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Gluon bremsstrahlung in relativistic heavy ion collisions
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We study the process qq → qqg at lowest order in QCD perturbation theory to understand gluon radiation in
the fragmentation region of relativistic heavy ion collisions. We arrive at a formula for gluon multiplicity that
interpolates between ∼1/k2

⊥ behavior at low k⊥, to ∼1/k4
⊥ at large k⊥.
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I. INTRODUCTION

Understanding gluon distributions in the fragmentation re-
gion of ultrarelativistic heavy ion collisions [1,2] is interesting
because it gives insight into the behavior of matter at high
baryon density in the presence of strong gluon fields. The
ultimate application we envisage for this work is to under-
stand the initial conditions for hydrodynamics or transport for
the valence quarks and associated radiation produced in the
fragmentation region of heavy ion collisions. Such matter may
form a quark-gluon plasma that is distinctively different from
that found in the central region. There may be a finite ratio of
baryon number chemical potential to temperature. The earliest
estimates suggested that energy densities and times scales are
sufficient for a formation of a quark-gluon plasma [1]. What
is required is to update these old estimates in light of what
we have understood about the color glass condensate and the
coherence of particle production.

In this work, we are concerned with gluon radiation in
the fragmentation region of the target nucleus. Even if the
colliding nuclei are of the same size, one faces an asymme-
try between the saturation scales of the target and projectile
(Qtarg

s � Qproj
s ), an asymmetry which is enhanced if the pro-

jectile nucleus is larger. This is because the saturation scale
of a nucleus (or hadron) is proportional to the gluon rapidity
density [3,4], dN/dy, which grows like an exponential in the
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rapidity difference τ ≡ ln 1/x = ynucl − y [5,6]. In the frag-
mentation region of the target nucleus, this rapidity difference
is by definition very small, but for the projectile, it is large, and
hence the respective gluon densities are very different. For the
ultrarelativistic case, which we are interested in, not only may
the gluon fields be treated classically—as is typically the case
in saturation physics [7]—but the asymmetry of this problem
allows one to solve classical Yang-Mills equations [8,9] by
treating the projectile as a strong background field Aμ, while
the target field, δAμ, is taken to first order since it is much
weaker. This asymmetry of saturation scales is not unique to
the case of rapidities far from the central region; in fact it
has been exploited to calculate gluon radiation in the central
region of collisions involving particles with different sizes
(proton-nucleus collisions, for example) [10]. Many features
of the results in that scenario are shared by a calculation in the
fragmentation region.

In previous works, Kajantie, McLerran, and Paatelainen
[11,12], proceeding in this spirit of classical Yang-Mills equa-
tions, took steps towards calculating small-k⊥ gluon radiation
in the fragmentation region of nucleus-nucleus collisions. We
now give a very brief overview of their key results, highlight-
ing the issues we wish to address.

In the computations of Kajantie, McLerran, and Paate-
lainen, for a nucleus-nucleus collision, there are two sources
of coherence. The first and easiest to treat arises from the high
energy projectile that strikes a target nucleus. This projectile
may be treated as a source of color field, and this is straight-
forward to treat by methods developed for the central region.
The difficult part of the computation was to treat the radiation
associated with coupling to sources in the fragmentation re-
gion. It was possible to do this insofar as the gluon fields are
treated in a no recoil approximation. This meant that there was
not a complete treatment of the high transverse momentum
tail of the radiation distribution. For this high momentum tail,
the gluon production is no longer coherent and can be treated
to first order in the strength of the projectile and the target
sources, but the recoil can be treated to all orders. Including
recoil will complete the computation of such radiation.
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Specifically, the problem considered in Refs. [11,12] is that
of gluon radiation produced when a sheet of colored glass
interacts with a classical particle that has an associated color-
charge vector T. One then finds two sources of radiation:
the first is electrodynamics-like (ED-like) bremsstrahlung of
a charged particle getting a momentum kick from p to p′; the
second, which they term the bulk contribution, is from inter-
action of a gluon emitted by the target quark with the sheet
of colored glass, with a term with no reinteraction subtracted.
The former is calculated from the following radiation current,

Jμ(k) = iT

(
pμ

p · k
− p′μ

p′ · k

)
, (1)

with the resulting gluon distribution [11]

16π3|k| dN

d3k
= Jμ(k)Jμ(−k)

= T 2

[
m2

(
1

p · k
− 1

p′ · k

)2

− p′2
T

(p · k)(p′ · k)

]
, (2)

where k is the gluon’s momentum and p′
T

is the transverse-
momentum kick of the charged particle. The above result falls
off like ∼1/k2

⊥ no matter the value of k⊥. The bulk contri-
bution was calculated numerically for general values of k⊥,
and analytically in the large-k⊥ limit with the resulting falloff
∼ log(k⊥)/k4

⊥. To understand why this result is troublesome
let us recount some findings from Ref. [10], which, as dis-
cussed above, is analogous to the study of the fragmentation
region. In the region1 Q(2)

s > k⊥ > Q(1)
s , the gluon distribution

has a ∼1/k2
⊥ behavior and for k⊥ > Q(2)

s it changes to ∼1/k4
⊥.

Also note, in the region k⊥ > Q(2)
s , the fields of both particles

are weak enough to permit a perturbative calculation. Hence
as far as one can calculate, the bulk contribution is correct
and interpolates between the ∼1/k2

⊥ behavior at low k⊥ to
the ∼1/k4

⊥ falloff at large transverse momentum. This result
is remarkable, considering that this calculation is nonpertur-
bative and classical. However, the ED-like radiation shown
above is not correct, at least for large transverse momentum
k⊥ > Qproj

s . Indeed the calculation as done in Refs. [11,12]
was only meant to be valid for small k⊥, i.e., when the gluon
does not carry away a significant fraction of the quark’s mo-
mentum.

In the present work, our aim is to understand how this
formula may be remedied and to produce one that has the
correct behavior for all values of k⊥. Since we want to deal
with large transverse momentum we can turn to a simpler
but related perturbative problem. We calculate gluon radiation
from quark-quark scattering to lowest order in QCD perturba-
tion theory, where we consider one quark to be at rest and the
other ultrarelativistic.

This paper is organized as follows. In Sec. II we derive
the multiplicity distribution of gluons perturbatively using the
qq → qqg process. Section III is a discussion of the results,

1Q(2)
s and Q(1)

s are respectively the saturation momenta of the large
nucleus and the proton. In the case of the fragmentation region, these
correspond to the saturation momenta of the projectile and target
nucleus, respectively.
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FIG. 1. The lowest order tree-level diagrams for gluon
bremsstrahlung.

where we study the gluon multiplicity distribution in various
kinematic limits with a special focus on the fragmentation
region. Section IV is the conclusion.

II. GLUON BREMSSTRAHLUNG

We calculate gluon bremsstrahlung perturbatively using
the process qq → qqg (Fig. 1). Both beam and target could
move on the light cone, and the beam fragmentation region
can be studied in the forward limit [13,14], but in our calcula-
tion we just consider the target to be at rest. This treatment
is similar to that of Gunion and Bertsch [15–17], and it is
also just the Lipatov vertex [18] at high energy. We use the
following kinematics (in light-cone coordinates):

pμ
1 = (M, M, �0), pμ

2 = (0, P, �0), kμ =
(

xM,
�k2
⊥

2xM
, �k⊥

)
,

p′μ
1 =

(
(1 − x)M, M + xM

1 − x
+ (�q⊥ − �k⊥)2

2M(1 − x)
, �q⊥ − �k⊥

)
,

p′μ
2 =

(
0, P − k2

T

2Mx
− xM

1 − x
− (�q⊥ − �k⊥)2

2M(1 − x)
,−�q⊥

)
, (3)

where pμ
1 is the initial momentum of the quark at rest with

M = m/
√

2 (where m is the quark mass), pμ
2 is the initial

momentum of the incident quark with energy P, kμ is the
momentum of the radiated gluon, and x is the fractional light-
cone momentum carried by the radiated gluon. The momenta
p′μ

1 and p′μ
2 are the final momenta of the two quarks, respec-

tively. The momentum transfer can be written as

qμ =
(

0,
k2

T

2Mx
+ xM

1 − x
+ (�q⊥ − �k⊥)2

2M(1 − x)
, �q⊥

)
, (4)

where we have dropped terms of order ∼1/P.
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We calculate in the light-cone gauge, and hence the gluon
propagator takes the following form:

iSμν
B (q)= −iδab

q2

(
gμν − qμnν +nμqν

n · q

)
, (5)

where n = (0, 1, �0). With this choice, diagrams with gluon
emissions from the bottom quark line do not contribute to the
amplitude squared, and hence it suffices to consider only the
three diagrams in Fig. 1.

We define gluon multiplicity distribution in the follow-
ing way. First we calculate the cross section for gluon
bremsstrahlung:

dσ

dyd2k⊥
= 1

(2π )5

1

flux

1

8PM

∫
|M(a+b+c)|2 1

1 − x
d2q⊥. (6)

Factor 1/(1 − x) in Eq. (6) comes from the phase-space inte-
gration ∫

dq− δ+
(
p′ 2

1 − m2
)
, (7)

where

p′ 2
1 − m2 = 2(q+ + M − k+) q− − (q⊥ − k⊥)2

− 2M(k+ − q+) − k2
⊥

M − k+ + q+

k+ . (8)

From the on-shell condition (p2 − q)2 = 0 we get that q+ ∼
1/P, and the Jacobian of the delta function in Eq. (7) is
1/(2M(1 − x)) in the limit P → ∞.

On the other hand, the Born cross section for quark-quark
scattering without gluon radiation reads

dσBorn

d2q⊥
= 1

(2π )2

1

flux

1

4PM
|MBorn|2, (9)

where the flux factor is the same as in Eq. (6), and

|MBorn|2 = CF

Nc

8g2P2M2

q2
⊥

. (10)

We define the gluon multiplicity distribution from the convo-
lution

dσ

d2k⊥dy
=

∫
d2q⊥

dσBorn

d2q⊥

dN

d2k⊥dy
. (11)

The amplitude squared is the sum of six terms,

|M(a+b+c)|2 = |Ma|2 + |Mb|2 + |Mc|2 + 2MaM∗
b

+ 2MbM∗
c + 2MaM∗

c , (12)

which are respectively displayed in diagrammatic form in
Fig. 2. We get the following results for each of these terms:

|Ma|2 = 2K
C2

F

Nc

[
x2

DA
+ 4x2(x − 1)

D2
A

]
, (13)

|Mb|2 = 2K
C2

F

Nc

[
x2

DB
+ 4x2(x − 1)M2

D2
B

]
, (14)

|Mc|2 = K
CACF

Nc

[
2(x2 − 2x + 2)

DC
+8x2(x − 1)

D2
C

M2

]
, (15)

+ +

+ 2+ 2+ 2

FIG. 2. The six pieces of the amplitude squared.

MaM∗
b = −K

CF

2N2
c

[−x2

DB
+ x2(x2 − 2x + 2)

DADB
q2

T

− x2

DA
+ 8x2(1 − x)

DADB
M2

]
, (16)

MaM∗
c = K

CACF

2Nc

[−x2

DA
+ x2 − 2x + 2

DADC
q2

⊥

−x2 − 2x + 2

DC
+ 8x2(1 − x)

DADC
M2

]
, (17)

MbM∗
c = K

CACF

2Nc

[−x2

DB
+ (x − 1)2(x2 − 2x + 2)

DBDC
q2

⊥

−x2 − 2x + 2

DC
+ 8x2(1 − x)

DBDC
M2

]
, (18)

where DA = k2
⊥ + 2x2M2, DB = (�k⊥ − x �q⊥)

2 + 2x2M2,

DC = (�k⊥ − �q⊥)
2 + 2x2M2, CA = Nc = 3, CF = N2

c −1
2Nc

, and
K = 8g6

s (1 − x)M2P2/q4
⊥. We have only kept terms that are

proportional to P2, which turns out to be the leading power in
the large momentum P.

If we ignore Eq. (16), then the terms above separate into
two sets according to their color factors: either a term is
proportional to CF or it is proportional to C2

F /Nc. Taking a
look at Eq. (16), we notice that it comes with the following
color factor,

− CF

2N2
c

= C2
F

Nc
− CACF

2Nc
, (19)

and so we see that it contributes to both sets. In fact it con-
tributes precisely so as to cancel out all the terms that would
go as ∼1/k2

⊥ at large k⊥, leaving only those that go as ∼1/k4
⊥.

034908-3



LUSHOZI, MCLERRAN, PRASZALOWICZ, AND YU PHYSICAL REVIEW C 102, 034908 (2020)

The full amplitude squared can then be expressed as

|M(a+b+c)|2 = 2g2
s

CF

Nc

8g4
sM

2P2

q4
⊥

(1 − x)

{
CF x2

[
(x2−2x+2)

DADB
q2

⊥+4(x − 1)M2

(
1

DA
− 1

DB

)2]

+ CA

2

[
(x2−2x+2)q2

⊥

(
− x2

DADB
+ 1

DADC
+ (x − 1)2

DBDc

)
+ 8x2(1−x)M2

(
− 1

DADB
+ 1

DADC
+ 1

DBDC
− 1

D2
C

)]}
.

(20)

In the first line of Eq. (20) we recognize the Born amplitude squared of Eq. (9). By comparing Eq. (20) with Eq. (11) we
arrive at our final result for the gluon distribution:

dN

d2k⊥ dy
(�q⊥) = αs

2π2

{
CF x2

[
(x2−2x+2)

DADB
q2

⊥+4(x − 1)M2

(
1

DA
− 1

DB

)2]

+ CA

2

[
(x2−2x+2)q2

⊥

(
− x2

DADB
+ 1

DADC
+ (x − 1)2

DBDc

)
+ 8x2(1−x)M2

(
− 1

DADB
+ 1

DADC
+ 1

DBDC
− 1

D2
C

)]}
.

(21)

III. DISCUSSION

To start analyzing the bremsstrahlung probability in
Eq. (21), we assume that M2 � k2

⊥, q2
⊥, which allows one to

neglect M2 in the numerators and in DA, but not in DB,C where
M2 regularizes singularities when k⊥ ∼ q⊥ or k⊥ ∼ xq⊥:

dN

d2k⊥ dy
∼ αsq

2
⊥(x2 − 2x + 2)

{
2CF

x2

DBDA

+CA

(
(1 − x)2

DBDC
+ 1

DADC
− x2

DBDA

)}
. (22)

A few remarks are in order here: The part proportional to
CF can be viewed as bremsstrahlung from a fermion line
(including the interference), whereas terms proportional to CA

involve a 3-gluon vertex and a CA part of fermion interference
(x2/(DBDA)). Importantly, a term from the 3-gluon vertex
squared that should naively be proportional to 1/D2

C cancels
out (except for a term proportional to M2 that we neglected).
This is why the full result is proportional to (x2 − 2x + 2),
which is connected to the DGLAP probability,

Pq→g = CF
αs

2π

1 + (1 − x)2

x
. (23)

Note also that in the large-Nc limit 2CF → Nc = CA, and both
terms have the same color factor.

Let us first check limits coming from x = 1 or x = 0 (note
that in these limits the mass terms that we neglected vanish):

(i) For x = 0 we have DB = DA = k2
⊥ and

DC = (�k⊥ − �q⊥)2,

dN

d2k⊥dy

∣∣∣∣
x=0

∼ 4αsCA
q2

⊥
k2
⊥(�k⊥ − �q⊥)2

. (24)

This is the Bertsch-Gunion (BG) formula [15]. Note
that it comes entirely from the interference term.

(ii) For x = 1 we have DB = DC = (�k⊥ − �q⊥)2 + 2M2

and DA = k2
⊥,

dN

d2k⊥dy

∣∣∣∣
x=1

∼ 2αsCF
q2

⊥
k2
⊥((�k⊥ − �q⊥)2 + 2M2)

. (25)

This looks like the BG formula, but with a different
color factor. The numerical coefficient in front is 2
rather than 4 due to a different value of (x2 − 2x + 2)
at x = 1 and 0.

Now we investigate three limits in k⊥:

(i) For k⊥ � xq⊥ we have DB = x2q2
⊥, DA = k2

⊥, and
DC = q2

⊥,

dN

d2k⊥dy
∼ αs(x

2 − 2x + 2)

{
2CF

1

k2
⊥

+ CA
(1 − x)2

x2q2
⊥

}
.

(26)

(ii) For xq⊥ � k⊥ � q⊥we have DB = DA = k2
⊥ and

DC = q2
⊥,

dN

d2k⊥dy
∼ αs(x

2 − 2x + 2)

{
2CF

q2
⊥x2

k4
⊥

+CA
q2

⊥
k2
⊥

(
(1 − x)2 + 1

q2
⊥

− x2

k2
⊥

)}
. (27)

This formula does have a 1/k4
⊥ part, which is, how-

ever, suppressed in the large-Nc limit.
(iii) Finally for q⊥ � k⊥, DA = DB = DC = k2

⊥,

dN

d2k⊥dy
∼ αs(x

2 − 2x + 2)
q2

⊥
k4
⊥

{2CF x2 + 2CA(1 − x)}.

(28)
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This formula is “x safe” so that we can take both x =
0 and x = 1 limits and it agrees with the large-k⊥ limit
of Eqs. (24) and (25).

The reason why we need to compare Eqs. (24), (25), (27),
and (28) only to the Bertsch-Gunion result of Ref. [15] is
because we are interested in high transverse momentum for
the gluon emission where only the first order interactions
in the strength of the sources are required. A full treatment for
the central region where such coherence effects are important
is given, e.g., in Ref. [19] and in Refs. [20,21] where also the
confinement effects have been discussed. A treatment of the
coherent region for the fragmentation region is included in
Refs. [11,12].

Unpacking these results a bit further, the condition k⊥ �
q⊥ means that we are looking at soft gluons in the sense that
there is virtually no recoil of the emitting quark. Staying with
the soft-gluon case, the condition k⊥ � xq⊥ is equivalent to
requiring that the emitted gluons have rapidity between zero
and the final rapidity of the kicked quark—we are essentially
looking at the fragmentation region. Equation (26) then says:
For recoil-less quarks, in the fragmentation region, the con-
tribution from QED-like bremsstrahlung falls off like 1/k2

⊥
while the BG contribution is constant in k⊥.

The next case, xq⊥ � k⊥ � q⊥, still considers recoil-less
quarks but this time in the central region. Here the QED-like
bremsstrahlung falls off rapidly as 1/k4

⊥ while the BG contri-
bution is dominated by a 1/k2

⊥ falloff, as seen in Eq. (27).
In the final case, k⊥ � q⊥, we are looking at high recoil
and Eq. (28) shows a ∼1/k4

⊥ falloff in all regions. Here the
fragmentation region corresponds to x � 1/2.

IV. CONCLUSION

We have computed the contribution to gluon radiation of a
particle scattering from the strong field of a nucleus. As noted
in Ref. [12], the classical treatment of the particle computation
breaks down in this region. This result should allow a proper
matching onto the high transverse momentum region of the
emitted gluon, as in this region one can compute the radiation
perturbatively, and the contribution we present should be of
leading order. This paper therefore completes the determina-
tion of the ingredients necessary to properly determine the
initial conditions for matter produced in the fragmentation
region of high energy heavy ion collisions.

ACKNOWLEDGMENTS

L.M. wishes to gratefully acknowledge many useful dis-
cussions with Keijo Kajantie and Risto Paatelainen. L.M. was
supported, and M.L., M.P., and G.Y. were partially supported,
by the U.S. DOE under Grant No. DE-FG02-00ER41132.
M.L. and G.Y. were partially supported under the Multifarious
Mind grant provided by the Simons Foundation. G.Y. was
partially supported by the National Natural Science Founda-
tion of China under Grant No. 11847207, the International
Postdoctoral Exchange Fellowship Program of China under
Grant No. 20180010, and the China Postdoctoral Science
Foundation Funded Project under Grant No. 2017M610663.
The research of M.P. was supported in part by the NAWA
(Polish National Agency for Academic Exchange) Bekker
programme and by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
No. 824093.

[1] R. Anishetty, P. Koehler, and L. D. McLerran, Phys. Rev. D 22,
2793 (1980).

[2] L. D. McLerran, EPJ Web Conf. 172, 03003 (2018).
[3] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100,

1 (1983).
[4] A. H. Mueller, Nucl. Phys. B 335, 115 (1990).
[5] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor.

Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].
[6] Ya. Ya. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978)

[Sov. J. Nucl. Phys. 28, 822 (1978)].
[7] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233

(1994); 49, 3352 (1994).
[8] F. Gelis and R. Venugopalan, Acta Phys. Polon. B 37, 3253

(2006).
[9] S. K. Wong, Nuovo Cim. A 65, 689 (1970).

[10] A. Dumitru and L. D. McLerran, Nucl. Phys. A 700, 492 (2002).
[11] K. Kajantie, L. D. McLerran, and R. Paatelainen, Phys. Rev. D

100, 054011 (2019).

[12] K. Kajantie, L. D. McLerran, and R. Paatelainen, Phys. Rev. D
101, 054012 (2020).

[13] F. Gelis, A. M. Stasto, and R. Venugopalan, Eur. Phys. J. C 48,
489 (2006).

[14] E. Iancu, C. Marquet, and G. Soyez, Nucl. Phys. A 780, 52
(2006).

[15] J. F. Gunion and G. Bertsch, Phys. Rev. D 25, 746
(1982).

[16] F. E. Low, Phys. Rev. D 12, 163 (1975).
[17] S. Nussinov, Phys. Rev. D 14, 246 (1976).
[18] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor.

Fiz. 71, 840 (1976) [Sov. Phys. JETP 44, 443 (1976)].
[19] Y. V. Kovchegov and A. H. Mueller, Nucl. Phys. B 529, 451

(1998).
[20] B. Z. Kopeliovich, A. Schafer, and A. V. Tarasov, Phys. Rev. C

59, 1609 (1999).
[21] B. Z. Kopeliovich, A. Schafer, and A. V. Tarasov, Phys. Rev. D

62, 054022 (2000).

034908-5

https://doi.org/10.1103/PhysRevD.22.2793
https://doi.org/10.1051/epjconf/201817203003
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1016/0550-3213(90)90173-B
http://www.jetp.ac.ru/cgi-bin/dn/e_045_02_0199.pdf
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.3352
https://www.actaphys.uj.edu.pl/R/37/12/3253/pdf
https://doi.org/10.1007/BF02892134
https://doi.org/10.1016/S0375-9474(01)01301-X
https://doi.org/10.1103/PhysRevD.100.054011
https://doi.org/10.1103/PhysRevD.101.054012
https://doi.org/10.1140/epjc/s10052-006-0020-x
https://doi.org/10.1016/j.nuclphysa.2006.08.017
https://doi.org/10.1103/PhysRevD.25.746
https://doi.org/10.1103/PhysRevD.12.163
https://doi.org/10.1103/PhysRevD.14.246
http://www.jetp.ac.ru/cgi-bin/dn/e_044_03_0443.pdf
https://doi.org/10.1016/S0550-3213(98)00384-8
https://doi.org/10.1103/PhysRevC.59.1609
https://doi.org/10.1103/PhysRevD.62.054022

