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In this work, the two-photon-exchange (TPE) effects in e+e− → π+π− at small
√

s are discussed within a
hadronic model. In the limit me → 0, the TPE contribution to the amplitude can be described by one scalar
function c(2γ )

1 . The ratio between this function and the corresponding contribution in one-photon exchange
c(1γ )

1 reflects all the information of the TPE corrections. The numerical results on this ratio are presented and
an artificial function is used to fit the numerical results. The latter can be used conveniently in the further
experimental data analysis. The numerical results show the asymmetry of the differential cross sections in
e+e− → π+π− is about −4% at

√
s ≈ 0.7 GeV.

DOI: 10.1103/PhysRevC.102.035204

I. INTRODUCTION

As one of the most simple bound states of strong interac-
tion, the pion plays an important role in studying the strong
interaction. The precise measurements of the structures such
as the electromagnetic (EM) form factors (FFs) of the pion
and the nucleon provide a precise test of our understanding of
QCD. Experimentally, it is very difficult to measure the EM
FF of the pion in the spacelike region with large momentum
transfer since there is no pion target, while it is much easier
to measure the EM FF in the timelike region. However, it
is well known that the two-photon-exchange (TPE) contribu-
tions are important to be considered in the precise extraction
of the EM FFs of the proton via the unpolarized elastic ep
scattering [1–6]. Unlike the spacelike region, the TPE effects
in the timelike region can be measured directly and provide a
direct way to test our understanding of the TPE effects. The
TPE effects in e+e− → π+π− at high

√
s (with

√
s being

the center-of-mass energy) has been discussed in Ref. [7]
in the frame of the pQCD factorization. In this work, we
estimate the similar effects at small

√
s within a hadronic

model. Theoretically, the dynamics in the timelike is much
more complex than that in the spacelike region because the
resonances and the rescattering effects may play their roles
in the timelike region. To avoid this complexity, we limit our
discussion at small

√
s in this work with

√
s ∈ [0.3, 0.7] GeV

for π+π− where the contributions from the resonances and
the rescattering effects are expected to be small.

We organize the paper as follows: In Sec. II, we give a
simple description of the dynamics of the hadronic model
at small

√
s, then express the one-photon-exchange (OPE)
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and TPE amplitudes of e+e → π+π− in a general form,
and finally discuss the IR property of the TPE amplitude; in
Sec. III, we give the general expressions on the unpolarized
cross section; and in Sec. IV, we present the numerical results
and give our conclusion.

II. SCATTING AMPLITUDES IN HADRONIC MODEL

We use the interaction introduced in Ref. [8] to describe the
processes e+e− → π+π− at small

√
s. For a charged pointlike

pseudoscalar particle, the electromagnetic interaction to the
lowest order can be described as

L0 = (Dμφ)∗Dμφ − 1
4 FμνFμν, (1)

with Fμν = ∂μAν − ∂νAμ, Dμ = ∂μ + ieQAμ, and eQ = −e =
|e| being the charge of π+ (here we take π+ as particles and
take π− as antiparticles). For the process γ γ → π+π− in the
region with

√
s < 0.75 GeV, the Born terms by this interaction

are consistent with the experimental data which can be seen
from Fig. 3 and Eq. (A.1) of Ref. [9].

When considering the EM structure of the pseudoscalar
particle, usually two EM FFs are multiplied to the on-shell
amplitudes to describe the Born terms of γ ∗γ ∗ → π+π−
[10]. In our method, we introduce the following interaction
to describe such effects:

LI = ieQφDμφ∗∂ν f (−∂ρ∂
ρ )Fμν + H.c. (2)

This Lagrangian produces similar Born terms for γ ∗γ ∗ →
π+π− as Ref. [10]. From this Lagrangian, the vertex of
γπ+π− and γ γπ+π− can be written down as follows:

�μ(p+,−p−) = ie{[1 + q2 f (q2)](p+ − p−)μ

− f (q2)(p2
+ − p2

−)qμ},
	μν (k1, k2) = 2ie2

[
gμν + f

(
k2

1

)(
k2

1gμν − kμ
1 kν

1

)
+ f

(
k2

2

)(
k2

2gμν − kμ
2 kν

2

)]
, (3)

with p+ and p− the momenta of outgoing π+ and π−, re-
spectively, and q = p+ − p−, k1,2 the momenta of incoming
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FIG. 1. One-photon exchange diagram in e+e− → π+π−.

photons. The introduced factor f (q2) is related with the EM
FF of pion by the following relation:

Fπ (q2) = 1 + q2 f (q2), (4)

where the EM FF Fπ (q2) in the timelike region is defined as

〈π+π−| jμ(0)|0〉 ≡ e(p+ − p−)μFπ (q2), (5)

with jμ = ∑
eiqiγμqi, qi being the quark fields, i being the

flavor indexes of the quarks, and ei being the corresponding
electric charge (eu = −2/3e = 2/3|e| for u quark).

We would like to emphasize the following properties:
When

√
s is around 2mπ the results by the above interaction

go back to the pointlike case by taking f (q2) → 0 and this is
just the leading order of the chiral perturbative theory. When√

s → 0.7 GeV, the contribution from the 0++ resonance can
be neglected in the e+e− → π+π− case due to the interfer-
ence and we show this property in the next section in detail.
This is very different with the γ ∗γ ∗ → π+π− case. When√

s > 0.8 GeV, the contribution from other resonances such
as f2(1270) may play their roles and the Born terms are
not enough to describe the dynamics in this region. When√

s > 3 GeV, the dynamics of the elastic part (nonresonant
part) can be described by the pQCD. In this work, we limit
our discussion in the region with

√
s < 0.7 GeV where the

Born terms works well.
Under the OPE approximation, the process e+e− → π+π−

can be described by the Feynman diagram shown in Fig. 1.
The corresponding amplitude in Feynman gauge can be writ-
ten as follows:

M1γ = −iν̄(p2, me)(−ieγμ)u(p1, me)

×�ν (p4,−p3)
−igμν

(p1 + p2)2 + iε
, (6)

where p1, p2, p3, and p4 are the momenta of the ini-
tial electron, initial antielectron, final π−, and π+. For
convenience, we define q = p1 + p2, s = q2, and Q2 =
−(p1 − p3)2 with p1 = (E1, 0, 0,

√
E2

1 − m2
e ) and p3 =

(E3, 0,
√

E2
3 − m2

π sin θ,
√

E2
3 − m2

π cos θ ) in the center-of-
mass frame.

When discussing the contributions in the next-to-leading
order of αe with αe ≡ e2/4π , in principle all the one loop
diagrams should be considered. Among all these one-loop
diagrams, the TPE diagrams shown in Fig. 2 play a special
role since only these diagrams give the different angle de-
pendence contributions comparable to the OPE contributions.
In the Feynman gauge, the corresponding expressions can be
written down as follows:

M2γ ≡ M(a)
2γ + M(b)

2γ + M(c)
2γ ,

M(a)
2γ = −i

∫
d4k1

(2π )4
ν̄(p2, me)(−ieγμ)

× i(�p1 − �k1 + me)

(p1 − k1)2 − m2
e + iε

(−ieγν )u(p1, me)

×�μ′ (p4 − k1,−p3)
i

(p4 − k1)2 − m2
π + iε

×�ν ′ (p4, p4 − k1)
−igνν ′

k2
1 + iε

−igμμ′

k2
2 + iε

,

M(b)
2γ = −i

∫
d4k1

(2π )4
ν̄(p2, me)(−ieγμ)

× i(�p1 − �k1 + me)

(p1 − k1)2 − m2
e + iε

(−ieγν )u(p1, me)

×�ν ′ (p4 − k2,−p3)
i

(p4 − k2)2 − m2
π + iε

×�μ′ (p4, p4 − k2)
−igνν ′

k2
1 + iε

−igμμ′

k2
2 + iε

,

M(c)
2γ = −i

∫
d4k1

(2π )4
ν̄(p2, me)(−ieγμ)

× i(�p1 − �k1 + me)

(p1 − k1)2 − m2
e + iε

(−ieγν )u(p1, me)

×	μ′ν ′ (k1, k2)
−igνν ′

k2
1 + iε

−igμμ′

k2
2 + iε

, (7)
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FIG. 2. Two-photon exchange diagrams in e+e− → π+π−.

035204-2



TWO-PHOTON-EXCHANGE EFFECTS IN … PHYSICAL REVIEW C 102, 035204 (2020)

where k2 = p1 + p2 − k1. Although not all one-loop diagrams
are included, M2γ is still gauge invariant.

Generally, the C, P, T invariant amplitude of e+e− →
π+π− can be written as the sum of two-invariant amplitudes
as follows:

M1γ ,2γ = c(1γ ,2γ )
1 M1 + c(1γ ,2γ )

2 M2, (8)

with

M1 ≡ ν̄(p2, me)(�p3 − �p4)u(p1, me),

M2 ≡ ν̄(p2, me)u(p1, me). (9)

Comparing the expression M1γ with Eq. (8), one can
easily get the expressions of c(1γ )

1,2 :

c(1γ )
1 = e2(1 + s f (s))

s
, c(1γ )

2 = 0. (10)

Furthermore, in the limit me → 0, c(2γ )
2 is exact zero due the

property of gauge interaction [11].
To calculate c(2γ )

1,2 , we can use the project method, which
means that we multiply the invariant M1,2 to the expressions
of M2γ , then take c(2γ )

1,2 as variables to solve the two algebra

equations, and finally get the manifest expressions of c(2γ )
1,2 .

In the practical calculation, these steps are done directly by
the MATHEMATICA codes and we do not present the manifest
expressions of c(2γ )

1,2 .
After the loop integration, one can find that there is only

IR divergence in c(2γ )
1 . The IR part of the coefficient c(2γ )

1 can
be gotten via the soft photon approximation. In the literature,
usually there are two forms to take soft photon approximation.
One is the traditional formula given by Tsai and Mao [12];
another is given by Maximon and Tjon [13]. In the former,
the IR part is expressed as

c(2γ )
1,IRA = −αe

π
[K (p1, p3) − K (p2, p3)]c(1γ )

1 , (11)

with K (pi, p j ) ≡ pi p j
∫ 1

0 dy ln(p2
y/λ

2)/p2
y, py ≡ ypi + (1 −

y)p j , and λ being the introduced infinitesimal mass of photon.
In the latter, the IR part is expressed as

c(2γ )
1,IRB = −αe

π
log

( s

λ2

)
log

(
p2 p3

p1 p3

)
c(1γ )

1 . (12)

In the experimental analysis, the IR part of the TPE con-
tributions should be canceled by the real radiative corrections.
To compare the theoretical TPE contributions with the exper-
imental data, one should be careful on the detail that how
the IR part is included in the experimental data analysis. In
the following, to show the TPE contributions from the finite
momentum transfer, we subtract the IR part c(2γ )

1,IRA from the

coefficient c(2γ )
1 and define

c(2γ )
1 ≡ c(2γ )

1 − c(2γ )
1,IRA. (13)

III. CROSS SECTION

To discuss the TPE corrections to the unpolarized differen-
tial cross section, we can directly use the general form of the

amplitude to express the cross sections in the OPE and TPE
cases. For the unpolarized cross section, we have

dσ
1γ⊗1γ
un

d�
∝ 1

4

∑
spin

M∗
1γM1γ

= ∣∣c(1γ )
1

∣∣2 1

4

∑
spin

M∗
1M1

= ∣∣c(1γ )
1

∣∣2[
2s

(
Q2 + m2

e

) − 2
(
m2

π + Q2 + m2
e

)2]
,

dσ
1γ⊗2γ
un

d�
∝ 2Re

[
1

4

∑
spin

M∗
1γM2γ

]

= 2Re
[
c(1γ )

1 c(2γ )
1

] ∑
spin

1

4
M∗

1M1 + 2Re
[
c(1γ )

1 c(2γ )
2

]

×
∑
spin

1

4
M∗

1M2

= 2Re
[
c(1γ )

1 c(2γ )
1

][
2s

(
Q2 + m2

e

)
− 2

(
m2

π + Q2 + m2
e

)2]
+2Re

[
c(1γ )

1 c(2γ )
2

]
me

(
s − 2Q2 − 2m2

π − m2
e

)
,

(14)

where the global phase space factor is not included and the
property that

∑
spin

M∗
1M1,2 are real is used.

In the limit me → 0, Eq. (14) directly shows that the TPE
contribution to the unpolarized cross section due to c(2γ )

2 is
exact zero. This property also means that the 0++ resonances’
contribution via e+e− → γ ∗γ ∗ → 0++ → π+π− can be ne-
glected, since the general amplitude with C, P, T and Lorentz
invariance for this process can be written as

Me+e−→γ ∗γ ∗→0++→π+π− = g(Q2)Me+e−→0++M0++→π+π−

= c(0++ )
2 (Q2)M2, (15)

where f (Q2), c(0++ )
2 (Q2) are functions only dependent on

Q2. Moreover, in the limit me → 0, one has stronger result
c(2γ ,0++ )

2 → 0. This property is because the gauge interaction
does not change the helicity of the massless fermion. The form
of M2 allows us to change the helicity and then its coefficient
must be zero.

Similarly with the unpolarized cross section, in the polar-
ized case we can define

Px ≡ σ++ − σ+−
σ++ + σ+−

, (16)

where ++ refers to the case that the helicities of the initial
e+ and e− are positive and +− refers to the case that the
helicities of initial e+ is positive and e− is negative. In the limit
me → 0, σ+− is always zero whether the TPE contribution is
considered or not. This means Px = 1 and we cannot extract
the TPE information from this quantity.
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FIG. 3. Numerical results for the TPE corrections Re[δπ
c1

] ≡ Re[c(2γ )
1,π /c(1γ )

1,π ]. The left panel is for Re[δπ
c1

] vs cos θ and the right panel is for
Re[δπ

c1
] vs

√
s.

Finally, in the limit me → 0, the TPE corrections to the
unpolarized cross section can be expressed as the follows:

δ(2γ )
un ≡ dσ

1γ⊗2γ
un

dσ
1γ⊗1γ
un

∣∣∣∣
me→0

= 2
Re

[
c(2γ )

1

]
c(1γ )

1

. (17)

IV. NUMERICAL RESULTS AND DISCUSSION

In the practical calculation, we take the EM FF Fπ (q2) as
follows [14,15]:

Fπ (q2) = −	2

q2 − 	2 + iε
, (18)

with 	 = mρ ≈ 0.77 GeV. Such a simple choice of the FF
is close to the current experimental results in the spacelike

region [16]. At first glance, such FF is not valid in the timelike
region and in the loop since there is phase for the FF in
the timelike region. While at small

√
s, naively the main

contributions in the loop integrations come from the soft
region (where the momentum of one photon is close to zero)
and the on-shell region (where both the momenta of the two
photon are close to on shell). In both cases, the contributions
to the ratio between the TPE and OPE cross sections are very
weakly dependent on the form of FF. The other contributions
mainly comes from the symmetry region where both the two
photons take momenta

√
s/2 and we approximately neglect

the phase of the FF in this region. The contributions from
the high energy is regularized by the absolute value of the
FF and the effects due to the phase can be neglected in this
region. In principle, the phase of the FF at low energy comes

FIG. 4. Numerical results for the difference between the two IR parts δπ
IR ≡ (c(2γ )

1,IRA − c(2γ )
1,IRB)/c(2γ )

1 . The left panel is for δπ
IR vs cos θ and the

right panel is for δπ
IR vs

√
s.
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FIG. 5. Comparison of the TPE corrections Re[δπ
c1

] ≡ Re[c(2γ )
1,π /c(1γ )

1,π ] between the cases with FF and without FF (the pointlike particle).
The left panel is for small

√
s and the right panel is for medium

√
s.

from the ππ rescattering effects and the ρ → ππ → ρ loop.
We can expect these effects are small at small energy. Based
on this picture, the effects due to the phase of the FF is
neglected in our calculation. In the practical calculation, we
use the packages FeynCalc [17] and LoopTools [18] to do the
analytical and numerical calculations, respectively.

For simplicity, we define the TPE corrections δπ
c1

≡
c(2γ )

1,π /c(1γ )
1,π . The dependence of Re[δπ

c1
] on the scattering angle

cos θ is presented in the left panel of Fig. 3 where the
(black) solid, (red) dashed, (blue) dotted, and (olive) dot-
dashed curves refer to the results with

√
s = 0.3, 0.5, 0.6,

and 0.7 GeV, respectively. The dependence of Re[δπ
c1

] on the
momentum transfer

√
s is presented in the right panel of

Fig. 3 where the (black) solid, (red) dashed, (blue) dotted,
and (olive) dot-dashed curves refer to the results with θ =
π/9, 2π/9, 3π/9, and 4π/9, respectively. From Fig. 3, one
can see that the TPE corrections Re[δπ

c1
] are odd functions on

cos θ and their magnitude reaches the largest at θ = 0 and
π . They increase when

√
s increases and reach about 2%

when
√

s = 0.7GeV at θ = 0. Since the TPE corrections to
the unpolarized differential cross section are exactly 2Re[δπ

c1
]

in the limit me → 0, the TPE corrections to the unpolarized
differential cross section reach about 4% at θ = 0. Here, we
want to point out that if one subtracts the IR part c(2γ )

1,IRB from

the coefficient c(2γ )
1 then the behaviors of the TPE corrections

are very different. To show this property, we present the
numerical results for δπ

IR ≡ (c(2γ )
1,IRA − c(2γ )

1,IRB)/c(2γ )
1 in Fig. 4,

where one can see that the difference between the two IR
parts is in the same order compared with Re[δπ

c1
] and is not

dependent on the parameter 	.
To show the effects of the EM FF, the comparison between

the results by our choice of FF and the results in the pointlike
particle case at small and medium

√
s are presented in Fig. 5.

From Fig. 5, one can see that the difference between the
results at small

√
s are much smaller than those at medium

√
s. If one takes the chiral limit, one can expect that the above

two results will be closer when
√

s → 0.
To show the sensibility of the results on the input parame-

ter, the results Re[δπ
c1

] with different 	 as inputs are presented
in Fig. 6, where an unphysical choice 	 = mρ − i�ρ/2 ≈
0.77 + 0.075i GeV is also used for comparison. The results
show that the effect from the imaginary part of Fπ (q2) just
looks like moving the real parameter 	 a little. This means
that the approximations Eq. (18) is valid as argued. For real
	 ∈ [0.7, 0.9] GeV, the TPE corrections at

√
s = 0.6 GeV are

a little sensitive on 	. This property is very different with the
TPE corrections in the spacelike region of elastic ep scattering
case, which hints that the TPE corrections in the timelike

FIG. 6. Numerical results for the TPE corrections Re[δπ
c1

] vs
cos θ at

√
s = 0.6 GeV with different 	 as inputs.
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FIG. 7. Numerical results for the TPE corrections Im[δπ
c1

] ≡ Im[c(2γ )
1,π /c(1γ )

1,π ]. The left panel is for Im[δπ
c1

] versus cos θ and the right panel is
for Im[δπ

c1
] versus

√
s.

region are more complex than those in the spacelike region.
Furthermore, if one subtracts the IR part c(2γ )

1,IRB from the

coefficient c(2γ )
1 then the 	 dependence of the TPE corrections

is much weaker since the latter is in the same order and is not
dependent on 	.

In Fig. 7, we present the numerical results for Im[δπ
c1

],
where one see they are much smaller than the real parts
Re[δπ

c1
]. In Fig. 8, we present the numerical results for Re[δπ

c2
]

with δπ
c2

≡ c(2γ )
2,π /c(1γ )

1,π by taking me as its physical mass. The
results show that the TPE contributions to Re[δπ

c2
] are really

small, and this behavior is consistent with the property of the
gauge interaction in the massless case.

For the convenience of the future experimental data analy-
sis, we use the following formula to fit δπ

c1
in the region with√

s = [0.4, 0.7] GeV:

Re
[
δπ

c1

] = (
cπ

11 + cπ
12s2

)
cos θ + (

cπ
21 + cπ

22s2
)
s cos3 θ.

(19)

The fitted numerical parameters are listed in Table I.
The results by these parameters are very close to the
calculated numerical results and we do not show their
difference.

Since the TPE correction to the unpolarized cross section
is exactly 2Re[δπ

c1
], we do not show them anymore.

FIG. 8. Numerical results for the TPE corrections Re[δπ
c2

] ≡ Re[c(2γ )
2,π /c(1γ )

1,π ]. The left panel is for Re[δπ
c2

] versus cos θ and the right panel
is for Re[δπ

c2
] versus

√
s.
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TABLE I. The fitted numerical results for the coefficients cπ
i j .

cπ
i j i = 1 i = 2

j = 1 0.00064324 −0.0556441
j = 2 0.0106567 −0.122082

In summary, the TPE effects e+e− → π+π− at small
√

s
are estimated in the hadronic level. The TPE corrections to the
amplitude and the unpolarized differential cross section are
both given. The numerical results show that the TPE effects

in e+e− → π+π− within the region
√

s ≈ 0.7 GeV give an
about 4% asymmetry contribution to the angle dependence of
the unpolarized cross section.
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