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Many simulations of relativistic heavy-ion collisions involve the switching from relativistic hydrodynam-
ics to kinetic particle transport. This switching entails the sampling of particles from the distribution of
energy, momentum, and conserved currents provided by hydrodynamics. Usually, this sampling ensures the
conservation of these quantities only on the average, i.e., the conserved quantities may actually fluctuate
among the sampled particle configurations and only their averages over many such configurations agree with
their values from hydrodynamics. Here we apply a recently invented method [D. Oliinychenko and V. Koch,
Phys. Rev. Lett. 123, 182302 (2019)] to ensure conservation laws for each sampled configuration in spatially
compact regions (patches) and study their effects: from the well-known (micro-)canonical suppression of means
and variances to little studied (micro-)canonical correlations and higher-order fluctuations. Most of these effects
are sensitive to the patch size. Many of them do not disappear even in the thermodynamic limit, when the patch
size goes to infinity. The developed method is essential for particlization of stochastic hydrodynamics. It is useful
for studying the chiral magnetic effect, small systems, and in general for fluctuation and correlation observables.
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I. INTRODUCTION

One of the major goals of relativistic heavy-ion collision
experiments is to study a transition from a hadron gas to
the quark-gluon plasma. The Relativistic Heavy Ion Col-
lider Beam Energy Scan experimental program is devoted to
searching for the critical point of this transition by lowering
collision energy from 200 GeV per nucleon pair to 7 GeV.
Future experiments at Nuclotron-based Ion Collider fAcility
and Facility for Antiproton and Ion Research, which also
have this research as one of their goals, are currently under
construction. Multiple phenomenological models predict the
critical point, but its location on the phase diagram varies
considerably from model to model, and scenarios, where the
critical point exists but is not experimentally accessible, are
not excluded. The most promising experimental signatures of
the critical point seem to be enhanced fluctuations. Therefore,
considerable attention is devoted to correlation and fluctu-
ation observables, such as proton, net proton, net charge,
kaon cumulants [1–4] and correlations [5], fluctuations of
various particle ratios [6], transverse-momentum correlations
[7], and charge balance functions [8] (for a recent review
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see Ref. [9]). Other promising observables include light nu-
clei production, which may be related to fluctuations through
coalescence [10].

Understanding these observables and linking them to a
possible critical point requires dynamical modeling of heavy-
ion collisions, which includes treatment of fluctuations and
correlations. Using a transport approach is a possible way
(for a transport code including both partons and hadrons see,
e.g., Parton-Hadron String Dynamics (PHSD) [11]), but it
inevitably results in large theoretical uncertainties related to
hadronisation, because the exact mechanism of hadroniza-
tion is not known. Moreover, PHSD uses a test-particle
method, which artificially reduces correlations, hence the re-
cent effort to develop a Parton-Hadron Quantum Molecular
Dynamics (PHQMD) approach [12] free of this limitation.
Alternative methods include the hydrodynamic and/or hybrid
(hydrodynamic + transport) simulations, where hadroniza-
tion is encoded in the equation of state (EoS). The latter is
parameterized—it is not known from first principles at large
baryon density—and the parameters can be adjusted to fit
measured particle yields, spectra, flow, correlations, and other
observables. The effects of the critical point enter the EoS, but
this is insufficient to model the vicinity of the critical point. In
addition, the slow critical modes have to be explicitly taken
into account in the hydrodynamic equations. This is done in
the fluctuating hydrodynamics extended by stochastic terms
directly [13–16] or coupled to a nonequilibrium field with
a stochastic noise [17,18]. A deterministic approach to treat
second-order correlations and fluctuations (“hydro+”) is also
available [19].
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Hybrid approaches involving hydrodynamics (fluctuating
or not) need a particle sampler to convert hydrodynamic
fields to particles that subsequently evolve according
to kinetic equations including collision and possibly
mean-field dynamics. To study correlations or fluctuations,
a key requirement for such a sampler is that it conserves
energy-momentum and charges in every event. Otherwise
correlations originating from conservation laws are lost and
fluctuations are uncontrollably enhanced [20]. In other words,
the sampler should be a local microcanonical sampler. Let us
explain this term in detail.

Consider an ensemble of particlization hypersurfaces Hi,
i = 1, N obtained from hydrodynamic simulations. For exam-
ple, the hypersurfaces Hi can be from simulations obtained
with different initial conditions. Or Hi may represent ensem-
bles of fluctuating hydrodynamics, where critical fluctuations
are explicitly embedded. Usually these are hypersurfaces of
constant time, constant energy density, constant temperature,
or constant Knudsen number. Suppose that we construct sets
of particles from each Hi (we refer to this as “performing parti-
clization”) multiple times. Thus we obtain sets of particles Pi j ,
where j ∈ {1, . . . Nsamples} for each Hi. If the transformation
Hi → Pi j is performed in such a way that conservation of
energy, momenta, and discrete charges is only fulfilled on av-
erage by j (meaning for example, that 1

Nsamples

∑
j Q j → Qhydro

as Nsamples → ∞, but Qj �= Qhydro), then we call this “grand-
canonical sampling.” If conservation laws are fulfilled for
every j, meaning Qj = Qhydro, then we call it “microcanonical
sampling” or event-by-event conservation laws. If this is the
case not only for the entire simulation region but also for
smaller space-time regions, then we call it “local microcanon-
ical sampling.” In case of one sample per hypersurface, by
construction, local microcanonical sampling preserves fluc-
tuations of conserved quantities over Hi and transfers them
to Pi j without changes. In contrast, the grand-canonical sam-
pling generates additional fluctuations by allowing conserved
quantities of generated particles to differ from those of hy-
drodynamic events [20]. In this paper we are concerned with
preserving correlations and fluctuations and therefore wish to
adopt local microcanonical sampling. In our recent work [21]
we invented, described, and tested a method to do it. Several
previous attempts fulfilled only some conservation laws (but
never all of them), and most of them were generating ad hoc
distributions different from the actual microcanonical one, see
Ref. [22] for an overview. In this work we apply the method of
Ref. [21] accounting for energy-momentum, baryon number,
strangeness, and charge conservation microcanonically. We
do not account for angular momentum or parity conservation,
although in principle they can be included, too.

We have previously pointed that the sampling should be
“local.” However, the degree of localness is not immediately
obvious. At first glance it may seem, that the more local, the
better. Because the numerical solution of hydrodynamic equa-
tions is often obtained on a discrete space-time grid, it seems
easy and practical to enforce conservation laws in every cell
of this computational grid. However, in typical simulations of
heavy-ion collisions these cells are so small that the average
number of particles per cell is below one. This problem is not
typical for other fields, but one can always obtain a similar

situation by choosing a sufficiently fine computational grid.
Another case where a similar problem can emerge is a sim-
ulation of a very dilute solution, where a number of fluid
molecules per cell is large, but average number of dissolved
molecules per cell is below 1. Introducing fractional particles
is a viable option to approach this problem [20], but the sub-
sequent treatment of these fractional particles in the transport
is challenging. Here we explore an alternative way: We define
regions, where conservation laws will be fulfilled.

It follows from the considerations above that the scale b,
on which local conservation laws have to be enforced, cannot
be arbitrarily small. It has to be large enough to include the
hydrodynamic scale; in other words, it should be larger than
the mean free path. Also, a patch of size b should contain
much more than one particle on average, so ρb3 � 1, where
ρ is particle density. On the other hand, b should be smaller
than the typical length of correlation one wishes to study. We
explore it further by dividing a hypersurface into “patches,”
where conservation laws are enforced, and varying the size of
the patch.

Our goal in this paper is to test a local microcanonical sam-
pler, systematically trying different patch sizes and different
ways to partition a hypersurface. The methodology is dis-
cussed in Sec. II, which comprises the splitting hypersurface
into patches where conservation laws are enforced (Sec. II A),
sampling algorithm in a patch (Sec. II B), discussion of its
convergence and runtime (Sec. II C), and the issue of nega-
tive contributions which is known to plague grand-canonical
samplers (Sec. II D). After extensive testing described in Ap-
pendices A and B, we proceed to apply the sampler to a
realistic hypersurface in Sec. III, where we compute means,
correlations, and higher-order fluctuations of particle multi-
plicities and conserved quantities within a rapidity cut and
also study spectra and flow. All these are done as a function of
the patch size. A summary, discussion, and outlook follow in
Sec. IV. We made the code for partitioning the hypersurface
and microcanonical sampling publicly available in Ref. [23].

II. METHODOLOGY

In practice the particlization hypersurface is given as a list
of cells with space-time coordinates xμ

j ; velocities uμ
j ; tem-

peratures Tj ; chemical potentials μBj , μS j , μQj ; and normal
4-vectors dσ

μ
j . Our task here is twofold: (i) partition hypersur-

face into patches, where local conservation laws are enforced,
and (ii) sample particles within every patch, while accounting
for variations of above quantities within a patch. The latter
is crucial if one wants to ensure that observables sensitive to
these variations, such as higher-order azimuthal asymmetries,
are not smeared out. Tasks (i) and (ii) are independent, and
therefore we describe them separately.

A. Splitting the hypersurface into patches

Above we have already started introducing a spatial scale
b, over which conservation laws should be enforced. There is
a number of questions to be addressed regarding this scale.
What is its physical meaning? How big or small should it be?
How should we partition a hypersurface into patches, given
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that such partitioning is not unique even if the patch size is
fixed? Which observables depend on the choice of patch size
and the way of partitioning, and how significant are these
dependencies? These are the questions we will discuss in this
section.

As already pointed out, the spatial extent of the patch
should be neither too small nor too large. By Lorentz boosting
the hypersurface one can see that the same is true for the time
extent of the patch; therefore we further call b a space-time
size. Already from a condition ρb3 � 1 it is clear that the
space-time size of all patches cannot be the same, because the
local particle density varies. If one chooses to have patches
of the same space-time size, then for certain particlization
hypersurfaces (to larger extent for isochronous and to lesser
extent for isoenergy density) some patches will contain many
particles on average,1 and some will contain fewer than one
particle. Furthermore, particles within patches of the same
spatial size but different density would have different mean
free paths. In addition to breaking the ρb3 � 1 condition,
such a situation is undesirable for our study of microcanonical
effects, because we prefer to have the patch size as an in-
terpretable and uniform control parameter of microcanonical
effects. Indeed, given the same b for all patches, patches with
larger density are less sensitive to microcanonical effects, and
patches with smaller density are more sensitive. Therefore we
suggest to control the patch size by its rest frame energy.
This ensures that our requirements for patches are always
fulfilled by construction. An alternative possibility is to use
average number of particles per patch for this purpose. We
tried this and obtained similar results to those presented here.
For the rest of the paper, our patches are formed by combining
the nearest hydrodynamic computational cells in space-time
until the required rest frame energy Epatch is reached. The
energy Epatch is a parameter that uniformly controls the size
of microcanonical effects.

The parameter Epatch is not just a technical parameter; it
has a clear physical meaning. Suppose that the quark-gluon
fluid turns from a continuous stream into separate droplets.
Then Epatch is the rest frame energy of one droplet, assuming
of course that the droplets have the same size. Here we pur-
posefully adopt this assumption to obtain systematic results as
a function of Epatch. However, physicswise droplets can be of
different sizes.

We note that scenarios with droplet formation are usually
overlooked by the hydrodynamic simulations, where density
at the boundaries drops to zero continuously, because the
sharp surface and surface tension are not included. If they are
accounted for, then it may lead to an onset of a well-known
Plateau-Rayleigh instability, where a continuous flow of fluid
turns into droplets if the ratio of the kinetic energy to the
surface energy (the Weber number) is large enough. This
phenomenon is ubiquitous and can be observed, for example,
in the usual flow of water from a faucet. It is conceivable
that a similar separation into droplets occurs in heavy-ion

1Here “average number of particles” is specifically the grand-
canonical mean computed from hydrodynamic variables, as given by
Eq. (C2).

collisions. Moreover, the Plateau-Raleigh instability is not the
only possibility to create droplets. They could also be formed
as a consequence of cavitation or due to spinodal instabilities
[24]. Regardless of the mechanism, if the droplets are formed,
then we show that it has observable consequences, such as
suppressed number of particles at high pT , and enhanced v2 at
high pT , and these observables depend on Epatch.

While Epatch has a physical meaning and will be further
studied as a physical parameter, it is not sufficient to uniquely
define the partitioning into patches. The partitioning also de-
pends on the algorithm, which we will next describe: We start
by choosing an unclustered (not belonging to any patch) cell
and add the closest unclustered cells until the total rest frame
energy reaches Epatch. Then the selected cells form a patch and
the procedure is repeated until no unclustered cells remain.
In this algorithm there are two choices to be made: (i) how
to select the initial cell and (ii) how to define the distance
to look for closest cells. An additionally uncertainty arises
from the fact that in a given patch the conserved charges,
such as baryon number, strangeness, and electric charge are
most likely noninteger. For microcanonical sampling, how-
ever, they have to be integer numbers, as it generates particles
with integer charge. Therefore there is an additional algorith-
mic choice (iii) of how to assign integer conserved charges
to the patches. Next we discuss choices (i)–(iii) and explore
how much they influence results. For choices (i) and (ii) the
following combinations have been tested:

(1) starting from a cell with minimal time, clustering by
distance �t2 + �r2

(2) starting from a cell with maximal spatial rapidity η =√
t2 − z2, clustering by distance �t2 + �r2

(3) starting from a cell with maximal spatial rapidity
η, clustering by distance in spatial rapidity �η; this
choice has the advantage of Lorentz-invariance so that
the partitioning remains the same for a boosted hyper-
surface

(4) starting from a cell with maximal energy, clustering by
distance �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2, where
σT and σμB are the scaled variances of temperature and
baryochemical potential μB over the hypersurface, and
d0 = 2 fm; the idea of this choice is to form patches
around hot spots and reduce variations in temperature
and baryochemical potential within a patch.

As mentioned, after the patches are formed in this way,
their net charges Bk , Sk , Qk , k = 1, Npatch are not necessarily
integer numbers. While this is not wrong by itself, the micro-
canonical sampling requires that the net charges of the patch
are integers, because sampled particles always have integer
quantum numbers. A simple approach of rounding net charges
to a nearest integer may violate global conservation laws.
To illustrate this, imagine a hypersurface with a net baryon
number 50 split into 200 patches, each having baryon number
0.4; after a rounding procedure every patch will have baryon
number 0, and therefore the whole hypersurface will have
baryon number 0. Certainly, such a scenario is undesirable.
We want to preserve the correct conserved quantities (energy
momentum, net baryon number, net strangeness, net charge)
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of the entire hypersurface: energy momentum Ptot, baryon
number Btot, strangeness Stot , and electric charge Qtot . The
total conserved charges of the entire system, Btot, Stot , and
Qtot , are integers and are conserved during the hydrodynamic
evolution.2 Given a hypersurface where the particlization, i.e.,
the transition from hydrodynamic fields to particles takes
place, the total charges are related to the phase-space density
obtained from the hydrodynamic fields by⎛
⎜⎜⎜⎝

Pμ
tot

Btot

Stot

Qtot

⎞
⎟⎟⎟⎠ =

∑
cells,

i

∫
⎛
⎜⎜⎜⎝

pμ
i

Bi

Si

Qi

⎞
⎟⎟⎟⎠ pνdσν

p0
fi(pαuα, T, μi )

gid3 p

(2π h̄)3
. (1)

Here the index i runs over all hadronic species with degener-
acy gi, μi = μBBi + μSSi + μQQi is the chemical potential,
fi is the distribution function (in our case it is always Jüttner
distribution), dσν denotes the normal 4-vector to the hypersur-
face cell which is a relativistic analog of volume (see Ref. [25]
for a detailed definition), and T is the temperature of this
element. In the above formula we sum over all cells of the hy-
persurface to obtain the total charges. The conserved charges
in a given patch k are then given by the same expression
where we only sum over the cells in this patch. Consequently,
the total charges are the given by the sum of the charges in
all patches,

∑
k Bk = Btot,

∑
k Sk = Stot , and

∑
k Qk = Qtot.

However, as discussed, there is no reason that the charges in
a given patch are integers. To achieve this we need to make
additional algorithmic assumptions/choices. As we do it for
every charge independently, let us discuss only the baryon
number. The noninteger remainders in every patch are wk =
Bk − �Bk	 and they satisfy

∑
k wk = Btot − ∑

k�Bk	 ≡ B and
0 < wk < 1. Here �x	 denotes the floor of x. In every patch we
need to turn the noninteger remainder wk either into σk = 0
or σk = 1, while preserving their sum. We propose to do this
stochastically with the probability of having σk = 1 being
proportional to wk . A formal expression for such combined
probability is

w({σ1, σ2, . . . , σNpatch}) ∼
Npatch∏
k=1

wσk
k × δ

(∑
k

σk − B

)
. (2)

In other words, this is a weighted permutation of B ones
and Npatch − B zeros, with weights proportional to wk . This
distribution is generated using a Metropolis walk (the general
description of Metropolis algorithm is given further). One step
of such walk proposes to exchange a zero at random position
k1 with a one at random position k2. This is accepted with
probability min(1,wk2/wk1 ). After sufficiently many steps we
arrive at a sample from the required distribution. This last
step completes the separation of the hypersurface into patches:
Each patch has a set of cells that belong to it, it has integer
total charges, and its total rest frame energy is close to Epatch.

2It may be that due to numerics or due to the construction of the
initial state that the total charges of the whole hypersurface are not
integers. In this case we round them to the nearest integer.

The remaining question is in regard to how much our algorith-
mic choices influence physical observables.

This question is addressed throughout the paper by show-
ing all results for two ways of splitting: maximal η first cell
and distance in η [Fig. 1(c)] and the largest energy cell and dis-
tance �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2 [Fig. 1(d)]. Here
we additionally explore all the ways of splitting described
above for the variables that turned out to be one of the most
sensitive to splitting algorithm—the baryon number at midra-
pidity and its fluctuations. We use the same hypersurface that
is also used for the results subsequently discussed. For every
way of splitting described above we produce 103 samples 20
times. For each of these 20 times there is a new assignment
of integer quantum numbers to the patches. For each time
we compute mean and scaled variance of the baryon number
within midrapidity, |y| < 1. Then we show the means over
these 20 times for the baryon number in Fig. 1(e) and for its
scaled variance in Fig. 1(f). The variances of these quantities
over the 20 times are shown as error bars. Therefore, the error
bars represent a systematic uncertainty due to the assignment
of integer quantum numbers to the patches. The difference be-
tween points in Figs. 1(e) and 1(f) from one splitting method
to another is the systematic uncertainty due to the method of
splitting hypersurface into patches.

As seen in Fig. 1(f), the assignment of integer baryon
numbers within patch matters less for the scaled variance
of the baryon number at midrapidity, likely because it is an
intensive quantity. However, the scaled variance exhibits a
clear sensitivity to the method of splitting. This is understand-
able, because on our hypersurface the mean baryon number
is mainly a function of rapidity η. Therefore, if one splits
the hypersurface by η as shown in Fig. 1(c), then the scaled
variance of the baryon number at midrapidity is smaller. If one
splits the hypersurface as shown in Fig. 1(a), then one patch
typically comprises a larger rapidity window and the scaled
variance of the baryon number at midrapidity is larger. As a
summary, the influence of the patch splitting algorithm on the
physical observables is not negligible and should be controlled
carefully. We subsequently do it by repeating all our findings
for two different splitting methods. The difference between
the two should be understood as a systematic uncertainty of
our method.

B. Sampling particles in a patch with event-by-event
conservation laws

After the hypersurface is partitioned into patches, we pro-
ceed to sampling particles from every patch independently.
The sampling is already described in Ref. [21], but we repeat
the description here for completeness. We impose conserva-
tion laws in each patch but allow variations of local energy
density, quantum number densities, and collective velocities
from cell to cell within a patch. These variations are charac-
terized by the values of temperature, T ; chemical potentials
μB, μS , μQ; and collective fluid velocity u of the cells. For
example, if a cell has a larger temperature or chemical po-
tential, then it is more likely that a particle will be sampled
from it. The local variations of collective velocity u are im-
portant for a faithful description of higher-order azimuthal
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(f)
κ2/κ1 of B at |y| <  1

0.2

0.3

(e)
B at |y| <  1
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(d)(c)(b)
z[fm]

t[fm/c]

(a)

10

−10 10

FIG. 1. Illustration of the partitioning into patches, and how it influences observables. Panels (a)–(d) show different ways of partitioning
(see text): (a) starting with tmin, distance �t2 + �r2; (b) starting with ηmax, distance �t2 + �r2; (c) starting with ηmax, distance �η; (d) starting
with Emax, distance �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2. Panels (e) and (f) show how total baryon number at midrapidity and its variance
change depend on the algorithm. The error bars are systematic errors due to requiring integer charges within patches (see text). The hypersurface
is the same realistic hypersurface from Au+Au collisions at 19.6 GeV that is used for physics results.

anisotropies [26], which otherwise would be smeared. This
becomes obvious if one imagines a small system, such as pp
or pPb collision, where the whole system may be one patch.
The following multiparticle probability P of a given particle
configuration satisfies our requirements:

P
(
N, {Ns}species, {xi}N

i=1, {pi}N
i=1

)
= N

(∏
s

1

Ns!

)
N∏

i=1

gi

(2π h̄)3

d3 pi

p0
i

pμ
i dσμ fi

(
pν

i uν, T, μi
)

× δ(4)

( ∑
i

pμ − Pμ
tot

)
δ

Btot∑
i Bi

δ
Stot∑

i Si
δ

Qtot∑
i Qi

. (3)

It is a product of the usual Cooper-Frye formulas and global
δ functions which guarantee conservation laws over the patch.
The 1

Ns!
factors ensure that the Eq. (3) transforms into a stan-

dard microcanonical distribution if our hypersurface is just
one static cell. This property is crucial, because without it the
sampling cannot be called microcanonical. Note that here the
number of particles of each hadron species Ns is not fixed and
neither is the total number of particles N = ∑

s Ns. Instead,
both are distributed according to Eq. (3). The quantities dσμ,
uμ, T , and μB,S,Q depend on the spatial position of a particle
xi. The charges Btot , Stot , and Qtot are computed using Eq. (1).
It is important to underline that the resulting sampled particles
are defined by the distribution (3), which should be the same
regardless which algorithm is used to generate it.

Sampling of the N-particle probability distribution ex-
pressed by Eq. (3) is generally difficult due to the unknown
normalization factor N and the δ functions. We overcome this
difficulty by applying a Metropolis algorithm, also known as
a Markov-chain Monte Carlo (MCMC) method, which in our
case is closely related to solving the Boltzmann equation with
the stochastic rate method [27]. The state of our Markov chain
ξ depends on multiplicities, coordinates, and momenta of

all particles: ξ = ξ (N, {Ns}species, {xi}N
i=1, {pi}N

i=1). The initial
state is an arbitrary set of particles that satisfy the required
conservation laws [Eq. (1)]. Quantum number conservation
for the initial state is fulfilled by an ad hoc heuristic algo-
rithm picking the lightest particles, which can provide the
required baryon number, strangeness, and electric charge. The
energy-momentum conservation is achieved by rescaling the
momenta as in Ref. [22]. This initial state selection does
not influence the resulting samples, because it is “forgotten”
by Markov chain after a sufficient number of steps. Given
a state ξ we propose a state ξ ′ with probability T (ξ → ξ ′)
and then decide whether this state should be accepted, with
probability A(ξ → ξ ′). Therefore, the probability to obtain
a state ξ ′ from ξ is w(ξ → ξ ′) = T (ξ → ξ ′)A(ξ → ξ ′). The
master equation, connecting the probability to obtain the state
ξ at steps t and t + 1, is

Pt+1(ξ ) − Pt (ξ ) =
∑
ξ ′

w(ξ ′ → ξ )Pt (ξ ′)

−w(ξ → ξ ′)Pt (ξ ). (4)

After many steps the probability Pt→∞(ξ ) should converge
to P(ξ ) given by Eq. (3). A sufficient condition for this is
known as the detailed balance condition:

P(ξ ′)
P(ξ )

= w(ξ → ξ ′)
w(ξ ′ → ξ )

= T (ξ → ξ ′)A(ξ → ξ ′)
T (ξ ′ → ξ )A(ξ → ξ ′)

. (5)

This condition is satisfied if

a ≡ A(ξ → ξ ′) = min

[
1,

P(ξ ′) T (ξ ′ → ξ )

P(ξ ) T (ξ → ξ ′)

]
. (6)

There is some freedom to select the proposal matrix
T (ξ → ξ ′). We choose it such that it conserves energy, mo-
mentum, and quantum numbers. Consequently, our Markov
chain never leaves the desired subspace where conservation
laws are fulfilled. Our proposal matrix may be viewed as
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2 → 3 and 3 → 2 stochastic “collisions” [27] on the hyper-
surface. However, we note that there is no real time involved
and “collisions” are not related to any physical process. They
are simply a mathematical method to sample the distribution
of Eq. (3). The proposal procedure is the following:

(1) With 50% probability choose a 2 → 3 or 3 → 2 tran-
sition.

(2) Select the “incoming” particles by uniformly picking
one of all possible pairs or triples.

(3) Select the outgoing channel democratically with prob-
ability 1/Nch, where Nch is the number of possible
channels, satisfying both quantum number and energy-
momentum conservation.

(4) For the selected channel sample the “collision” kine-
matics uniformly from the available phase space dRn

with probability dRn
Rn

, n = 2 or 3.
(5) Choose a cell for each of the outgoing particles uni-

formly from all cells in the patch. Note that this choice
affects the acceptance probability, because the corre-
sponding temperatures, chemical potentials, velocities
uμ, and normal 4-vectors dσμ in the Eq. (10) will be
taken at the cells, where the outgoing particles are
thrown.

Here Rn is a phase-space integral for outgoing particles de-
fined as the integral over dRn:

dRn(
√

s, m1, m2, . . . , mn)

= (2π )4

(2π )3n

d3 p1

2E1

d3 p2

2E2
. . .

d3 pn

2En
δ(4)

(
Pμ

tot −
∑

Pμ
i

)
, (7)

where
√

s = (Pμ
totP

tot
μ )1/2. The integration of dR2 and dR3 is

possible analytically [27,28]. Our proposal procedure gen-
erates the following probabilities for 2 → 3 and 3 → 2
proposals:

T (2 → 3) = 1

2

Gch
2

G2

1

Nch
3

dRch
3

Rch
3

1

N3
cells

, (8)

T (3 → 2) = 1

2

Gch
3

G3

1

Nch
2

dRch
2

Rch
2

1

N2
cells

, (9)

where G2 = N (N−1)
2! and G3 = N (N−1)(N−2)

3! denote total num-
bers of incoming pairs and triplets of any species, while Gch

2
and Gch

3 are the numbers of ways to select a given incom-

ing particle species. Consequently, Gch
2

G2
and Gch

3
G3

represent the
probabilities to obtain pairs and triplets of a given incoming
species. The number of possible triplets and pairs of outgoing
species with appropriate quantum numbers are denoted by Nch

3
and Nch

2 . Inserting the proposal probabilities, Eqs. (8) and (9),
as well as the desired probability distribution, Eq. (3), into the
expression for the acceptance probability, Eq. (6), we arrive,
after some algebra, at

an→m = Nch
m Rm

Nch
n Rn

N!

(N + m − n)!

m!

n!

kid
m !

kid
n !

(
2Ncells

h̄3

)m−n

×
∏m

i=1 gi fi
(
μi − pα

i uα, T
)

pμ
i dσμ∏n

j=1 g j f j
(
μ j − pα

j uα, T
)

pμ
j dσμ

, (10)

where we made use of the relation
∏ d3 pi

(2π h̄)3 p0
i
δ(4)(Pμ

tot −∑
Pμ

i ) = 2n dRn
(2π )4 . Here n = 2, 3 and m = 3, 2 are the num-

bers of incoming and outgoing particles, and N is the total
number of particles before proposing the Markov chain step.
The product in the numerator is taken over the outgoing parti-
cles and the one in the denominator is taken over the incoming
particles. The quantities dσ , u, T , μ should be evaluated in the
cell where the particles are proposed to be or coming from.
The total number of particles in the entire patch is given by
N , and kid

m and kid
n are the numbers of outgoing and incoming

identical species in the reaction. Note that the sampling ac-
counts for the variations in temperature and chemical potential
within the patch. Also, and equally important, the distribution
function f may contain viscous corrections. To summarize,
the algorithm consists of multiple Markov chain steps, where
the step is proposed according to Eqs. (8) and (9) and accepted
with probability given by Eq. (10).

Testing and validation of the sampling is performed in
Appendices A and B, as well as in Ref. [21].

C. Convergence and runtime

Our goal is to generate Nsamples samples from the distri-
bution (3) as fast as possible but in such a way that they
are not correlated with each other. In addition, these samples
should not depend on the ad hoc initial state of the Markov
chain. The last two requirements imply a sufficient (and the
larger the better) number of Markov chain steps. The run-
time minimization, however, demands the minimal number of
Markov chain steps. Here we describe our approach to address
this problem, which focuses more on robustness rather than
runtime minimization.

After the generation of the initial state of our Markov chain,
we perform a warm-up of Nwarmup steps described above to
reach equilibration. Because the warm-up is performed only
once per one hydrodynamic hypersurface, we simply play it
safe, set a large Nwarmup = 106, and check that it provides
distributions that do not change if one increases Nwarmup. Then
the resulting particles are printed out.

The next sample should not be correlated with the previous
one. This is achieved by performing Ndecor steps between
printing out the sample. After this it is not clear whether the
required decorrelation is reached. Insufficient decorrelation
mainly exhibits itself as spikes in momentum spectra, which
typically occur at the high-momentum tail of the distribution.
These spikes originate from one or two particles “stuck” in a
corner of momentum space for many Markov chain steps. To
get rid of these spikes, we perform additional Ndecor “2 ↔ 2
elastic” steps described further. Then we check whether there
are any particles unchanged after these steps. In case there
are unchanged particles we perform Ndecor 2 ↔ 2 elastic steps
again and repeat these blocks of Ndecor 2 ↔ 2 elastic steps
until all particles are changed. Then we print out the resulting
particles. The whole procedure is repeated as many times as
many events we need. In our calculations we used Ndecor =
200 and Ndecor = 500 and did not observe any difference in
results. For tests presented in the Appendices and tests in
Ref. [21] Ndecor = 500 was used.

The 2 ↔ 2 elastic steps are the Markov chain steps, where
particles of the same species are proposed, but their cells and
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momenta are allowed to change. They are used for decor-
relation for a single reason: They cannot bias multiplicity
distributions, because they do not change any multiplicities.
In contrast, repeating 2 ↔ 3 decorrelation blocks until all
particles are changed may bias multiplicity distributions. As
an extreme example, consider a patch with only two particles,
and set Ndecor = 1. Forcing 2 ↔ 3 decorrelation steps until
all particles are changed means that the next sample always
contains 3 particles even though the mean number of particles
can be set arbitrarily close to 2. To avoid this type of bias we
adopt 2 ↔ 2 elastic steps for decorrelation. The acceptance
probability of 2 ↔ 2 elastic steps is expressed by Eq. (6), with
m = n = 2 and most of the factors canceling, resulting in

a2→2 =
∏2

i=1 fi
(
μi − pα

i uα, T
)

pμ
i dσμ∏2

j=1 f j
(
μ j − pα

j uα, T
)

pμ
j dσμ

, (11)

where the product in the numerator is over the outgoing
particles and the product in denominator is over the incoming
ones. As in Eq. (10) the quantities dσ , u, T , and μ should be
evaluated in the cell where the particles are proposed to be or
coming from.

Mainly due to the decorrelations our sampling procedure
appears to be rather time-consuming. The dependencies of the
runtime on the parameters of the problem are rather peculiar.
It does not depend on the number of cells in the patch, unlike
for the usual grand-canonical sampler. Neither does it depend
on the number of the sampled species. It depends indirectly
on the acceptance rate, because if the acceptance rate is low,
then the decorrelation will take more steps. For realistic hy-
persurfaces we have observed acceptance rate of 5–10%, and
it can decrease if the patches are very nonuniform.

For our realistic hypersurface from Au+Au collisions at
19.6 GeV on a single Intel Xeon 2.4-GHz processor we found
the runtime scaling as

t[s] = Npatches
Nsamples

104

{
48 +

[
Epatch (GeV)

7.8

]2
}

, (12)

or, in other words, it takes about 1 min per patch per 104

events for Epatch = 20 GeV. As the sampling in every patch
is performed independently, we have parallelized our code
over the patches. The quadratic dependency on Epatch is due
to decorrelation; therefore a way to speed up the sampling
dramatically is to relax the decorrelation requirements, which
in our case are very strict. Another possible idea is to consider
N → N elastic steps for decorrelation instead of 2 → 2.

D. Negative contributions

Our microcanonical sampler currently treats the long-
standing problem of negative Cooper-Frye contributions
[29–31] in a special way, different from a typical grand-
canonical sampler. To set the stage, let us first explain the
problem. Grand-canonical samplers use the Cooper-Frye for-
mula to compute how many particles should be produced from
a cell with with a four-volume dσμ at given momentum:

dN ∼ gi

(2π h̄)3

d3 pi

p0
i

pμ
i dσμ fi

(
pν

i uν, T, μi
)
. (13)

The factor pμ
i dσμ is negative for particles that cross the hyper-

surface inward. These negative contributions are necessary to

conserve energy, momentum, and charges across the hypersur-
face. However, they are not possible to sample, because they
come with negative weights. Moreover, integrating Eq. (13)
over momenta (as it is done, for example, in Appendix C),
one can see that the net particle flow is proportional to uμdσμ,
which can also be negative. Therefore, the usual solution
is as follows: (1) ignore cells with negative uμdσμ, which
means that the net particle flow is directed inward. In this way
both positive and negative contributions from these cells are
neglected; and (2) for cells with positive uμdσμ sample only
particles with positive pμ

i dσμ, which formally corresponds
to multiplying distribution by θ (pμ

i dσμ). This cuts off neg-
ative energy flow or energy flow inward the hypersurface. To
summarize, the usual Cooper-Frye sampler ignores the inward
flow of energy, as well as the outward flow originating from
cells with negative uμdσμ. The same is valid for the flow of
momenta and charges (B, S, Q). As a consequence, conser-
vation laws are violated even on average by events, unless
the sampler is intentionally modified to avoid this, such as in
Ref. [25]. However, existing modifications of this kind are ad
hoc [22] and do not reproduce a canonical or microcanonical
ensemble in a box.

We have encountered a practical example of the negative
contributions problem when we tried to use a hypersurface
from MUSIC hydrodynamics with dynamical initialization [32]
at 19.6 GeV and 30–40% centrality. This initial state results
in a highly irregular particlization hypersurface on which the
ratio of the total particle flow inward over the net particle flow,∑

uμdσμθ (−uμdσμ)/
∑

uμdσμ, constitutes around −23%.
For this case we obtain around 20% smaller energy from
particles generated by integrated Spectra Sampler (iSS) [35]
than that of the hypersurface.

Our microcanonical sampler deals with the negative con-
tributions in the following way. The conserved quantities are
computed first according to the Eq. (1), where negative contri-
butions are present. Therefore, the conserved quantities of the
hypersurface are equal to the ones of the sampled particles,
unlike in the grand-canonical sampler. Then the sampled par-
ticles according to Eq. (3) are allowed to fly inward. In other
words, the negative contributions are actually sampled. This is
possible, because the pμdσμ factors, which can be negative,
enter the multiparticle probability distribution [Eq. (3)] as a
product. While the product should be positive, the sign of
individual pμdσμ is not restricted, and we are thus able to
sample negative contributions.

At first glance it seems to be the solution of a long-
standing negative contributions problem, but unfortunately it
is not. This approach is suitable for particlization of pure
hydrodynamics but not necessarily for a hybrid simulation.
One can see this immediately if one considers a Sun-like
object, as proposed in Ref. [30]. The hypersurface there is
a static sphere with uμ = (1, 0, 0, 0); therefore, the number
of particles crossing it inward and outward are equal. Then
our microcanonical sampler correctly computes that the net
energy flow across the hypersurface is 0 and does not sample
any particles. In a simulation we need a different outcome:
sampling particles going outward and absorbing particles
from transport going inward as source terms. This cannot be
achieved by sampling alone. It should be done by matching
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hydrodynamics with transport and solving them together. The
sampling in this case should include θ functions in Eq. (1) and
in the probability in Eq. (3). For this reason we leave the fur-
ther investigation of negative contributions for the subsequent
work. In this work we use a hypersurface, for which negative
contributions are negligible. This allows a fair comparison
between grand- and microcanonical samplers.

III. APPLICATION TO A REALISTIC HYPERSURFACE

In this section, we apply the microcanonical sampler for
its main intended use case—particlization of hydrodynamics
in heavy-ion collisions simulations. This serves three pur-
poses: First, it is a comprehensive test of both the sampler
performance and patch splitting procedure; second, it allows
to demonstrate the sensitivity of observables to the patch size;
and, third, it allows us to study correlations due to conserva-
tion laws as a function of kinematic cuts, such as measured
recently in Ref. [5].

For these purposes we consider a typical particlization
hypersurface from 30–40% midcentral Au+Au collisions at√

sNN = 19.6 GeV. It is computed by a 3 + 1 D MUSIC hy-
drodynamic simulation [33] with event-averaged Monte Carlo
Glauber initial condition. The hypersurface corresponds to
constant energy density of 0.4 GeV/fm3. This is the same
setup as in Ref. [34]. The idea behind choosing

√
sNN =

19.6 GeV is to have a hypersurface large enough to demon-
strate the capabilities of the sampler but small enough to
be able to generate the statistics necessary for computing
higher-order fluctuations. Partitioning of the hypersurface
into patches was performed 10 times, and for each such
partitioning 2 × 104 samples were generated; therefore the
total number of samples is Nev = 2 × 105. Smoothed event-
averaged initial condition is particularly important, because
it leads to a smooth particlization surface with negligible
negative Cooper-Frye contributions. This allows for a fair
comparison between micro- and grand-canonical samplers,
which treat negative contributions in different ways, see
Sec. II D.

First, we demonstrate that the conservation laws over the
hypersurface are indeed fulfilled in our sampler. In Fig. 2 we
compare the distribution of total energy, x component of mo-
mentum, net baryon number, net strangeness, and net electric
charge from our microcanonical sampler and from the grand-
canonical sampler iSS described and tested in Ref. [35] and
available publicly in Ref. [36]. The sampled particle species
are identical for both samplers. Our microcanonical sampler is
currently not able to produce quantum distributions; therefore,
for a fair comparison we adjusted the standard iSS sampler to
produce Boltzmann distribution instead of the default Bose
and Fermi distributions. One can see in Fig. 2 that the av-
erage values of conserved quantities coincide, but for the
microcanonical sampler quantities do not fluctuate event by
event. This is the distinguishing feature of the microcanonical
sampler, which follows by construction from Eq. (3). The
coincidence of the means is, however, not perfect: In Fig. 2
one can notice a small mismatch between mean energies,
of the order of 1.5%. This effect is statistically significant
and originates from negative contributions, which are treated
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FIG. 2. Distributions of total energy, x component of momen-
tum, net baryon number, net strangeness, and net charge of all
sampled particles. Our microcanonical sampler is compared to
grand-canonical one. By construction, quantities from microcanoni-
cal sampler are identical to those of the hydrodynamic hypersurface
in each event, while the quantities from the grand-canonical sampler
are distributed around them. Probability distributions are scaled for
viewing convenience to have maxima of 1 (grand-canonical) and
1.05 (microcanonical).

differently in the iSS and in our sampler (see Sec. II D). For
a hypersurface with larger negative contributions this discrep-
ancy becomes larger.

A. Means, variances, correlations, and fluctuations
of π, K, p at midrapidity

The effects of the local microcanonical sampler are most
evident as one varies the patch energy. For a single patch,
these effects can be in principle computed analytically [37].
However, if one studies particle distribution with a kinematic
cut or acceptance window, then particles originate from many
patches. In this case it is not clear a priori how much of
these effects are preserved. Indeed, if one chooses a small
subsystem of a microcanonical system, then the subsystem
will be grand canonical. Therefore, a particular question that
we want to address here is to which extent microcanonical
effects are preserved if a kinematic cut is imposed. For this
purpose we impose a |y| < 1 rapidity cut and consider dif-
ferent multiplicity cumulants up to fourth order κ1−4. These
cumulants and their ratios are convenient to characterize mul-
tiplicity distributions: κ1 = N̄ is the mean of the distribution
and κ2/κ1 = σ 2/N̄ represents the scaled variance. For the
Poisson distribution, which is the multiplicity distribution as-
sociated with a grand-canonical sampling, all cumulants are
equal to the mean particle number, and, therefore, the cumu-
lant ratios are κ3/κ2 = κ4/κ2 = 1. Deviations of the cumulant
ratios from unity demonstrate the magnitude of the micro-
canonical effects. It is important to note here that we do not
consider resonance decays in this work to isolate the effects
of conservation laws.

In Fig. 3 we show the mean value [Fig. 3(a)] and standard
deviation [Fig. 3(b)] of the multiplicity distributions for iden-
tified particles within the rapidity range |y| < 1. A clear trend
can be observed: With decreasing patch energy the number
of pions increases while those of kaons and protons decrease.
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FIG. 3. Mean multiplicities (a), scaled variances (b), and ratios of cumulants κ3/κ2 (c) and κ4/κ2 (d) of π+, K+, and p multiplicities
within rapidity range |y| < 1. Our microcanonical sampler (red circles) as a function of the patch energy is compared to the iSS grand-
canonical sampler (black squares). Closed and open symbols are results for different patch splitting algorithms: closed, largest energy cell and
�r2/d2

0 + (�T/σT )2 + (�μB/σμB )2 distance; open, largest η cell and �η distance.

The reason is the following: When the particles are created
in subvolumes with less energy, the lighter ones are more
favored. With increasing patch energy the averages approach
the iSS grand-canonical values. However, for pions even for
the largest patch energy there is a small difference between the
microcanonical and grand-canonical means. This difference
originates in the same way, as in Figs. 8 and 9: Even in
the thermodynamic limit microcanonical means tend to be
larger than the grand-canonical means, even though their ratio
approaches unity. Scaled variances in the microcanonical case
are systematically smaller than for iSS. The effect is almost
independent on the patch size, constitutes around 10%, and
originates mainly from conservation of quantum numbers.
This is a known (micro-)canonical suppression of fluctuations.
Similar result is obtained analytically in the thermodynamic
limit [38]. In Figs. 3(c) and 3(d) one can see a less studied
effect: microcanonical suppression of the higher-order fluctu-
ations. In the grand-canonical case the scaled skewness κ3/κ2

and kurtosis κ4/κ2 are always unity, but in the microcanonical
case they turn out to be always below unity. Similarly to the
second-order fluctuations, the effect does not vanish even in
the thermodynamic limit.

Next we consider correlations between various particles,
where the correlation between quantities A and B in Fig. 4 is
defined as

Corr(A, B) ≡ 〈(A − A)(B − B)〉
σA σB

. (14)

In a grand-canonical sampler like iSS, particles are sampled
independently, and hence the multiplicity correlations always
vanish. However, the microcanonical sampler introduces non-
vanishing correlations due to conservation laws. This is shown
in Fig. 4. If conservation laws are more local (and the patch
energy is smaller), then correlations are larger. However,
correlations do not vanish even in the thermodynamic limit.
Although the correlation between multiplicities with a rapid-
ity cut is less strong than without a cut, they remain to be
significant, typically from 5 to 10% in absolute value. The

sign of the correlations in Fig. 4 is evident already from the
pure electric charge conservation, although baryon number
and strangeness influence the magnitude significantly.

B. Cumulants of conserved quantities within a rapidity cut

We next study the fluctuations of conserved quantities,
i.e., energy, net baryon number, net electric charge, and net
strangeness over our realistic hypersurface at

√
s = 19.6 GeV

from particles within a rapidity cut of |y| < 1. The mean
value, standard deviation, and higher cumulant ratios are
shown in Fig. 5. In general, the mean values exhibit a de-
creasing trend with increasing patch energy and for large
patch energies they approach the grand-canonical values. This
is because for smaller patch energy particles prefer to be at
midrapidity rather than at high rapidity. The jumps in Fig. 5
are mainly coming from the way of splitting hypersurface into
patches. It becomes evident from Fig. 5, where results for
two ways of splitting into patches are shown. The difference
between them is to be understood as a systematic uncertainty
of our approach, which in our case does not exceed 2%
for the energy and baryon number. The standard deviations
of conserved quantities (and therefore the scaled variances
κ2/κ1), quantifying the strength of fluctuations are systemati-
cally smaller for the microcanonical sampler when compared
to iSS. One can further observe a weak trend that the higher
the patch energy is, the more these quantities fluctuate. In
addition, for most choices of patch energy, both skewness and
kurtosis are consistent with the zero, which is the expectation
of normal distribution. It is not clear whether this property is
connected to our assignment of integer charges to the patches
or a physical effect. Scaled skewness and kurtosis are different
from zero for the grand-canonical iSS sampler.

C. Transverse-momentum spectra and flow

Mean multiplicity, correlations, and fluctuations are af-
fected mostly by baryon number, strangeness, and charge
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FIG. 4. Correlations between particle multiplicities at midrapidity (|y| < 1) as a function of patch energy. Our microcanonical sampler
(red circles) is compared to the iSS grand-canonical sampler (black squares). Closed and open symbols are results for different patch splitting
algorithms: closed, largest energy cell and �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2 distance; open, largest η cell and �η distance.

conservation. Energy and momentum conservation play a
much smaller role there. The only exception is the total num-
ber of particles, which is sensitive to energy conservation.
However, energy and momentum conservation influence other
observables, such as momentum spectra and correlations. The
effects are qualitatively very similar for pions, kaons, and
protons. Therefore, in Fig. 6 we show only protons.

Transverse-momentum distributions are expectedly sup-
pressed at high momenta due to energy conservation. Indeed,
it is clear that a patch of total energy of 5 GeV should
on average contain less protons with transverse momentum
pT = 3 GeV than a patch of 10 GeV. However, at much
smaller momenta than the patch energy the microcanonical
distributions approach the grand-canonical ones. At high mo-
menta microcanonical sampling always results in a cutoff
due to the limited total energy in a patch. This is unlike the
grand-canonical Boltzmann distribution, which has nonzero

probability for arbitrarily high momenta, since it assumes the
presence of a heat bath.

Reproduction of the grand-canonical elliptic flow in the
limit of a large patch is a good test that our sampler properly
takes into account the local velocities of the cells. The elliptic
flow is defined as

v2(pT ) ≡ 〈cos(2φi )〉pT,i∈{pT bin}, (15)

where φi is the angle with respect to the reaction plane. El-
liptic flow is sensitive to the local variations in hydrodynamic
cell velocities, temperatures, and chemical potentials within
a patch. Our sampling algorithm takes into account these
local variations and thus is able to reproduce the flow, as
demonstrated in Fig. 6. At smaller patch energies we observe
an interesting effect of momentum conservation: For smaller
patches v2 is larger at high momenta. We conjecture that this

FIG. 5. Cumulants or cumulant ratios of conserved quantities. From top to bottom: energy, net baryon number, net electric charge, and net
strangeness, respectively. Particles are selected within a rapidity range |y| < 1. Closed and open symbols are results for different patch splitting
algorithms: closed, largest energy cell and �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2 distance; open, largest η cell and �η distance.
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FIG. 6. Momentum spectra (left) and elliptic flow (right) of protons depending on the patch energy. At large-enough patch size both
approach the grand-canonical limit (iSS sampler). The patch splitting algorithm used was largest energy cell and �r2/d2

0 + (�T/σT )2 +
(�μB/σμB )2 distance.

is caused by momentum conservation. In the grand-canonical
sampler total momentum of the patch can fluctuate; therefore
the momentum anisotropy, which reflect the anisotropy of
the collective flow field �u, is smeared out compared to the
microcanonical sampler. In the microcanonical ensemble for
smaller patches we obtain larger integrated elliptic flow and
smaller pT , in other words 〈vMCE

2 〉 > 〈vGCE
2 〉 and 〈pMCE

T 〉 <

〈pGCE
T 〉.
The dependence of v2(pT ) is used to quantify the vis-

cosity of the quark-gluon plasma, because alarger viscosity
to entropy density ratio η/s leads lower v2(pT ). The values
of η/s ≈ 0.08–0.16 were obtained from fitting experimental
data [39–41]. However, these works do not account for lo-
cal microcanonical conservation laws. Our result in Fig. 6
demonstrates that a larger η/s may be necessary to reproduce
experimental data if the local microcanonical conservation
laws are included.

D. Correlations as a function of pseudorapidity

Correlations between particle multiplicities are already
discussed above as a function of the patch size, mainly to
understand the effect of the patch size. For patch rest-frame
energies larger than 10 GeV we find that correlations are
almost unchanged, see Fig. 4. Here we want to explore a
correlation observable, similar to the one measured by the
STAR collaboration [5]. For this purpose we select a patch rest
frame energy to be 10 GeV. STAR measured correlations of
net protons (p − p̄), net kaons (K+ − K−), and net charge as
a function of a pseudorapidity gap η = 1

2 log |p|+pz

|p|−pz
. Because

STAR published unnormalized correlations, we also do not
normalize them here:

σ 1,1
AB ≡ 〈(A − Ā)(B − B̄)〉. (16)

The range of rapidity in the STAR measurement is limited
to |η| < 0.5, while we can simulate the whole rapidity range.
It is important to note, however, that we do not perform any
afterburner simulation and do not include resonance decays.

Also, our centrality selection is different from Ref. [5]. There-
fore a direct comparison to STAR data is not meaningful.
However, we are able to pinpoint the effect of conservation
laws. The patch definition used here is the one corresponding
to Fig. 1(d): Starting from largest energy cell and clustering
cells by distance �r2/d2

0 + (�T/σT )2 + (�μB/σμB )2.
Our comparison of the rapidity-dependent correlations be-

tween micro- and grand-canonical samplers is shown in Fig. 7.
The most prominent feature is that at small rapidity the corre-
lation between net proton and net kaon has a negative slope if
the local conservation laws are included. This is similar to the
results of Ref. [5] at all energies higher than 7.7 GeV, and this
feature is not reproduced by the grand-canonical sampler. At
7.7 GeV the measured net-pK correlation has a positive slope.
We conjecture that the positive slope may originate from the
conservation laws, when total net baryon number and total net
charge are sufficiently large. Another possibility is resonance
decays. We are able to handle these effects separately, and thus
we are potentially able to identify the reason of the measured
positive slope. This task is left for a future work, however.

At small η the net-pQ and net-KQ correlations have
positive slopes as a function of |η| both for micro- and grand-
canonical samplers. At large η there is a large difference
between the samplers. The reason is the following. In the limit
of large η the charge within |η| interval does not fluctuate
in the microcanonical sampler by construction. Therefore in
each sample Q − 〈Q〉 = 0 and net-pQ and net-KQ correla-
tions approach zero.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

We have introduced local microcanonical sampling over
the hydrodynamical hypersurface. The localness is reached
by splitting the hypersurface into patches—spatially compact
regions, where conservation laws are enforced in every sample
using a novel sampling algorithm [21]. This algorithm con-
serves energy, momentum, baryon number, strangeness, and
electric charge in each patch. It also preserves local varia-
tions of velocity, temperature, and chemical potential within
a patch.
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FIG. 7. Unnormalized correlations of net proton, net kaon, and net charge from microcanonical and grand-canonical sampler as a function
of pseudorapidity gap |η|. Here we used a patch energy of Epatch = 10 GeV. The patch splitting algorithm used was largest energy cell and
�r2/d2

0 + (�T/σT )2 + (�μB/σμB )2 distance.

The idea of patches combined with the sampling al-
gorithm allows to study a rich variety of microcanonical
effects in heavy-ion collisions. We have explored means,
fluctuations, and correlations of multiplicity distribution for
pions, koaons, and protons within a rapidity cut; means
and fluctuations of conserved charges within a rapidity cut;
transverse-momentum spectra and flow; and correlations of
net protons, kaons, and charge as a function of the pseudo-
rapidity gap. All these observables except the last one were
studied as a function of the patch size. For the smallest patch
size microcanonical effects are the strongest, but many effects,
in particular for fluctuations and correlations, do not vanish
even in the thermodynamic limit, as expected from analytical
calculations [37].

While the microcanonical sampling is mathematically rig-
orous and well defined, the patch splitting procedure and its
parameter, the patch size choice are to a large extent a mat-
ter of choice. Which procedure and which patch size should
one select to simulate heavy-ion collisions? The variation of
the patch splitting algorithm changes our results, but not too
much; we consider these changes shown in Figs. 1, 3, 4, and 5
as a systematic uncertainty of our method. The patch size, in
contrast, plays an important role for every observable studied,
as long as this size is not too large. Above the patch rest
frame energy of around 10 GeV observables depend only very
slightly on it. This makes it tempting to choose 10 GeV as
a “reasonable” patch size. However, we emphasize that the
question about correct patch size is not algorithmic, but phys-
ical. The quark-gluon plasma created in heavy-ion collisions
has a surface tension (which is usually neglected in hydrody-
namic simulations, except [42]) and, therefore, droplets may
be formed. When these droplets hadronize they form droplets
of hadron gas. In this case the right patch size should be equal
to the size of the droplet, and the droplet scenario can be
identified by the microcanonical effects we have listed and
explored: high-momentum suppression, v2(pT ) enhancement
at high pT , stronger suppression of fluctuations, and enhance-
ment of correlations. The latter has already been pointed out in
Ref. [43] in this context of droplet formation due to spinodal
instabilities. Although in principle these effects are always
present, they can be observed easily only if the droplet energy

is of order of 10 GeV or less. The high-pT suppression should
be the most susceptible to experimental observation. Here we
considered droplets uniform in size. This was done to study
the microcanonical effects systematically, but in general there
is no reason to assume that droplets have the same size. Qual-
itatively, the microcanonical effects we have observed should
also occur if the droplets have different sizes.

Our present results cannot be directly compared to ex-
perimental data. Here we have purposely only studied the
properties and effects of the local microcanonical particliza-
tion in isolation without subsequent resonance decays or
hadronic afterburner. This allows us to understand the sampler
and its systematics better before using it in a larger frame-
work. Now that the sampler is explored and tested, it can
be used as a part of the hybrid (hydrodynamics + transport)
approach. For example, it would be interesting to see whether
it can reproduce the net-p, net-K, and net charge correlations
measured recently by the STAR collaboration [5]. Also, ef-
fects of conservation laws on observables related to the chiral
magnetic effect, as well as small systems, should be studied
and be compared to the data. It is important to notice that in
case of small-enough patches (Epatch < 10 GeV) the ratios of
microcanonical equilibrium hadron yields are different from
the grand-canonical ones. Therefore, the particlization crite-
rion with microcanonical particlization has to be refitted to
match the data. This is a known fact in the thermal models: In
small systems, such as pp or pPb collisions, the temperature
describing hadron yields is different in the microcanonical
ensemble compared to the grand-canonical one [44].

Furthermore, the presented sampling algorithm allows a
consistent particlization of fluctuating hydrodynamics. There-
fore, it can be applied to study the physics of critical point
in heavy-ion collisions. Certain improvements of the sampler
may be of interest, such as introducing viscous corrections
and quantum statistics. Finally, it turns out that, contrary to the
usual grand-canonical particlization, our approach allows for
sampling particles with negative individual weights. As dis-
cussed, although the weight of the whole multiparticle sample
has to be positive, contributions from individual particles do
not need to be. This feature may allow to tackle the problem of
negative Cooper-Frye contributions from a new perspective.

034904-12



EFFECTS OF LOCAL EVENT-BY-EVENT CONSERVATION … PHYSICAL REVIEW C 102, 034904 (2020)

However, we leave this idea for future studies. All our tests
are intentionally performed for hypersurfaces with negligible
negative contributions.
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APPENDIX A: SPECIAL CASE—MICROCANONICAL GAS
OF RELATIVISTIC MASSLESS PARTICLES

The simplest test of our sampler is against the analytically
known case of a classical microcanonical relativistic massless
gas. Here by microcanonical we mean that all possible phase-
space cells (�x, �p) can be occupied with equal probability, but
the total energy E is conserved and the total momentum is
zero. The number of particles N is allowed to vary. Then the
probability to have N particles with momenta {pi}N

i=1 is

wmce
N ({pi}) ∼ V N

(2π h̄)3N

1

N!

N∏
i=1

d3 piδ(E−∑
pi ) δ

(3)
(
∑ �pi )

, (A1)

where V the volume of the system. In terms of our sampler,
this is a special case, where a patch consists of just one static
(uμ = (1, 0, 0, 0)) cell with dσμ = (V, 0, 0, 0). The momenta
in Eq. (A1) can be integrated out analytically, which provides
the following distribution of the total number of particles
[45,46]:

wmce
N ∼ (V E3)N

(16π2h̄3)N

(4N − 4)!

N!(2N − 1)!(2N − 2)!(3N − 4)!
. (A2)

It is convenient to rewrite this distribution in terms of
the grand-canonical mean for the same system. The grand-
canonical probability is

w
gce
N ({pi}) ∼ V N

(2π h̄)3N

1

N!

N∏
i=1

d3 pi e−pi/T . (A3)

Integrating out momenta, one obtains the Poisson distribu-
tion w

gce
N ∼ N̄N

gce/N!, its mean being N̄gce = V T 3

π2 h̄3 . The mean
energy per particle is computed from Eq. (A3), E/N̄gce = 3T .
Eliminating the temperature T , one obtains

N̄4
gce = V E3

27π2h̄3 . (A4)

Therefore, one can express the microcanonical particle
number distribution via the grand-canonical average at the

same average total energy and volume:

wN ∼
(

27

16
N̄4

gce

)N (4N − 4)!

N!(2N − 1)!(2N − 2)!(3N − 4)!
. (A5)

The cumulants κi of distribution (A5) can be computed
analytically as κi = (∂ iF/∂t i )|t=0, where F (t ) is the cumulant
generating function:

F (t ) = log
∞∑

N=2

wN etN = log c + 2t

+ log 2F5

({
5

4
,

7

4

}
,

{
4

3
,

5

3
, 2,

5

3
, 3

}
, et N̄4

gce

)
.

(A6)

Here pFq is a generalized hypergeometric function and c is
a constant. The exact expressions for the cumulants κ1−4 are,
therefore, available analytically, but we do not provide them
here, because they are bulky and hardly informative. Instead,
we show the expansions of certain combinations in the ther-
modynamic limit N̄gce → ∞, which are more interesting and
instructive:

N̄ ≡ κ1 = N̄gce + 1

2
+ 65

288
N̄−1

gce + O
(
N̄−2

gce

)
, (A7)

κ2/κ1 = 1

4
− 1

8
N̄−1

gce + O
(
N̄−2

gce

)
, (A8)

κ3/κ2 = 1

4
+ 1865

5184
N̄−2

gce + O
(
N̄−3

gce

)
, (A9)

κ4/κ2 = 1

16
+ 5

81
N̄−2

gce + O
(
N̄−3

gce

)
. (A10)

From this one can see that in the thermodynamic limit the
microcanonical mean number of particles is larger by 1

2 than
the grand-canonical one. This counterintuitive result does not
contradict the theorem about ensemble equivalence, because
N̄/N̄gce → 1 is still fulfilled at N̄gce → ∞. A nonzero dif-
ference between microcanonical and grand-canonical yields
was also reported when only energy conservation (but not
momentum) is taken into account, see Eq. (9) of Ref. [37].
The scaled variance κ2/κ1, and the ratios κ3/κ2, and κ4/κ2 are
not 1, like in the grand-canonical case, but rather 1

4 , 1
4 , and 1

16 .
We are interested in comparing the cumulants of the distri-

bution (A5) to the cumulants of the distribution produced by
our sampler. As the distribution is sampled indirectly, using
random 2 ↔ 3 Metropolis steps in momentum space, it is
nontrivial, that the distribution in Eq. (A5) is reproduced.
We found this example a very useful testbed for our algo-
rithm. Any error in the proposal or acceptance probabilities
[Eq. (10)] dramatically changes all moments, including the
mean.

In Fig. 8 we demonstrate that the mean, scaled variance,
and cumulant ratios κ3/κ2 and κ4/κ2 of the generated distribu-
tion agree with the analytical results computed from Eq. (A5).
For each point Nev = 106 samples were generated. Statistical
errors were estimated following Ref. [47] as

�2(N̄ ) = σ 2/Nev, (A11)

�2(κ2/κ1) = (μ4 − σ 4)/Nev, (A12)
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FIG. 8. Demonstration that the analytically computed statistics
of massless microcanonical relativistic gas (lines) agree with the ones
generated by the sampler (circles).

�2(κ3/κ2) = 6σ 2/Nev, (A13)

�2(κ4/κ2) = 24σ 4/Nev. (A14)

Here μ4 is the fourth central moment, μ4 = ∑Nev
i=1(Ni −

N̄ )4/Nev, and σ is the variance, σ 2 = ∑Nev
i=1(Ni − N̄ )2/Nev.

The equations for �2(κ3/κ2) and �2(κ4/κ2) are simplified
error estimates derived assuming a Gaussian distribution.

APPENDIX B: SPECIAL CASE II—MICROCANONICAL
SAMPLING OF HADRON RESONANCE GAS

While the microcanonical sampling of one massless hadron
species in Appendix A is a sensitive test of the sampling
algorithm, it does not check the aspects of the sampling re-
lated to channel selection. Neither does it test baryon number,
strangeness, and charge conservation. To test the latter, in this
section we apply our sampler for a special case where a patch
consists of just one static cell with dσμ = (V, 0, 0, 0), as in
Appendix A. However, multiple hadronic species are allowed.
Multiplicity distributions are not calculable analytically in this
case, but they were thoroughly studied using Monte Carlo
sampling [44,46,48]. The microcanonical sampler used in
Ref. [46] is based on Metropolis algorithm, a faster sampler
[44] uses importance sampling with canonical distribution as
an envelope. Unlike our sampler, both require direct compu-
tation of the microcanonical partition function.

Here we test that our sampler reproduces the nontrivial
threshold effects on the π0 yield, which were shown in Fig. 12
of Ref. [48]. In Fig. 9 we demonstrate a good agreement with
a previous calculation, which used a dedicated microcanonical
sampler. Minor discrepancies might be attributed to possible

FIG. 9. Test of our sampler where we microcanonically sample
a hadron gas in a single, static cell with zero net baryon number,
strangeness, and charge. Here we show a comparison of the threshold
effects in the π 0 yield with the results of presented in Fig. 12 of
Begun et al. [48].

differences in hadron tables, such as the mass of f0 meson and
different number of mesonic resonances between 1 and 2 GeV.
In our calculation we use the default particle table of SMASH
transport code [49] with the π0 mass set to 135 MeV and the
π± mass set to 138 MeV.

In Fig. 9 one can also see interesting physical effects which
were already studied in Ref. [48]. The minimal amount of par-
ticles in the microcanonical case is two, because one or zero
particles cannot fulfill energy and momentum conservation.
Therefore, at the smallest energy only a state with 2π0, the
lightest hadron, is accessible. At slightly higher energy the
π+π− state opens and the 〈π0〉 yield drops down to 2/3. Then,
with increasing energy 〈π0〉 grows until the energy crosses a
threshold to form a new state. Some of such thresholds are
marked explicitly in Fig. 9.

At energies above 3 GeV, threshold effects are not pro-
nounced anymore, although in principle new many-particle
thresholds continue to open at arbitrarily high energies. Never-
theless, even at E = 10 GeV the microcanonical average still
differs from the grand-canonical average at the same average
energy. Their ratio approaches 1 in the thermodynamic limit,
but a finite difference remains. This is similar to the micro-
canonical massless case, studied in Appendix A; however, the
finite difference is smaller than 1/2.

APPENDIX C: INTEGRALS RELATED TO HYDRO
HYPERSURFACE

To compute the total energy and charges, Eq. (1), one
needs to compute integrals over the Boltzmann distribution.
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For completeness we list the expressions for these integrals
here. The integrals in Eq. (1) are Lorentz invariant and most
comfortable to compute in the frame, where u = (1, 0, 0, 0).
In this frame the hypersurface normal is

dσμ
uμ−→ dσ ′

μ = �ν
μdσν, (C1)

where �ν
μ is a boost matrix. It follows from the explicit form

of �ν
μ that dσ ′

0 = uμdσμ. Consequently, the integral for the
density coincides with a known expression in the literature
(e.g., Appendix of Ref. [34]). Noticing that integrals over any
odd function vanish from −∞ to ∞, and denoting z ≡ m/T ,
one obtains in this frame

∫
pνdσνe−pαuα/T d3 p

p0
= 4πdσ ′

0

∫ ∞

0
p2e−p0/T d p = 4πdσ ′

0T 3z2K2(z), (C2)

∫
pμ pνdσνe−pαuα/T d3 p

p0
= 4π

(
dσ ′

0

∫ ∞

0
p0e−p0/T p2d p, d �σ ′ 1

3

∫ ∞

0
p2/p0e−p0/T p2d p

)
, (C3)

= 4πT 4z2(dσ ′
0[3K2(z) + zK1(z)], d �σ ′K2(z)). (C4)

Here d �σ ′ ≡ (dσ ′
1, dσ ′

2, dσ ′
3). After computing these inte-

grals as shown above, one has to boost the 4-momentum back
to the computational frame. Formulas for quantum statistics
can be obtained by adding

∑∞
k=1(±1)k+1eμk/T in front of the

expressions and substituting T → T/k, z → zk. Here the +
sign is for bosons and the − is for fermions.

APPENDIX D: PHASE-SPACE SAMPLING AND
INTEGRALS

Here we present the relevant expressions for the two- and
three-body phase-space integrals R2 and R3. While the analyt-
ical expression for R2 is well known [27], R3 is less common,
although available in the literature. The definition of a phase-
space element for n dimensions is

dRn(
√

s, m1, m2, . . . , mn)

= (2π )4 1

(2π )3n

d3 p1

2E1

d3 p2

2E2
. . .

d3 pn

2En
δ(4)

(
Pμ

tot −
∑

Pμ
i

)
,

(D1)

where Pμ
totP

tot
μ = s. The whole expression is Lorentz invariant

and can be evaluated in any convenient frame. Evaluating R2

in the center-of-mass (c.m.) frame one finds:

dR2(
√

s, m1, m2) = 1

(2π )2

d3 pc.m.

4
√

p2
c.m. + m2

1

√
p2

c.m. + m2
2

× δ
(√

s −
√

p2
c.m. + m2

1 −
√

p2
c.m. + m2

2

)
(D2)

δ
(√

s −
√

p2
c.m. + m2

1 −
√

p2
c.m. + m2

2

)
,

= E1E2

pc.m.

√
s

δ[pc.m. − pc.m.(
√

s, m1, m2)],

(D3)

dR2(
√

s, m1, m2) = d2�c.m.

4π

pc.m.(
√

s, m1, m2)

4π
√

s
, (D4)

where the center-of-mass momentum, pc.m.(
√

s, m1, m2), is
given by

p2
c.m.(

√
s, m1, m2) = [s − (m1 + m2)2][s − (m1 − m2)2]

4s
.

(D5)
Therefore, sampling two-body phase space means just

sampling two angles uniformly on a unit sphere in the
center-of-mass frame, dR2/R2 = d2�c.m./4π and R2 = pc.m.

4π
√

s
.

To compute R3 one inserts the following identities into the
integration:∫

δ(E12 − E1 − E2)δ(3)( �p1 + �p2 − �p12)d4 p12 = 1, (D6)∫
δ
(
E2

12 − �p2
12 = M2

12

)
dM2

12 = 1. (D7)

Then after rearranging the product

dR3 = (2π )3

(2π )4
dR2(M12, m1, m2) dR2(

√
s, M12, m3) dM2

12,

(D8)

= 1

16π3
√

s
pc.m.(

√
s, M12, m3) pc.m.(M12, m1, m2)

× dM12
d2�12

4π

d2�123

4π
. (D9)

This expression provides a simple algorithm to sample
three-body phase space:

(i) Sample M12 uniformly in [m1 + m2,
√

s −
m3], then accept with probability

pc.m.(
√

s,M12,m3 ) pc.m.(M12,m1,m2 )
pc.m.(

√
s,m1+m2,m3 ) pc.m.(

√
s−m3,m1,m2 )

. Repeat until M12

is accepted. The acceptance expression uses the
fact that pc.m. is an increasing function of the first
argument and decreasing function of the second
argument.

(ii) For particle with mass m3, sample the direction of
momentum uniformly in 4π . The magnitude of mo-
mentum is pc.m.(

√
s, M12, m3).

(iii) Sample the two-body phase-space for m1 and m2,
then boost their momenta to have total momentum
pc.m.(

√
s, M12, m3).
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The expression above can be numerically integrated to
obtain R3, but it turns out that an analytical formula for R3

exists (see Eqs. (54)–(58) of Ref. [28]), which is faster and
more reliable. First, let us transform R3 to

R3(
√

s, m1, m2, m3)

= 1

128π3s

∫ x3

x2

((t − x1)(t − x2)(t − x3)(t − x4))1/2 dt

t
,

(D10)

where x1 = (m1 − m2)2, x2 = (m1 + m2)2, x3 = (m3 − √
s)2,

x4 = (m3 + √
s)2. Then R3 can be expressed via the complete

elliptic integrals K, E, �:

R3 = 1

128π3s

{
c1K(κ ) + c2E(κ ) + c3�

(
q−+
q−−

κ

)

+c4�

[
(m1 − m2)2

(m1 + m2)2

q−+
q−−

κ

]}

×�[s − (m1 + m2 + m3)2], (D11)

q±± := (
√

s ± m3)2 − (m1 ± m2)2 (D12)

c1 = 4m1m2

√
q−−
q++

, {(√s + m3)2 − m3
√

s + m1m2},

(D13)

c2 = m2
1 + m2

2 + m2
3 + s

2
√

q++q−−, (D14)

c3 = 8m1m2√
q++q−−

{(
m2

1 + m2
2

)(
s + m2

3

)
,

−2m2
1m2

2 − 2m2
3s

}
, (D15)

c4 = −8m1m2
(
s − m2

3

)2

√
q++q−−

, (D16)

κ2 = q+−q−+
q++q−−

. (D17)

In case of massless particles expressions for R2 and R3,
simplify considerably:

R2(s, 0, 0, 0) = 1

8π
, (D18)

R3(s, 0, 0, 0) = s

256π3
. (D19)
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