
fit our EFT, are also shown. The band stands for the error
estimation of the EFT. The main source of the error is the
uncertainty and scatter of the LQCD results.

FIG. 2. The deuteron ground state energy as a function of the
lattice size. EFT results (for � = 10 fm−1) are shown in blue curve,
and the NPLQCD results used for fitting are shown as black squares.
The red square shows Ref. [11] estimate for infinite lattice.

FIG. 3. The triton ground state energy as a function of the lattice
size. EFT results (for � = 10 fm−1) are shown as a blue curve, and
the NPLQCD results used for fitting are shown as black squares. The
red square shows Ref. [11] estimate for infinite lattice.

In Fig. 2 we show the deuteron binding energy calculated
from the EFT, as well as the data points from LQCD used for
fitting. Also here the main source of error (shown as a band)
is the LQCD results.

Two bound states exist for nuclei in the three-body sec-
tor, namely 3H and 3He. Following the LQCD calculations,
we eliminate charge-symmetry breaking terms as well as
Coulomb forces and therefore their energies are degenerated.
The triton ground state energy is shown in Fig. 3 as a function
of the lattice size. Due to the deeper binding of the triton,
its wave function is more compact and therefore finite lattice
corrections are less important, as one can see comparing Fig. 3
to Figs. 1 and 2.

This effect is even more pronounced for the case of 4He,
which is deeply bound for heavy pions, as can be seen in
Fig. 4.

Our extrapolated L −→ ∞ results are summarized in
Table III and compared to the values of the largest lattice
which were taken as the infinite lattice limit in Ref. [11]. Our
infinite volume results are consistent with the NPLQCD ones
[11], to within one standard deviation. The errors associated
with our L → ∞ extrapolations are smaller due to the use of
more data points, associated with smaller error bars.

TABLE III. Light nuclei binding energies (in MeV) from the
largest lattice of Ref. [11] and extrapolated to to infinite lattice with
out EFT.

system Ref. [11] This work

nn 15.9 ± 3.8 13.8 ± 1.8
2H 19.5 ± 4.8 20.2 ± 2.3
3H 53.9 ± 10.7 58.2 ± 4.7
4He 107 ± 24 113 ± 10
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FIG. 4. The 4He ground state energy as a function of the lattice
size. EFT results (for � = 8 fm−1) are shown as a blue curve, and
the NPLQCD results used for fitting are shown as black squares. The
red square shows Ref. [11] estimate for infinite lattice.

B. Physical pion mass

In the near future, one would hope to see LQCD calculation
for the physical pion mass. Here, we try to predict the lattice
size corrections to the binding energies of light nuclei, which
may be utilized to choose the appropriate lattice size for such
calculations.

The dependence of the binding energy on the box size was
studied in Refs. [23,28,29] for the deuteron and in Ref. [23]
for the triton. Here, we compare our results for the deuteron
and triton to those of Ref. [23] and make the first calculation,
as far as we know, for 4He. Note, however, that the nuclear in-
teraction used in this work, which is LO pionless EFT, differs
form the one used in Ref. [23], LO χEFT. Both interactions
have two-body contact terms; however, while χEFT also has
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FIG. 5. The deuteron energy as a function of box-size for physi-
cal pion mass. The results of Ref. [23] (red squares) are compared to
our results (blue dots).
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FIG. 6. The triton energy as a function of box-size for physical
pion mass. The results of Ref. [23] (red squares) are compared to our
results (blue dots).

a one-pion exchange term, pionless EFT has an additional
three-body contact term.

The results for the deuteron are shown in Fig. 5. The
deuteron binding is very shallow, resulting in a state with large
spatial extent. Consequently, the deuteron binding energy is
converged to its asymptotic value only for very large lattices,
L � 20 fm. This emphasizes the importance of extrapolation
techniques for such calculations. Comparing our results to
those of Ref. [23], the results for large boxes seem identical, as
one would expect since the asymptotic regime is governed by
the binding momentum, see Eq. (1). Interestingly, for smaller
boxes the results are different, due to the different potential
used. This feature might be used to explore the short-range
part of the nuclear interaction from LQCD calculation in finite
lattices.

The results for the triton are shown in Fig. 6. Here, the
results converge faster to the infinite volume limit, and the
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FIG. 7. The 4He energy as a function of box-size for physical
pion mass.

044003-5



ELIYAHU, BAZAK, AND BARNEA PHYSICAL REVIEW C 102, 044003 (2020)

asymptotic value us retrieved at L � 12 fm. It is harder to
compare our results to those of Ref. [23] as they differ in
the asymptotic values. This is evident since pionless EFT has
three-body term which is used to fit the triton binding energy,
while χEFT has no additional degree of freedom at LO.

Finally, In Fig. 7 the 4He binding energy is shown as a
function of the lattice size. Here, the results converge even
faster to the infinite volume limit, and asymptotic results are
obtained at L � 8 fm.

V. CONCLUSION

The effect of the finite lattice size on the light nuclei
binding energies is explored by the construction of pionless
effective field theory. This theory, fitted to the LQCD results
for small lattices, is then used to extrapolate these results to
the infinite volume limit.

We study the results of the NPLQCD collaboration for pion
mass of 806 MeV and present values for the infinite lattice

limit. Our extrapolated binding energies are similar to those
extracted by the NPLQCD collaboration, albeit with smaller
error bars reflecting the use of more data points with better
accuracy.

With an eye on future LQCD calculations at the physical
pion mass, we predict the lattice size correction for light
nuclei, showing that he results are converged to the infinite
lattice size limit only at L � 20 fm for the deuteron, at L � 12
fm for the triton and at L � 8 fm for 4He. This emphasizes
the importance of proper techniques to extrapolate the results
from small lattices.
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