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Improved neutrino-nucleon interactions in dense and hot matter for numerical simulations
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Neutrinos play an important role in compact star astrophysics: neutrino heating is one of the main ingredients
in core-collapse supernovae, neutrino-matter interactions determine the composition of matter in binary neutron
star mergers and have among others a strong impact on conditions for heavy element nucleosynthesis, and
neutron star cooling is dominated by neutrino emission except for very old stars. Many works in the last decades
have shown that in dense matter medium effects considerably change the neutrino-matter interaction rates,
whereas many astrophysical simulations use analytic approximations which are often far from reproducing more
complete calculations. In this work we present a scheme which allows to incorporate improved rates for charged
current interactions into simulations and show as an example some results for core-collapse supernovae, where
a noticeable difference is found in the location of the neutrinospheres of the low-energy neutrinos in the early
post-bounce phase.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from a
binary neutron star (BNS) merger by the LIGO-Virgo collab-
oration in August 2017, the event GW170817, in coincidence
with the observation of a γ ray burst (GRB170817a) and
an electromagnetic counterpart established the beginning of
multimessenger astronomy [1]. Many additional detections
are expected including several BNS mergers, during current
and forthcoming campaigns by large interferometric gravita-
tional wave detectors. This rapidly evolving new astronomy
is revolutionizing the exploration of the universe by address-
ing fundamental questions such as the nature of gravity, of
dark matter, the origin of elements heavier than iron, and
of properties of dense matter in compact stars. A complete
understanding of these exciting observations will be achieved
once they can be successfully confronted to the predictions
of theoretical modeling for which still many questions remain
open, among others concerning neutrino interactions. The lat-
ter play an essential role for astrophysics of compact objects:

(1) The dynamics of BNS mergers only marginally depend
on neutrino interactions. However, ejecta composition
and nucleosynthesis conditions are very sensitive to
the neutrino treatment and neutrino interactions.

(2) The heating by neutrinos of the stalled shock wave
represents a crucial element for the dynamics of
core-collapse supernovae (CCSN), contributing to the
explosion mechanism
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(3) (Proto)neutron star cooling is dominated by neutrino
emission for millions of years.

Simulations of these processes are very expensive, so that
currently mostly analytic expressions for the relevant reaction
rates [2–5] are applied, which are, however, often based on
very crude approximations. Several corrections have been
added to the original expressions [2], such as weak magnetism
and recoil [6], nuclear structure corrections [7,8], effective
masses and chemical potentials for nucleons in dense mat-
ter [9–11], additional reactions [12,13], and superfluidity in
cooling neutron stars older than several minutes [14]. Sev-
eral authors have, however, pointed out since decades that
in dense matter different effects can additionally modify the
neutrino matter interaction rates and neutrino emissivities
by orders of magnitude, in particular nuclear correlations
[15–21]. (Special) Relativistic effects can play an important
role, too [22–24]. Most of the above discussed modifications
have been cast into correction factors to the original analytic
expressions for practical use in simulations. The NULIB li-
brary by O’Connor [25] provides the corresponding neutrino
opacities.

It is, however, not possible to provide analytic expressions
taking into account all known corrections. In view of the
computational effort, only a few simulations go indeed be-
yond the analytical expressions. In particular, the full phase
space has been considered in several PNS cooling simula-
tions [10,26] as well as for charged-current opacities in the
spherically symmetric CCSN simulations of Fischer et al.
[13] and the Garching group has implemented additionally
nuclear correlations following the simplified formalism of
Burrows and Sawyer [15,16], see Buras et al. [27], Hüde-
pohl et al. [28]. However, as for neutrino-nucleus reactions,
where already, for a long time, tabulated and accurate data
on selected nuclei from microscopic calculations accounting
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for nuclear correlations and thermal effects exist [29–34], it is
desirable that improved rates for neutrino-nucleon reactions
become more generally available. In Roberts and Reddy [24]
a first step has been performed in this direction, neutrino
opacities for charged current reactions with the full relativistic
phase space including mean field corrections are provided
via the NUOPAC library. In the present work we perform a
step further towards a complete neutrino toolkit, allowing
to provide state-of-the-art neutrino-matter interaction rates
directly applicable to simulations. As Roberts and Reddy
[24], we will concentrate on charged current neutrino-nucleon
interactions, i.e., neutrino absorption and creation. We will
stick to nonrelativistic kinematics, but in addition to the full
phase space, which is important at high densities [13,24], we
will include nuclear correlations via the so-called “random
phase approximation”(RPA). The impact of RPA correlations
on neutrino opacities has been studied in several works, see,
e.g., Refs. [16,17], but mostly only grey, i.e., neutrino energy
independent, correction factors to the above cited analytic
approximation have been implemented yet. As discussed in
Sec. II C, the importance of RPA correlations is, however, en-
ergy dependent and a density and temperature dependent shift
in reaction thresholds is induced. It is thus obvious that the
full physics cannot be included into a grey factor and we will
for the first time provide opacities with the full dependence on
neutrino energy Eν , baryon number density nB, temperature T ,
and electron fraction Ye.

We will consider thermodynamic conditions relevant for
BNS mergers, CCSN, and (proto)neutron star cooling dur-
ing the first minutes which are rather similar: hot and dense
nuclear matter with different asymmetries, i.e., proton to
neutron ratios. In the central and hot parts, matter is homo-
geneous, whereas in the outer regions, containing more dilute
and cold matter, nuclear clusters coexist with free nucleons.
Charged current neutrino-nucleon reactions thereby, together
with neutrino-nucleon scattering, not only control neutrino
diffusion and emission in the central part, but strongly in-
fluence the physics close to the neutrinospheres, too, which
is important for the dynamics and the characteristics of the
emerging neutrinos. Charged current reactions on nucleons
contribute critically to the heating of matter behind the shock
in a CCSN, too.

Since the aim of our work is to provide results for the
interaction rates going beyond the analytic approximations,
complete opacity data as function of Eν, nB, T , and Ye as cal-
culated within the present work can be found in tabular form
on the COMPOSE data base [35]1 together with the underlying
equation of state (EoS) data. It has been emphasized many
times that it is important to determine neutrino-nucleon inter-
actions coherently with the underlying EoS, i.e., employing
the same model for nuclear interactions, see, e.g., [17]. In
contrast to Roberts and Reddy [24] who provide routines and
Fischer et al. [13] who use a phase space integration “on
the fly” during spherically symmetric simulations, we have
chosen to directly provide opacity tables since the numerical
calculations to obtain the rates in RPA (and probably any

1https://compose.obspm.fr.

other scheme taking into account nuclear correlations) are
much more time consuming than the simpler phase space
integrations due to the existence of collective excitations in
the nuclear response, see, e.g., [36]. They have thus anyway
to be tabulated before they can be implemented into simula-
tions. We will show that our scheme can indeed be applied to
simulations and perform CCSN simulations with fully energy
dependent RPA correlations. The impact on the early post
bounce evolution is discussed.

The paper is organized as follows. In Sec. II, neutrino opac-
ities from charged current neutrino-nucleon interactions are
computed. After briefly recalling the formalism in Sec. II A,
we compute in Sec. II B the polarization function within dif-
ferent approximations devised in previous works, some of
them going beyond the standard (elastic) one. Results con-
cerning neutrino opacities in these different approximations
are given in Sec. II C. Section III shows some outputs from
CCSN simulations using these neutrino opacities in the so-
lution of neutrino transport. All these points are summarized
and discussed in Sec. IV.

II. CHARGED CURRENT NEUTRINO OPACITIES

As mentioned in the Introduction, different approxima-
tions have been considered to derive neutrino opacities from
charged current neutrino-nucleon interactions. The elastic
approximation [2] consists in neglecting any momentum
transfer to the nucleons, assuming noninteracting nucleons
and approximating the nucleonic form factors by lowest order
constants. In Horowitz [6], several corrections are introduced
and corresponding analytic expressions are derived: (i) a mo-
mentum dependence of the nucleonic form factors which
becomes important for energies close to the relevant scale
of 1 GeV and which can thus safely be neglected in our
case, (ii) weak magnetism corrections to the nucleonic form
factors which are proportional to the difference in proton and
neutron magnetic moment. These corrections are relevant at
any density and can be of the order of 10%, (iii) phase space
corrections up to order Eν/mi, where mi are free nucleon
masses and Eν the neutrino energy.

The seminal work of Refs. [9,16,17] in the late 1990s
discusses the effect of nuclear interactions on the opacities
as well in mean field approximation as in RPA. The latter is a
method widely used in nuclear physics in order to account for
nuclear correlations beyond mean field. It sums up particle-
hole excitations of the nuclear medium within the long range
collective (linear) response. At low densities, mean field is
recovered. RPA correlations can reduce opacities by up to a
factor five in high density matter [16,17,37].

More recently, interactions in dense asymmetric matter
have regained interest since it has been pointed out that they
lead to a difference in proton and neutron single particle
energies which can be of the order of several tens of MeV and
can have sizable consequences for charged current opacities.
Several authors have investigated the impact of these interac-
tions by introducing effective masses and chemical potentials
calculated from mean field into the elastic approximation
opacity on protoneutron star cooling [10,11]. Since the effect

035802-2

https://compose.obspm.fr


IMPROVED NEUTRINO-NUCLEON INTERACTIONS … PHYSICAL REVIEW C 102, 035802 (2020)

is opposite for neutrinos and antineutrinos, the energy dif-
ference between neutrinos and antineutrinos during a CCSN
is enhanced, allowing for more neutron rich ejecta in CCSN
neutrino driven winds with consequences for nucleosynthe-
sis [10,11]. Roberts and Reddy [24] have incorporated these
mean field effects within full relativistic kinematics and have
shown that in particular at high densities, when the transferred
momentum becomes large, opacities are altered by a factor of
a few.

In the following, Sec. II A, we will present the general for-
malism before deriving explicit expressions within different
approximations and discussing numerical results.

A. Formalism

In this section we will derive expressions for neutrino
opacities arising from the following reactions for neutrino:

p + e− ↔ n + νe, p ↔ n + e+ + νe (1)

and antineutrino opacities

n ↔ p + e− + ν̄e, n + e+ ↔ p + ν̄e (2)

following Refs. [38,39]. Let us consider a general process
(creation/absorption) with an incoming/outgoing nucleon
and an incoming/outgoing lepton, where one of the leptons is
a neutrino. The different reaction rates can be calculated from
the kinetic equation for the neutrino Green’s function G>,<

ν :

i∂λ
X Tr[γλG<

ν (X, kν )] = −Tr[G>
ν (X, kν )�<(X, kν )

−�>(X, kν )G<
ν (X, kν )] (3)

with kν the neutrino four-momentum and assuming that the
neutrino Green’s function is a slowly varying function of the
space-time coordinate X = (t, �x). Neutrino self-energies are
denoted by �>,< and γ μ are the standard γ matrices. Close to

equilibrium and for a spatially homogeneous system, which is
the case for our problem, we can write for the Green’s function

i G<
ν = −(kν/ + μνγ

0)
π

Eν

{
fν (t, �kν )δ

(
k0
ν + μν − Eν

)
−(1 − fν̄ (t,− �kν ))δ

(
k0
ν + μν + Eν

)}
,

i G>
ν = (kν/ + μνγ

0)
π

Eν

{
(1 − fν (t, �kν ))δ

(
k0
ν + μν − Eν

)
− fν̄ (t,− �kν )δ

(
k0
ν + μν + Eν

)}
, (4)

where μν denotes the (equilibrium) neutrino chemical po-
tential, Eν the (on-shell) neutrino energy, and fν,ν̄ (t, �kν )
the (anti)neutrino distribution functions. A slashed four-
momentum, e.g., kν/ , indicates the contraction of the corre-
sponding four-momentum with the γ matrices.

The neutrino self-energies are calculated in lowest order as
follows:

�<(t, kν ) = G2
FV 2

ud

2

∫
d4ke

(2π )4
γ λ(1 − γ5)

× (−iG<(ke))γ σ (1 − γ5)
>
λσ (ke − kν ) (5)

and analogously for �>. GF denotes here the Fermi coupling
constant and Vud the quark mixing matrix element entering the
charged current processes with nucleons. G<(ke) stands for
the electron/positron Green’s function with momentum ke and
the polarization functions 
>,< are the W -boson self-energies
which in the present context with energies maximally of the
order hundreds of MeV can be safely evaluated from Fermi
theory.

For better readability, we will focus the following deriva-
tions on electronic reactions and only give the full final
expressions for positronic processes. Combining Eqs. (4) and
(5), and inserting the explicit expression for the electron
Green’s function, the traces on the right-hand side of Eq. (3)
become

Tr[G>
ν �<] = −i

G2
FV 2

ud

2

∫
d4ke

(2π )4

π2

EνEe



(>)
λσ Tr[(kν/ + μνγ0)γ λ(1 − γ5)(ke/ + me + μeγ0)γ σ (1 − γ5)]

× feδ
(
k0

e + μe − Ee
){

(1 − fν )δ
(
k0
ν + μν − Eν

) − fν̄ δ
(
k0
ν + μν + Eν

)}
(6)

and analogously for Tr[G<�>] (me and μe are electron mass and chemical potential, respectively). The trace on the left-hand
side of Eq. (3) can be evaluated as

iTr[γ 0G<
ν ] = −4

(
k0
ν + μν

) π

Eν

{
fνδ

(
k0
ν + μν − Eν

) − (1 − fν̄ )δ
(
k0
ν + μν + Eν

)}
. (7)

After integration over the zero-component of the neutrino momentum, we get the following expression for the time derivative of
the (anti)neutrino distribution function:

∂

∂t
fν = − i

G2
FV 2

ud

16

∫
d3ke

(2π )3

1

EeEν

Lλσ {(1 − fν ) fe

>
λσ (q) − fν (1 − fe)
<

λσ (q)} ,

∂

∂t
fν̄ = − i

G2
FV 2

ud

16

∫
d3ke

(2π )3

1

EeEν

Lλσ {(1 − fν̄ )(1 − fe)
<
λσ (q̄) − fν̄ fe


>
λσ (q̄)} , (8)

where q = (Ee − Eν − μe + μν, �ke − �kν ), q̄ = (Ee + Eν − μe + μν, �ke + �kν ). The lepton tensor Lλσ only depends on electron
and neutrino energies and momenta, not on the chemical potentials:

Lλσ = Tr[(Ke/ + me)γ σ (1 − γ5)Kν/ γ λ(1 − γ5)] , (9)
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where Ke = (Ee, �ke), Kν = (Eν, �kν ) with on-shell energies.
The forward and backward polarization functions can be re-
lated to the retarded one in the following way:


>
λσ (q) = −2i(1 + fB(q0))Im
R

λσ (q),


<
λσ (q) = −2i fB(q0)Im
R

λσ (q), (10)

where fB denotes the Bose-Einstein distribution function,
fB(q0) = 1/(eq0/T − 1). The electron distribution function
is described by a Fermi-Dirac distribution, fe = fF (Ee) =
1/(e(Ee−μe )/T + 1). Inserting Eq. (10) in Eq. (8), the change
in the (anti)neutrino distribution function due to electronic
processes can finally be written as

∂

∂t
fν = − G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q)

× {(1 − fν ) fF (Ee − μe)(1 + fB(q0))

− fν (1 − fF (Ee − μe)) fB(q0)},
∂

∂t
fν̄ = − G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q̄)

× {(1 − fν̄ )(1 − fF (Ee − μe)) fB(q̄0)

− fν̄ fF (Ee − μe)(1 + fB(q̄0))}. (11)

From this change in (anti)neutrino distribution function we
can deduce the (anti)neutrino emissivity j and the inverse
mean free path 1/λ which are related to the creation and
absorption rates via

∂

∂t
fν = j(Eν ) (1 − fν ) − 1

λ(Eν )
fν,

∂

∂t
fν̄ = j̄ (Eν ) (1 − fν̄ ) − 1

λ̄(Eν )
fν̄ (12)

as

j(Eν ) = − G2
FV 2

ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q)

× fF (Ee − μe)(1 + fB(q0)) + positronic,

1

λ(Eν )
= − G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q)

× (1 − fF (Ee − μe)) fB(q0) + positronic (13)

for neutrinos and

j̄ (Eν ) = − G2
FV 2

ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q̄)

× (1 − fF (Ee − μe)) fB(q̄0) + positronic,

1

λ̄(Eν )
= − G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

Lλσ Im
R
λσ (q̄)

× fF (Ee − μe)(1 + fB(q̄0)) + positronic (14)

for antineutrinos. The above expressions only explicitly con-
tain the contribution of electronic processes and positronic
ones have to be added in order to obtain the complete emis-
sivity and mean free path. The latter can easily be derived, see

Appendix C. The properties

fF (Ee − μe)(1 + fB(q0))

= fB(q0)(1 − fF (Ee − μe)) exp((−Eν + μν )/T ),

fF (Ee − μe)(1 + fB(q̄0))

= fB(q̄0)(1 − fF (Ee − μe)) exp((Eν + μν )/T ) (15)

relate emissivity and inverse mean free path and reflect de-
tailed balance. Similar properties reflect detailed balance for
processes with positrons, see Appendix C. It is common to
introduce the absorption opacity corrected for stimulated ab-
sorption, see, e.g., [4],

κ∗
a (Eν ) = 1

1 − fF (Eν − μν )

1

λ(Eν )
= j(Eν ) + 1

λ(Eν )
,

κ̄∗
a (Eν ) = 1

1 − fF (Eν + μν )

1

λ̄(Eν )
= j̄ (Eν ) + 1

λ̄(Eν )
, (16)

where fF (Eν ± μν ) is the equilibrium (anti)neutrino distribu-
tion function. Speaking about opacities below, we will always
refer to κ∗

a and κ̄∗
a for neutrinos or antineutrinos, respec-

tively, containing the contributions from both electronic and
positronic processes.

The leptonic part in Eqs. (13) and (14) is evaluated
straightforwardly, whereas the polarization function with the
nucleonic part contains all the difficult physics related to nu-
clear interactions in the dense and hot medium.

B. Calculation of the polarization function

Within this section we will present the different approx-
imations which we have employed in order to calculate the
polarization function. First of all, we consider the nucleonic
form factors being constant neglecting any momentum de-
pendence and corrections from weak magnetism. The former
is anyway very small since the energies in our case are well
below the relevant scale of 1 GeV [6]. The latter correction
[6] will be included in future work. Second, since nuclear
masses are much higher than typical energies, in this work
the nonrelativistic approximation will be employed. Let us
mention that relativistic corrections might be important, in
particular if effective masses become of the same order as
other energies [22–24], but a closer inspection of this question
will be kept for future work. Applying these two assumptions,
the polarization function can be written as


R
λσ = gλ0gσ0g2

V 
V + (gλ0gσ0 − gλσ )g2
A
A (17)

with a vector contribution 
V and an axial one 
A. gV/A

are the nucleonic (axial) vector form factors. The metric gλσ

denotes here the flat space Minkowski metric with signature
(1,−1,−1,−1). From vector current conservation gV = 1,
and gA/gV = 1.2695 from free neutron decay. A contraction
with the lepton tensor, see Eq. (9) then yields

Lλσ
R
λσ = 8(
V (2EeEν − KeKν )

+
A(2EeEν + KeKν )). (18)
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1. Elastic approximation

Many works in the literature consider the so-called elastic
approximation, where the momentum transfer to the nucleons
is neglected [2]. In that case we can write

Im 
V (q) = Im 
A(q)

= −π (np − nn) δ(q̃0 + mp − mn), (19)

where nn/p are the neutron/proton number densities and mn/p

the neutron/proton masses, respectively, and the energy ar-
gument of the δ function, q̃0 is shifted with respect to q0

by the difference in proton and neutron chemical potentials,
q̃0 = q0 + μn − μp. The remaining integration over electron
momenta in Eq. (11) can then be carried out analytically. We
obtain

∂

∂t
fν = G2

FV 2
ud

π

(
g2

V + 3g2
A

)√
1 − m2

e

E2
e

E2
e (np − nn)

× ((1 − fν ) fF (Ee − μe)(1 + fB(q0))

− fν (1 − fF (Ee − μe)) fB(q0)) (20)

with Ee = Eν +mn−mp−(μn−μp−μe+μν ) = Eν + mn −
mp and q0 = mn − mp + μp − μn. This expression is in
agreement with the result in Bruenn [2]. The corresponding
expressions for antineutrino and positronic reactions can
be obtained analogously, explicit formulas are listed
for completeness in Appendix C. Corrections to these
expressions, taking into account the phase space to first order
in Eν/mi, have been derived in Ref. [6].

2. Mean field approximation

It has been pointed out [9–11] that mean field corrections
to charged current processes can become important in asym-
metric matter such as in CCSN or neutron stars and BNS
mergers since the neutron and proton energy differences are
enhanced by a difference in mean field interaction potentials.
In mean field, the interaction can be recast into the definition
of effective masses, chemical potentials and/or single particle
energies of the nucleons, such that formally the system can be
treated as a free gas, with additional self-consistent equations
determining the effective quantities and potential terms for
energy and pressure. In particular the distribution function still
has the form of a free gas. For instance, in relativistic mean
field models

fF
(√�k2 + m2

i − μi
) → fF (

√
�k2 + (m∗

i )2 − μ∗
i ) (21)

with effective masses m∗
i and chemical potentials μ∗

i , the in-
dex i stands for neutrons or protons, respectively. Considering
the momenta being much smaller than the masses, we reach
the nonrelativistic limit considered here with

�k2

2 mi
+ mi − μi → �k2

2 m∗
i

+ m∗
i − μ∗

i . (22)

Equation (22) can be rewritten in terms of nonrelativistic
mean field interaction potentials Ui = μi − μ∗

i as [40]

�k2

2 mi
+ mi − μi → �k2

2 m∗
i

+ m∗
i + Ui − μi, (23)

which resembles the standard definition of interaction poten-
tials in nonrelativistic Skyrme models, see, e.g., [41],

�k2

2 mi
+ mi − μi → �k2

2 m∗
i

+ mi + U Sky
i − μi. (24)

For later convenience we will introduce a common notation
εi

k = �k2

2 m∗
i
+ m∗

i , defining an effective chemical potential for

Skyrme models as μ∗
i (Skyrme) = μi − U Sky

i + m∗
i − mi =

μi − Ui. Note the additional difference between the free and
the effective mass which arises from the different definitions
of the effective mass in relativistic and nonrelativistic models.

The exact values of these effective quantities depend of
course on the equation of state, but it should be noted that the
difference in proton and neutron potentials can reach several
tens of MeV in asymmetric matter. Note in addition that
the calculations of the interaction potentials within the virial
expansion in Horowitz et al. [42] suggest that the potential
difference between protons and neutrons is underestimated by
mean field calculations.

These corrections can be incorporated into the rates from
the elastic approximation: the nucleon masses in Eq. (19)
become effective masses mi → m∗

i and q̃0 becomes q̃0 = q0 +
μ∗

n − μ∗
p meaning in particular that there is an additional shift

by Up − Un. Equation (20) then becomes

∂

∂t
fν = G2

FV 2
ud

π

(
g2

V + 3g2
A

)√
1 − m2

e

E2
e

E2
e

× ((1 − fν ) fF (Ee − μe)ηpn

− fν (1 − fF (Ee − μe))ηnp), (25)

where Ee = Eν + m∗
n − m∗

p + Un − Up and

ηi j = ni − n j

1 − exp((−m∗
j + m∗

i − Uj + Ui − μi + μ j )/T )
.

(26)

This result is in agreement with the expression in Bruenn [2],
modified due to mean field effects, see, e.g., Fischer et al.
[13]. Again, explicit formulas for antineutrino and positron
reactions can be found in Appendix C.

The next step is to relax the elastic approximation, i.e., to
include the full nucleonic phase space. Staying on the mean
field level, the polarization function becomes

Im 
V (q) = Im 
A(q) = 2Im L(q) (27)

with the well-known Lindhard function L(q),

L(q) = lim
η→0

∫
d3k

(2π )3

fF
(
ε

p
k − μ∗

p

) − fF
(
εn

k+q − μ∗
n

)
q̃0 + iη + ε

p
k − εn

k+q

. (28)

An analytic expression can be derived for its imaginary part
[9], see Appendix B. Please note that the expression pro-
posed in Burrows and Sawyer [16] neglects the difference
in effective masses between protons and neutrons, which can
be important in asymmetric matter, and does not consistently
include the effect of nucleonic interaction potentials, see the
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discussion of that point in Roberts et al. [10], too. The integra-
tion over electron momenta in Eq. (11) to obtain the opacities
can, in contrast to the elastic approximation, no longer be per-
formed analytically. In Sec. II C we will discuss numerically
calculated opacities from this mean field approach with full
phase space.

3. RPA polarization function

Technically, in order to obtain the RPA polarization func-
tion, in the above expressions for the neutrino and antineutrino
rates, the Lindhard function has to be replaced by the RPA
vector and axial polarization function, respectively. Previous
works [16,17] have considered the so-called Landau approxi-
mation, where the polarization function can be written as [36]

Im 
V (q) = Im
L(q)

1 − 2 fccL(q)
, (29)

Im 
A(q) = Im
L(q)

1 − 2gccL(q)
, (30)

where fcc and gcc represent the residual interaction and the
factor two arises from spin degeneracy. Explicit expressions
for the parameters fcc and gcc in terms of the usual Skyrme
parameters can be found in Hernandez et al. [36], extended
to asymmetric matter [43]. Note that these Landau parame-
ters depend on the Fermi momenta of protons and neutrons
separately and are thus density and charge fraction dependent
in contrast to the constant symmetric matter values assumed
in Burrows and Sawyer [16], see the criticism in Horowitz
and Schwenk [20]. A relativistic version can be found in
Reddy et al. [17]. Please note that in Eq. (30) the real part
of the Lindhard function enters, too. For equal masses, and
assuming additionally the classical (Boltzmann) limit for the
distribution functions, an analytic expression for this real part
can be obtained [15]. This is no longer possible including
the full mean field effects with effective masses and inter-
action potentials and applying Fermi-Dirac statistics for the
nucleons. Therefore, we compute the real part via a dispersion
relation from Eq. (B8).

Unfortunately, most of the Skyrme forces show an insta-
bility in the spin-isospin (axial) channel at high density [44],
leading to a diverging (anti)neutrino opacity. This channel is
anyway very badly constrained by the usual fitting procedure
of Skyrme forces. Two possible remedies have been proposed
in the literature:

(1) Employ a microscopically motivated residual interac-
tion in this channel instead of Eq. (30), see, e.g., Reddy
et al. [17], Eqs. (53)–(57), or [45]. The axial response
then becomes

Im 
A(q) = Im L(q)

(
1

3DL(q)
+ 2

3DT (q)

)
(31)

with a transverse DT and a longitudinal DL part,

DI (q) = {1 − 2VI (q)Re L(q)}2 + {2VI (q)Im L(q)}2.

(32)

The residual interaction is given by

VL(q) = f 2
πNN

m2
π

( �q2

q2 − m2
π

F 2
π (q) + g′

)
, (33)

VT (q) = f 2
πNN

m2
π

(
2 �q2

q2 − m2
ρ

F 2
ρ (q) + g′

)
. (34)

The πNN and ρNN form factors are taken as Fπ =
(�2

π − m2
π )/(�2

π − q2) and Fρ = (�2
ρ − m2

ρ )/(�2
ρ −

q2). For numerical applications, we will take for
the parameters [45]: fπNN = 1.01, g′ = 0.6, mπ =
140 MeV, mρ = 770 MeV, �π = 550 MeV, �ρ =
1 GeV.

As can be seen from Eq. (34), in this case the resid-
ual interaction becomes momentum dependent and is
suppressed for high momenta | �q|, as it is expected from
microscopic calculations.

(2) Add an additional repulsive term in this particular
channel, without changing the remaining properties
of the model and in particular the equation of state
[46]. In this case, gcc → gcc + t ′

3 n2
B/4 in Eq. (30) with

the additional parameter t ′
3 which will be taken as

t ′
3 = 1 × 104 MeV fm9 2 in numerical applications

[46]. This approach has the advantage of remaining
coherent with the underlying EoS.

The formalism for the full RPA with contact Skyrme type
interactions in the charge exchange channel has been pre-
sented in Hernandez et al. [36] and extended to Skyrme forces
with tensor terms [47]. Some first results for charged-current
neutrino opacities have recently been discussed [37]. How-
ever, we expect the essential effect of RPA correlations on
the neutrino opacities to be already comprised in the Landau
approximation, which is numerically much faster to evaluate,
at least as long as the momentum transfer does not become
too large—recall that it results from a low-momentum expan-
sion. In addition, the instability in the spin-isospin channel
mentioned above, although less pronounced in full RPA due
to the momentum dependence of the residual interaction,
persists with a diverging opacity already for densities and
temperatures relevant for (proto)neutron star and post-merger
matter for many standard Skyrme forces. We have therefore
decided to produce the complete opacity data within Landau
approximation, adding the repulsive term from Margueron
and Sagawa [46] in the spin-isospin channel to keep consis-
tence with the EoS.

C. Resulting neutrino opacities

1. Equation of state

During the different stages of the core collapse evolution
or during a BNS merger wide domains of density (10−12 �
nB � 1fm−3), temperature (0.1 � T � 50 MeV), and charge
fraction (0.01 � Ye � 0.6) are explored. Matter composition

2This value is half the value of [46], but it still guarantee stability
at high densities and does only marginally change the results at low
density since the correction term is ∝ n2

B.
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FIG. 1. Example of the interpolation procedure and distribution of the energy domains in the case of a pronounced reaction threshold for
T = 6 MeV, nB = 0.025 fm−3, Ye = 0.53 with RG(SLy4) EoS and RPA in the Landau approximation. The crosses indicate the calculated
points using five domains in energy, and the solid line corresponds to the interpolation. On the left-hand side oscillations due to the Gibbs
phenomenon in the interpolation function are clearly visible, whereas a better choice of the energy domains and thus a better distribution of
the interpolated data points on the right-hand side avoids them.

changes throughout with nuclear clusters present at low den-
sities and temperatures and homogeneous matter elsewhere.
Matter consists of baryons, in the simplest case just nucleons
and nuclear clusters, leptons and photons. Charged leptons
and photons are usually treated as ideal Fermi and, respec-
tively, Bose gases, whereas neutrinos, being in general not
in equilibrium, are not included in the EoS. The detailed
composition and thermodynamics of baryonic matter is still
under debate, due to the uncertainties in effective interactions
and the difficulties in the modeling a strongly interacting
many-body system.

For this work, we will use two different EoS models. As a
fiducial case for which we will calculate neutrino opacities
in RPA, we will consider the NSE model of Raduta and
Gulminelli [48,49] named “RG(SLy4)”. It employs the non-
relativistic SLy4 [50] Skyrme interaction for nucleons. Mean
field and elastic approximation results will be compared with
the NSE model of [51] with the DD2 [52] relativistic mean
field interaction for the nucleons [“HS(DD2)”], see Hempel
et al. [53]. Both EoS models fulfill constraints from nuclear
experiments and the neutron star maximum mass [54–56]
and are in reasonable agreement with theoretical ab initio
determinations of the low density neutron matter EoS, see,
e.g., [57] for a discussion. In addition, the tidal deformability
calculated from RG(SLy4) falls within the 90% confidence
interval for GW170817 [1,58] and HS(DD2) is marginally
compatible. The contribution from electrons, positrons, and
photons is included.

2. Interpolation procedure

For an easy and fast evaluation of the neutrino opacities
on the fly during simulations, we interpolate the opacity data
as functions of neutrino energy and provide the coefficients
for each grid point in (T, nB,Ye) of the corresponding EoS
data. More precisely we employ an eighth order polynomial
for log(κ∗

a ) and log(κ̄∗
a ) as functions of log(Eν ) to interpolate

the opacities for (anti)neutrino energies Eν between 0.1 and

250 MeV. An additional difficulty arises if the opacities show
rapid variation in a small energy interval, which can happen
for instance at the different reaction thresholds which become
very pronounced at low temperature. In order to avoid oscilla-
tions in the interpolation due to the Gibbs phenomenon in this
case, the entire energy range 0.1 � Eν � 250 MeV is divided
into several domains, where the interpolation prescription, see
Eq. (35) below, is applied in each domain. The number of
domains (nd ) and the domain borders Emin/max

ν are determined
from the position of the thresholds and the variation of the
opacities in the vicinity of the respective thresholds.

The energy interval Eν ∈ [Emin
ν , Emax

ν ] has been mapped
to the interval ξ ∈ [−1, 1] via an affine mapping log(Eν ) =
αξ + β. The opacities are then computed via

log(κ ) =
N∑

n=0

cn(T, nB,Ye)ξ n (35)

with the coefficients cn depending on the thermodynamic con-
ditions and N = 8.

Figure 1 shows an example of the choice of domains to
avoid an oscillating interpolation function in the case of a
threshold. It corresponds to T = 6 MeV, nB = 0.025 fm−3,
Ye = 0.53 and the opacities have been calculated with the
RG(SLy4) EoS employing RPA in Landau approximation
with a nonzero t ′

3. At low Eν the reaction p + e− + ν̄ → n is
dominant, whereas at higher energies n + e+ → p + ν̄ over-
takes. The threshold slightly below Eν = 1 MeV is clearly
visible and the opacity varies by orders of magnitude in a nar-
row energy interval close to this threshold. The oscillations in
the interpolation on the left panel are clearly visible, whereas
a better choice of domain border reduces them considerably,
see the right panel.

3. Opacities

Let us now discuss the opacities resulting from the different
approximations for various thermodynamic conditions. The
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FIG. 2. Neutrino (left) and antineutrino (right) opacities for T = 8 MeV, nB = 0.11 fm−3, and Ye = 0.05 (upper panels), and T = 5 MeV,
nB = 0.01 fm−3, and Ye = 0.15 (lower panels). These correspond to typical conditions for the decoupling of neutrinos in the merger remnant
[59], the former are more relevant for lower neutrino energies than the latter. The different line types distinguish the different approximations
and results with HS(DD2) are indicated in red, whereas those with RG(SLy4) are in blue, see Sec. II B for details. The dominant processes
contributing to the opacities in a certain energy domain are mentioned in the figure, too.

most interesting regions are probably located close to the
respective neutrinospheres. Since the opacities depend on neu-
trino energy and flavor, it is obvious that the location where
neutrinos decouple from matter varies as function of these
quantities. It has been observed that low energy neutrinos
have in general lower opacities, i.e., longer mean free paths,
and decouple further inside and thus at higher densities and
temperatures than high energy neutrinos.

A comprehensive analysis for binary merger simulations
indicates densities 10−4 � nB � 10−1 fm−3, temperatures
T ∼ 1–10 MeV and electron fractions Ye ∼ 0.05–0.3 at the
corresponding neutrinospheres for neutrino energies Eν ∼ 3–
100 MeV [59]. The highest densities and temperatures as well
as the lowest electron fractions are thereby associated with
the lowest neutrino energies. Although evolving with time
and being sensitive to the simulation setup, in particular the
neutrino treatment and the EoS, these values can be consid-
ered as typical ones for a binary merger remnant. Figure 2
shows the opacities employing the different approximation
schemes for two different thermodynamic conditions, cho-
sen within the above ranges. The upper panels, with T =

8 MeV, nB = 0.11 fm−3, and Ye = 0.05, are more relevant
for neutrinos with low energies, whereas the lower panels
show T = 5 MeV, nB = 0.01 fm−3, and Ye = 0.15, condi-
tions close to decoupling for neutrinos with slightly higher
energies.

The passage of the shock heats up matter between the
protoneutron star surface and the neutrinosphere in a CCSN
such that compared with the conditions of the binary merger
remnant, for CCSN we have to consider slightly higher
temperatures with very similar densities and electron frac-
tions. From our fiducial simulations, see Sec. III, we have
chosen three different thermodynamic conditions for which
opacities are displayed in Fig. 3: T = 12 MeV, nB = 0.01
fm−3, and Ye = 0.1 (upper panels), T = 19 MeV, nB = 5 ×
10−3 fm−3, and Ye = 0.1 (middle panels) and T = 5 MeV,
nB = 10−4 fm−3, and Ye = 0.1 (lower panels). The neutri-
nosphere for ν̄e is thereby located slightly closer to the
center, i.e., at slightly higher densities and temperatures. The
first example (upper panels) thereby correspond roughly to
conditions at the neutrinosphere for low energy ν̄e at early
post-bounce and for νe at later times, the second is relevant for
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FIG. 3. Neutrino (left) and antineutrino (right) opacities for T = 12 MeV, nB = 0.01 fm−3, and Ye = 0.1 (upper panels), T = 19 MeV,
nB = 5 × 10−3 fm−3, and Ye = 0.1 (middle panels) and T = 5 MeV, nB = 10−4fm−3, and Ye = 0.1 (lower panels). These correspond to typical
conditions close to the neutrinosphere in a CCSN from our fiducial simulation, see Sec. III. The different line types which distinguish the
different approximations and results with HS(DD2) are indicated in red, whereas those with RG(SLy4) are in blue. The dominant processes
contributing to the opacities in a certain energy domain are mentioned in the figure, too.

low energy antineutrinos and the third for both νe and ν̄e, but
with higher energies of the order 10 MeV. The neutrinospheres
of (anti)neutrinos with still higher energies are located at
lower densities and temperatures.

As can be seen from Fig. 3, lower panels, at nB =
10−4 fm−3, the difference between the approximation
schemes is very small, the largest difference is reached for
Eν � 1 MeV and does not exceed a factor 1.5. There are
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TABLE I. Effective masses, interaction potentials, and fractions of protons xp and neutrons xn under the thermodynamic conditions for
which the different opacities are shown in Figs. 2 and 3. �U = m∗

n − m∗
p + Un − Up − (mn − mp) is the shift in reaction threshold due to mean

field effects, see Eq. (25).

T nB Un Up �U m∗
n m∗

p

(MeV) (fm−3) Ye EoS xn xp (MeV) (MeV) (MeV) (MeV) (MeV)

5.25 10−4 0.1 HS(DD2) 0.89 0.090 0.372 0.293 7.89×10−2 939.1 937.8
5.11 1.15×10−4 0.1 RG(SLy4) 0.89 0.089 0.312 −0.113 0.2202 939.2 938.1
19.1 5.25×10−3 0.1 HS(DD2) 0.86 0.069 18.46 14.48 3.979 918.7 917.4
19.5 5.29×10−3 0.1 RG(SLy4) 0.87 0.072 15.21 0.794 −6.842 922.3 930.2
5.25 1.20×10−2 0.15 HS(DD2) 0.54 0.008 25.93 19.39 6.531 910.0 908.7
5.11 1.19×10−2 0.15 RG(SLy4) 0.35 0.004 13.50 −2.032 6.642 924.5 932.1
12.0 1.20×10−2 0.1 HS(DD2) 0.82 0.043 38.67 30.05 8.619 895.6 894.3
12.1 1.19×10−2 0.1 RG(SLy4) 0.75 0.033 28.66 −1.308 11.96 907.3 924.0
8.32 1.10×10−1 0.05 HS(DD2) 0.95 0.05 284.5 239.4 45.10 611.9 610.6
8.19 1.10×10−1 0.05 RG(SLy4) 0.95 0.05 233.0 58.10 43.77 663.0 792.8

two reasons for that: first, only small momentum transfers
are involved, such that the elastic approximation3 is well
justified for the present conditions; second, as well mean field
as RPA effects arise due to interactions in the dense nuclear
medium and the corresponding corrections are thus small at
low densities. In Table I we list effective masses and inter-
action potentials for the thermodynamic conditions of Figs. 2
and 3 and the two employed EoS and it can easily be checked
that the interaction potentials are indeed small and effective
masses are close to the free masses in the present case.

The situation becomes different at higher densities. At
nB = 5 × 10−3 fm−3, see panels (c) and (d) in Fig. 3, mo-
mentum transfer is still small for the considered neutrino
energies, such that the mean field results agree well between
the elastic approximation (dotted lines) and the full phase
space integration (solid lines) for both EoS. The only notice-
able difference is that the opacities do not vanish any more
close to the reaction thresholds upon full phase space integra-
tion, see panel (d). The mean field corrections, however, are
large. The most prominent effect is the shift of the reaction
threshold by ±�U = −(m∗

n − m∗
p + Un − Up − (mn − mp))

where the lower sign corresponds to neutrinos and the upper
one to antineutrinos, respectively. This shift is clearly visible
for the antineutrino opacities and it is more pronounced for
RG(SLy4) since |�U | is larger, see Table I. For neutrinos, no
reaction threshold lies within the shown energy range. RPA
correlations tend to decrease the shift in reaction threshold
and push it to lower antineutrino energies. Both, neutrino
and antineutrino opacities are strongly suppressed for low
Eν � 1 MeV and approach the mean field results at higher
energies. In particular, for Eν � 30 MeV almost no difference
is observed any more. This clearly shows, together with the
shift in reaction thresholds, that RPA correlations cannot be

3Note that the difference in neutron and proton number densities
entering Eq. (20) should in principle be calculated with free masses
and chemical potentials, differing thus from the values given by the
EoS. For the curves labeled “elastic”, we have employed the densities
from the EoS, thus including already some mean field effects.

cast into a grey correction factor, i.e., multiplying the mean
field rates by a common factor for all (anti)neutrino energies.

The prevailing role of the axial (spin-isospin) channel in
the RPA results, see, e.g., Reddy et al. [17], is confirmed
by the shown opacities. The vector channel is treated in the
same way for all RPA models, The observed non-negligible
difference in the opacities is thus entirely due to the different
prescriptions chosen for the axial channel, see Sec. II B 3.
In all figures “RPA” denotes the results obtained by employ-
ing the gcc parameter from the standard Skyrme interaction
[36], “RPA t ′

3” those with an additional repulsive term [46],
and “RPA πρ” employs the microscopically motivated πρ

model [17]. For the present case at T = 19 MeV, nB = 5 ×
10−3 fm−3, and Ye = 0.1, the πρ model leads to a suppression
by roughly a factor 1.5 with respect to mean field results at low
Eν , whereas for the two other RPA models the suppression
is about twice as strong and reaches roughly a factor three.
Similarly large differences following the prescription for the
residual interaction in the axial channel are seen for other
thermodynamic conditions, see Figs. 2 and 3. The uncertain-
ties in the opacities due to this badly constrained interaction
probably predominate over the differences between Landau
approximation and full RPA, although the latter might become
important at high densities with higher momentum transfers.

At these conditions the difference in opacities between
both EoSs using the mean field approximation is almost as
important as the differences between RPA and mean field
results. This is no longer the case at nB = 10−2 fm−3, see
Figs. 3(e) and 3(f) as well as Figs. 2(a) and 2(b). At low
Eν opacities in RPA are suppressed by about a factor five at
T = 5 MeV, Ye = 0.15 and up to a factor ten at T = 12 MeV
and Ye = 0.1, whereas the mean field results of RG(SLy4) and
HS(DD2) differ only by about a factor two. The shift in the
antineutrino reaction threshold is more pronounced for RPA,
too. The opacities at higher Eν again become very similar
within all the different approximations employed. Please note
that at neutrino energies above those shown here, momentum
transfer becomes high enough to induce again noticeable dif-
ferences between the results with full phase space integration
and the elastic ones. At still higher densities, see Fig. 2 (upper
panels), where opacities are displayed for nB = 0.11 fm−3,
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T = 8 MeV, and Ye = 0.05, qualitatively the behavior is rather
similar to the previously discussed cases. Quantitatively, the
effect of mean field corrections increases as expected and
the momentum transfer becomes higher such that the elastic
mean field results no longer reproduce well the full phase
space integration. The mean field calculations of Roberts and
Reddy [24] using relativistic kinematics show a similar trend:
the full space integration becomes more important at higher
densities when the momentum transfer becomes larger. For
the particular case considered here, the three prescriptions for
the residual interaction in RPA Landau approximation lead to
very similar results. This should, however, not be seen as a
general trend, but as a result only valid for some particular
thermodynamic conditions.

The dominant processes contributing to the charged-
current opacities are indicated in Figs. 2 and 3, too. Generally
simulations only consider the electron and positron capture
reactions as well as their inverse to compute opacities. As
already noticed in Fischer et al. [13], for low energy an-
tineutrinos, (inverse) neutron decay becomes, however, the
dominant charged current process under these typical ther-
modynamic conditions. These can even dominate over other
opacity sources for low energy antineutrinos such as for exam-
ple NN Bremsstrahlung, customarily included in simulations
[13]. Let us emphasize that the opacities computed here and
the data provided contain all different types of charged current
reactions for electron (anti)neutrinos.

From the results for the opacities discussed here, we
expect for CCSN and BNS mergers that the properties of
(anti)neutrinos with an energy of tens to several tens of MeV
are only slightly modified, whereas low energy (anti)neutrinos
experience more pronounced modifications. This means in
particular that the resulting spectra and luminosities should be
modified, too. As mentioned above, for (anti)neutrinos with
energies above those shown and discussed here, differences
in opacities are expected to be due to the full phase space
integration. On the one hand, within a CCSN those are not
very numerous, and on the other hand their mean free path
is extremely small due to the very high Fermi energy of the
electrons involved in the different processes. Therefore, we
will not discuss the detailed effect on their spectra here.

III. CORE-COLLAPSE AND EARLY PROTONEUTRON
STAR EVOLUTION

In this section we discuss some first results implement-
ing the newly calculated opacities into a simulation for the
early post-bounce evolution in a CCSN. These results have
been obtained using a spherically-symmetric version of the
COCONUT code [60]. This code solves the general-relativistic
hydrodynamics with a 3 + 1 decomposition of spacetime.
High-resolution shock-capturing schemes are used for hy-
drodynamic equations, whereas Einstein equations for the
gravitational field are solved with spectral methods [61]. En-
ergy losses and deleptonization via neutrino interactions are
computed using the fast multigroup transport (FMT) scheme
[62], which solves the stationary neutrino transport problem
using estimates of the flux factor obtained by a two stream
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FIG. 4. Profiles of the electron fraction at bounce as a function
of the enclosed baryon mass, employing different approximation
schemes to compute charged-current neutrino-nucleon interaction
rates.

approximation in the optically dense region and an Eddington
factor closure in the optically thin region.

Both neutrino neutral and charged currents on nuclei,
along with neutral current scattering on nucleons, are con-
sidered with standard opacities in the elastic approximation
[2] including the ion screening effect [7], whereas charged
current neutrino nucleon opacities are the subject of this
work and vary throughout the different simulations. Nei-
ther pair production reactions nor inelastic scattering have
been included for electron-flavor (anti)neutrinos. Anyway, for
electron-flavor neutrinos, in the denser area of the star the
medium opacity is largely dominated by charged current pro-
cesses on nucleons/nuclei and the omitted reactions only play
a role in equilibration of the spectrum. Heavy flavor neutrinos
are treated as in Ref. [62].

The simulations start from an unstable stellar model taken
among the publicly available data published by Woosley et al.
[63]. All results presented in this section have been obtained
using the s15 (15M
 with solar metallicity) initial model, but
we obtained similar conclusions by testing other progenitors,
in particular with u18 (18M
, 10−4× solar metallicity) and
u40 (40M
, 10−4× solar metallicity) progenitor models.

A. Pre-bounce deleptonization

Except during the last few milliseconds before trapping,
pre-bounce deleptonization is dominated by electron captures
on neutron-rich nuclei and the bounce properties are affected
by the uncertainties on the associated rates [64–66]. On
the contrary, only small differences for the electron fraction
at bounce are expected between different prescriptions for
charged-current reactions on free nucleons.

Indeed, the electron fraction profiles at bounce time are
plotted in Fig. 4, for the four different models of charged-
current neutrino-nucleon interaction rates. For better read-
ability, these profiles are plotted as functions of the enclosed
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FIG. 5. Total neutrino luminosities as a function of time after
bounce.

baryon mass (i.e., for a given radius, we consider the baryon
mass contained inside this radius), which allows to take into
account possible time shifts at bounce. Differences between
these models remain small, showing that these reaction rates
have, indeed, a small influence during the pre-bounce phase.

B. Post-bounce evolution

It should be stressed that our simulations have been per-
formed in spherical symmetry, therefore the post-bounce
evolution does not reflect the strong asymmetries observed in
three-dimensional simulations (see, e.g., [67]) and we cannot
realistically investigate the effect of the improved rates on
shock revival and post-bounce dynamics. Let us concentrate,
therefore, on illustrating qualitatively the expected effects.
As discussed in Sec. II C 3, the main modifications should
concern neutrino luminosities and spectra due to the changes
in opacities for low energy (anti)neutrinos (Eν � 10 MeV).

The total early post-bounce luminosities for νe and ν̄e,
with different prescriptions, as presented in Fig. 5 (for νe)
are very similar. The reason is that at this stage within our
setup, the total luminosities are dominated by (anti)neutrinos
with energies above those for which opacities are noticeably
modified. It might partly be an artifact of the approximations
within the FMT neutrino treatment, where in particular
inelastic scattering reactions are neglected, which contribute
to redistributing neutrino energies and could thus lead to
having more low energy neutrinos in the spectrum. We also
expect stronger modifications of luminosities at later times,
when emitted neutrinos have a mean energy of the order of a
few MeV.

The modified opacities for low energy (anti)neutrinos
clearly affect the location of the neutrinospheres. Here, we
have defined them as the radius where optical depth reaches
2/3. In Fig. 6, upper panel, the neutrinospheres for νe (left)
and ν̄e (right) with an energy of Eν = 2 MeV are displayed,
employing the different prescriptions for the charged-current

opacities. The results for the opacities for typical conditions
discussed in Sec. II C 3 are clearly reflected in the position
of the neutrinosphere. Increased opacities due to mean field
effects compared with the basic elastic approximation make
it more difficult for (anti)neutrinos to escape and lead there-
fore to a neutrinosphere at larger radii. On the other hand,
a reduction of opacities within RPA with respect to mean
field facilitates escape and shifts the neutrinosphere again
to smaller radii. As anticipated, for larger neutrino energies,
the difference becomes smaller, see the example for Eν =
14 MeV in the lower panel of Fig. 6.

IV. SUMMARY AND DISCUSSION

Within this work we have computed opacities for νe and
ν̄e from charged current neutrino-nucleon interactions, going
beyond the elastic approximation and including nuclear cor-
relations in RPA. Please note that we do not pretend here
that our opacity data represent the ultimate description of
nuclear correlations. The differences in opacities induced by
the different prescriptions for evaluating the axial channel
give an idea about the uncertainties within RPA. Moreover,
it only takes into account a certain class of correlations, the
long-range linear response. It is, however, known since many
years that these more accurate calculations beyond the elastic
approximation induce important changes in the opacities in
dense matter [9,16,17] and are therefore susceptible to mod-
ify the dynamics of CCSN and matter composition in BNS
mergers. Hence, we have presented here a first step, propos-
ing a scheme which allows to incorporate accurate opacities
directly into numerical simulations which otherwise would
be too time consuming to be calculated “on the fly”. We
have been able to perform CCSN simulations with consis-
tently computed accurate charged current (electron) neutrino
nucleon interactions. We find noticeable differences in the
location of the neutrinospheres of low-energy (anti)neutrinos
in the early post-bounce phase. In Fischer et al. [13], where
rates in mean field with full phase space are compared with
the elastic approximation, during the longer term protoneutron
star evolution in particular changes in the mean energies of ν̄e

and in the composition of the neutrino-driven wind, i.e., the
conditions for nucleosynthesis, are pointed out. We expect the
RPA correlations to impact these quantities as well, a detailed
study will be carried out in future work. It should be stressed
at this point that the modifications in the opacities with respect
to the commonly employed elastic approximation strongly
depend on neutrino energy and therefore cannot be cast into a
grey correction factor to the analytic expressions as previously
implemented in simulations.

After SN 1987A, much progress has been made and a
possible neutrino signal observed from a galactic supernova
in present day detectors would bear essential information
about the core collapse mechanism and neutrino properties
[68]. It is therefore crucial that models use accurate neu-
trino matter interaction rates. As prospected since more than
twenty years [9,15–17], this work represents a first step in
enabling the use of these accurate rates in CCSN simulations.
It focuses on charged current neutrino nucleon opacities and
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FIG. 6. Neutrinospheres radius as a function of time after bounce, for two different neutrinos energies. (a) Electron neutrino νe, energy
Eν = 2 MeV, (b) Electron antineutrino ν̄e, energy Eν = 2 MeV, (c) Electron neutrino νe, energy Eν = 14 MeV, and (d) Electron antineutrino
ν̄e, energy Eν = 14 MeV.

clearly shows that, indeed, commonly employed approxima-
tions break down in the dense central part. These results
encourage on the one hand to go beyond our simplified setup
for the simulations (spherical symmetry, simplified neutrino
transport) and to include these accurate rates in more sophisti-
cated simulations, in order to study in details not only bounce
properties but shock and post-bounce dynamics, too, and the
corresponding neutrino signal. To that end, the tables with our
opacity data are publicly available within the COMPOSE data
base. A nonoptimized implementation of the tables within
our code leads to maximally 50% increase in computing time
with respect to standard analytic formulas. This is probably
an upper limit since the FMT does not include inelastic νe-e±
scattering which is in general much more time consuming than
charged-current opacities. On the other hand, efforts should
be pursued to extend the present scheme for neutrino rates
to other channels and offer ultimately the possibility to in-
clude neutrino-matter interactions with state-of-the-art input
physics within simulations. In particular, we have only consid-
ered improved opacities for charged current neutrino-nucleon

interactions. Their increase in the dense regions makes them
largely dominant, whereas with the standard approximations
neutral current opacities are of the same order of magnitude.
The sensitivity of CCSN dynamics to the detailed treatment
of the neutral currents has been shown in Melson et al. [69],
too, where a small change in the coupling constants due to the
strangeness content of the nucleon decides upon explosion. A
consistent implementation of improved neutral current opaci-
ties [9,15,17–21] is thus in order and shall be investigated in
future work. Among others, we expect it to influence the rela-
tion between neutrino trapping and the onset of β equilibrium.
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APPENDIX A: FORMAT OF THE OPACITY TABLES

Data for (anti)neutrino opacities are provided using the
HDF5data format [70]. Two HDF5groups, nu and nu_bar,
contain the necessary data to evaluate the respective opaci-
ties for νe and ν̄e via the interpolation scheme discussed in
Sec. II C 2. In each group the following attributes are stored:
the information on the maximum number nmax

d (attribute
nd_max) of domains in Eν , the number of grid points for tem-
perature iT (pts_t), for baryon number density jB (pts_nb),
and for electron fraction kY (pts_ye) as well as the number
np (npts) of interpolation coefficients. Within each group,
four datasets exist: nd_tny, enumin, enumax, and coeffs.
nd_tny contains an array of size (iT , jB, kY ) with the number
nd of domains in Eν for each point on the grid in (T, nB,Ye)
of the EoS table. The two datasets enumin and enumax
contain arrays of size (nmax

d , iT , jB, kY ). The first nd nonzero
entries contain, respectively, the logarithm of the minimum
and maximum energy in each domain for each point on the
EoS grid. The dataset coeffs is the array containing the
coefficients cn in Eq. (35) in all domains and for the en-
tire EoS grid. The structure of the HDF5file is summarized
in Table II.

We have considered that the detail values of the opac-
ity were irrelevant when the mean free path became (much)

TABLE II. Summary of the structure of the HDF5file storing the
opacity data for νe (group nu) and ν̄e (group nu_bar).

Type
Name Quantity (size)

npts np = N + 1: number of integer
interpolation coefficients cn

with n ∈ (0, . . . , N )
pts_t number iT of points in T integer
pts_nb number jB of points in nB integer
pts_ye number kY of points in Ye integer
nd_tny number nd of domains array of integers

in Eν for each (iT , jB, kY )
grid point in (T, nB,Ye)

nd_max nmax
d = max(nd ) : maximum array of integers
number of domains in Eν

enumin logarithm of minimum Eν array of doubles
in each domain for each (nmax

d , iT , jB, kY )
grid point in (T, nB,Ye)

enumax logarithm of maximum Eν array of doubles
in each domain for each (nmax

d , iT , jB, kY )
grid point in (T, nB,Ye)

coeffs interpolation coefficients cn array of doubles
in each domain and for each (np, nmax

d , iT , jB, kY )
grid point in (T, nB,Ye)

larger than the extension of the studied astrophysical object,
and therefore a lower bound for κ has been introduced: for
all κ < κlimit = 10−10/km, we have set κ = κlimit in the data
tables.

APPENDIX B: LINDHARD FUNCTION IN ASYMMETRIC MATTER

Equation (28) for the Lindhard function can be further developed by substituting in the last term �k → −�k − �q

L(q) = lim
η→0

∫
d3k

(2π )3

(
fF

(
ε

p
k − μ∗

p

)
q̃0 + iη + ε

p
k − εn

k+q

− fF
(
εn

k − μ∗
n

)
q̃0 + iη + ε

p
k+q − εn

k

)
. (B1)

The angular integration can be performed analytically using εi
k+q = (�k + �q)2/(2m∗

i ) + m∗
i . Thus,

L(q) = 1

4π2| �q| lim
η→0

∫
kdk

(∫ εn
+

εn−
dx mn

fF
(
ε

p
k − μ∗

p

)
q̃0 + iη + ε

p
k − x

−
∫ ε

p
+

ε
p
−

dxmp
fF

(
εn

k − μ∗
n

)
q̃0 + iη + x − εn

k

)

= − 1

4π2| �q| lim
η→0

∫
kdk

(
mn fF

(
ε

p
k − μ∗

p

)
log

(
εn
+ − q̃0 − iη − ε

p
k

εn− − q̃0 − iη − ε
p
k

)
+ mp fF

(
εn

k − μ∗
n

)
log

(
ε

p
+ + q̃0 + iη − εn

k

ε
p
− + q̃0 + iη − εn

k

))
. (B2)

The integration boundaries are given by

εi
± = (|�k| ± |�q|)2

2m∗
i

+ m∗
i . (B3)

For the real part, the remaining integration over momentum in Eq. (B2) has to be carried out numerically. Alternatively, the real
part can be obtained from a dispersion integral with the analytic expression of the imaginary part, see Eq. (B8) below.
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Using the technique indicated in Reddy et al. [9] we can give an analytic expression for the imaginary part of the Lindhard
function in the case of non-interacting particles or in mean field. To that end we rewrite it as, see Eq. (B2),

Im L(q) = − 1

4π | �q|
∫

kdk

(∫ εn
+

εn−
dx mn fF

(
ε

p
k − μ∗

p

)
δ
(
q̃0 + ε

p
k − x

) −
∫ ε

p
+

ε
p
−

dxmp fF
(
εn

k − μ∗
n

)
δ
(
q̃0 + x − εn

k

))
. (B4)

The angular integration can be evaluated with the help of the δ function and we obtain

ImL(q) = − 1

4π | �q|

(
m∗

n

∫ kp
+

kp
−

kdk fF
(
ε

p
k − μ∗

p

) − m∗
p

∫ kn
+

kn−
kdk fF

(
εn

k − μ∗
n

))
, (B5)

where ki
± is given by the boundaries on the angular integration,

ki
± =

∣∣∣∣∣±m∗
i | �q| + X

m∗
n − m∗

p

∣∣∣∣∣, X = (m∗
nm∗

p (�q2 + 2 (m∗
n − m∗

p) (m∗
n − m∗

p − q̃0)))/2. (B6)

The remaining integration can be carried by employing Eq. (20) of Ref. [9] with xiT = �k2/(2m∗
i ) + m∗

i − μ∗
i ,

ImL(q) = −T m∗
nm∗

p

4π | �q|

(∫ xp
+

xp
−

dx

ex + 1
−

∫ xn
+

xn−

dx

ex + 1

)
, (B7)

where xi
± = ((ki

±)2/(2m∗
i ) + m∗

i − μ∗
i )/T . The final integration leads to

ImL(q) = T m∗
nm∗

p

4π | �q|

{
ln

(
1 + e−xn

+

1 + e−xn−

)
− ln

(
1 + e−xp

+

1 + e−xp
−

)}
. (B8)

The result, apart from being written in a more symmetric way, agrees with that from Reddy et al. [9], Eq. (41), if the different
definition of q0 is considered, which cancels here the explicit μp − μn term in the argument of the logarithm. In addition, the
factor (1 + fB(q0)) is absent since it is explicitly accounted for in Eq. (11).

APPENDIX C: OPACITY EXPRESSIONS

As mentioned in Sec. II A, the contribution of positronic processes to the opacities can be obtained straightforwardly by
replacing (Ee, �ke) → −(Ee, �ke) in the expressions for electronic processes. The complete emissivity and mean free path for
neutrinos including reactions p + e− ↔ n + νe and p ↔ n + e+ + νe becomes then

j(Eν ) = − G2
FV 2

ud

8

∫
d3ke

(2π )3

1

EeEν

{
Lλσ Im
R

λσ (q) fF (Ee − μe)) (1+ fB(q0)) + Lλσ Im
R
λσ (q+)(1− fF (Ee + μe)) (1 + fB(q+

0 ))
}
,

1

λ(Eν )
= − G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

{
Lλσ Im
R

λσ (q)(1 − fF (Ee − μe)) fB(q0) + Lλσ Im
R
λσ (q+) fF (Ee + μe) fB(q+

0 )
}

(C1)

with q+ = (−Ee − Eν − μe + μν,− �ke − �kν ). For antineutrinos it becomes, including n ↔ p + e− + ν̄e and n + e+ ↔ p + ν̄e

reactions,

j̄ (Eν ) = −G2
FV 2

ud

8

∫
d3ke

(2π )3

1

EeEν

{
Lλσ Im
R

λσ (q̄)(1 − fF (Ee − μe)) fB(q̄0) + Lλσ Im
R
λσ (q̄+) fF (Ee + μe) fB(q̄0

+)
}
,

1

λ̄(Eν )
= −G2

FV 2
ud

8

∫
d3ke

(2π )3

1

EeEν

{
Lλσ Im
R

λσ (q̄) fF (Ee − μe) (1 + fB(q̄0))

+ Lλσ Im
R
λσ (q̄+)(1 − fF (Ee + μe)) (1 + fB(q̄0

+))
}

(C2)

with q̄+ = (−Ee + Eν − μe + μν,− �ke + �kν ). The simple properties, cf. Eq. (15),

(1 − fF (Ee + μe)) (1 + fB(q+
0 )) = fB(q+

0 ) fF (Ee + μe) exp((−Eν + μν )/T ),

(1 − fF (Ee + μe)) (1 + fB(q̄0
+)) = fB(q̄0

+) fF (Ee + μe) exp((Eν + μν )/T ), (C3)

reflect detailed balance for positronic processes as it should. In terms of emissivity and mean free path detailed balance reads

j(Eν ) = exp((−Eν + μν )/T )

λ(Eν )
, j̄ (Eν ) = exp((−Eν − μν )/T )

λ̄(Eν )
. (C4)
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For practical purposes, the integration over electron momenta can be transformed into an integration over q0 and | �q|. For instance,
considering the reactions with electrons and neutrinos, p + e− ↔ n + νe, we can use

�q2 = �ke
2 + E2

ν − 2| �ke|Eνz, (C5)

and q0 = Ee − Eν − μe + μν to obtain∫
d3ke

(2π )3
= 1

4π2

∫
| �ke|EedEe

∫ 1

−1
dz = 1

4π2

∫ ∞

me−Eν−μe+μν

Ee

Eν

dq0

∫ k+Eν

|k−Eν |
| �q|d| �q| (C6)

with k = | �ke|.
In elastic approximation, cf. Eq. (20), neutrino emissivity becomes

j(Eν ) = G2
FV 2

ud

π

(
g2

V + 3g2
A

)
(np − nn) (1 + fB(q0))(ke−Ee− fF (Ee− − μe) + ke+Ee+ (1 − fF (Ee+ + μe))) (C7)

with Ee± = ∓(Eν + mn − mp) and q0 = mn − mp + μp − μn. ke± =
√

E2
e± − m2

e denotes the momentum of the charged lepton.
For antineutrinos we have

j̄ (Eν ) = G2
FV 2

ud

π

(
g2

V + 3g2
A

)
(np − nn) fB(q0)(ke−Ee− (1 − fF (Ee− − μe)) + ke+Ee+ fF (Ee+ + μe)) (C8)

with Ee± = ∓(−Eν + mn − mp) and q0 = mn − mp + μp − μn. The mean free paths are then given by Eqs. (C4). Corrected for
mean field effects this becomes, for neutrinos,

j(Eν ) = G2
FV 2

ud

π

(
g2

V + 3g2
A

)
ηpn(ke−Ee− fF (Ee− − μe) + ke+Ee+ (1 − fF (Ee+ + μe))) (C9)

with Ee± = ∓(Eν + m∗
n − m∗

p + Un − Up) and ke± =
√

E2
e± − m2

e . For antineutrinos,

j̄ (Eν ) = G2
FV 2

ud

π

(
g2

V + 3g2
A

)
ηnp(ke−Ee− (1 − fF (Ee− − μe)) + ke+Ee+ fF (Ee+ + μe)) (C10)

with Ee± = ∓(−Eν + m∗
n − m∗

p + Un − Up).
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