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Third order viscous hydrodynamics from the entropy four current
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Nonequilibrium dynamics for relativistic fluid or quark gluon plasma (QGP) have already been calculated
earlier up to third order using both kinetic and thermodynamic approaches. Calculations presented in this article
are based on thermodynamics principles. The expressions for third order dissipative fluxes have been derived
from equation for entropy four-current developed earlier by Muronga. The relaxation equations in the present
work have been developed in a simple Bjorken (1 + 1) dimensional scenario and Eckart frame. The relaxation
equations are found to have slightly different values for the coupling coefficients as compared to calculations
from earlier models. The solutions to the differential equations have been found to be sensitive to values of these
coefficients. The shear relaxation equations derived in third order theory are discussed term by term. Effects
of third order theory on shear relaxation time have been discussed. Thermodynamic quantities related to hot
and dense matter have been calculated as functions of proper time. Moreover, various initial conditions for the
relaxation equations have been assumed to study their effects on above mentioned observables. A CERN Large
Hadron Collider QGP formation time of τ0 = 0.4 fm/c and temperature of T0 = 500 MeV have been assumed.
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I. INTRODUCTION

High energy heavy ion collisions offer the opportunity to
study the properties of hot and dense quark gluon plasma
(QGP) [1]. At the CERN Large Hadron Collider (LHC),
experimental results have suggested the formation of a rela-
tivistic fluid with observables on particle production and have
thus confirmed the formation of QGP [2–4]. In order to study
the system of relativistic fluid evolving through space and
time, one must use transport equations. Transport equations
do not merely transport particle distributions without any
medium effects or particle interaction but also include various
physical and nonequilibrium processes such as dissipations,
collisions, and radiations. The nonequilibrium phenomena
are particularly interesting because of the various transport
coefficients and their relaxation times and length scales which
may help us track the equilibration of the system. Thus the use
of fluid dynamics as one of the approaches in modeling the
dynamic evolution of nuclear collisions has been successful
in describing many of the observables [5–7]. However the
assumptions and the approximations of the fluid dynamical
models have been the source of major uncertainties in pre-
dicting the observables.

Many works have been done earlier on relativistic fluid
dynamics [8] both from kinetic theory and thermodynamics
approaches. The first order theories of relativistic fluid dynam-
ics are due to Eckart et al. [9]. and to Landau and Lifshitz [10],
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and had assumptions that the entropy four-current contains
only linear terms in dissipative quantities. Consequently we
have Fourier-Navier-Stokes equations which might lead to
noncausality and propagate viscous and thermal signals with
speed greater than that of light. These theories have been ex-
tended to include second order equations to meet the causality
conditions and have been done at the earliest by Muller, Israel,
and Stewart. This is also known as second order dissipative
theories or Muller-Israel-Stewart theories (M-IS) [11–13].
Recent works to include second order corrections have been
done by Muronga et al. [14–17], El et al. [18,19] using ther-
modynamics approaches (entropy principle), while Denicol
et al. [20], Jaiswal et al. [21,22] used an iterative approach to
the kinetic Boltzmann equation (BE) to solve the dissipative
equations. The results from these various approaches are
complimentary [23]. However their differences are consider-
able and depend on the approaches or techniques involved
and values of the coefficients in the differential equations.
We will return to this issue in the discussion section. Both
second and third order hydrodynamics are of contemporary
interests as some recent works have called upon these theo-
ries in including mass effects and fluid-gravity duality. The
predictions showed an increased importance of application of
hydrodynamics to both massless and massive fluids as well as
to compact systems [24–28].

Other recent works have directed hydrodynamics to the
study of attractors which might indicate convergence of hy-
drodynamics coefficients. The works in Refs. [29,30] corre-
spond to Anti-de Sitter-Conformal Field Theory (AdS-CFT),
fluid gravity duality where hydrodynamics attractors up to
order, n = 240 have been calculated. However the coefficients
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show a convergence for n � 5, to which both second and third
order theories are restricted. The works gave rise to the ap-
plication of Borel resummation techniques to test the conver-
gence. However the works are restricted to a massless limit of
conformal theories and extending them to a massive particles
regime could be carried out. Hydrodynamics could be studied
at any temperature or particle density regimes as well as for
both massive and massless regimes. Similar extensive works
by Baier [31] with Ads-CFT and Jaiswal [32] with third order
hydrodynamics in Boltzmann transport equation relaxation
time approximation (BTE-RTA) have shown the calculation
of attractors and convergence of hydrodynamics coefficients.
Indeed it would be interesting to find the maximum order we
can reach with hydrodynamics, before it is no longer valid.

In the current work we have extended the work done by
Muronga to third order equations for the dissipative fluids [33]
and presented it here as a test model for further development.
The calculations are shown briefly in Sec. III. We have com-
pared our calculations and results with earlier calculations by
El et al. and Jaiswal. The results and discussions are reported
in Sec. IV of the current paper, followed by conclusions.

II. EQUILIBRIUM AND NONEQUILIBRIUM DYNAMICS

In this section we discuss briefly the equilibrium and
nonequilibrium dynamics. The dissipative fluxes which ap-
pear as time-dependant variables in the conservation equa-
tions, serve as major factors those push the fluid system out
of equilibrium state. We also know from the laws of thermo-
dynamics that entropy is conserved in ideal fluid. Because of
the absence of dissipative forces, changes in the system are
reversible. It is also known from earlier works that despite
the nonphysical nature of perfect fluid, its dynamics are able
to explain various phenomena in heavy ion collisions [34].
In real fluids, however, dissipative fluxes due to friction,
stress, and heat flow cause the system to undergo irreversible
processes and lead to an increase in entropy. At present,
relativistic heavy ion collision experiments which are being
conducted at LHC give us the context and opportunity to
apply relativistic fluid dynamics and study the dissipative
properties of quark gluon plasma (QGP) as well as hadron
gases formed from QGP. Results from AdS-CFT have also
suggested a small presence of viscous forces in QGP and
give us a lower bound (Kovtun-Son-Starinets (KSS) bound)
on η

s = 1
4π

[35], where η is the shear viscosity and s is
the entropy density of fluid system. Developing master equa-
tions and their solutions in order to simulate hydrodynamics
evolution for relativistic fluids have been major challenges
to researchers. Because of the presence of nonlinear terms,
the formulation of equations becomes nontrivial even in the
case of ideal hydrodynamics. Restrictions are also put on
the equations by the laws of thermodynamics, and from the
generalized expression from the equations one can derive the
expression of the equation of state which could describe the
thermodynamic states of the fluids. The theoretical formula-
tion for the ideal/nondissipative hydrodynamics was given by
Bjorken [36] which gave us the conservation equations for
the energy-momentum tensor, number, and entropy densities.
The Bjorken scaling solution has been applied to first, second,

and third order theories. The second order theories or M-IS
theories use Grad’s 14-moment method [37,38] and up to
the second moment of the Boltzmann equation as approx-
imation. M-IS included only linear terms in the dissipative
equations and neglected nonlinear terms as well as terms such
as derivatives of thermodynamic variables. The theories have
limitations such as the reheating of the system, etc. Earlier
discussions on IS theory in a simple one-dimensional Bjorken
scaling expansion have also pointed out some unphysical
results such as negative longitudinal pressure at small initial
time. Thus higher order corrections along with the inclusion
of nonlinear terms and derivatives of thermodynamic vari-
ables are studied to see if these effects can be reduced [33].
To include third order, both thermodynamic approach from
Grad’s 14-moment approximation by El et al. [39] and ki-
netic approach by Jaiswal [40,41] have been done. In both
approaches by El and Jaiswal, respectively, a relativistic third
order evolution equation for shear stress has been developed
to study dissipative dynamics. The results could agree with
exact solutions from Boltzmann transport equations. The ap-
proach to develop third order theory by Muronga takes the
expansion of Grad’s 14-moments up to quadratic terms, and
gives a full expression for dissipative fluxes and thus entropy
four-current up to third order. We will briefly discuss the
formalism in the following section. As mentioned in the early
seminal works of [29,30,42], gradient expansion techniques
bring in a number of nonlinear terms and nonhydrodynamic
modes. As to date these modes are yet to be fully understood,
but they are important as they make equations of motion
causal. As demonstrated in the above references, particularly
through Maxwell-Cattaneo (MC) equations, the presence of
nonhydrodynamic modes lead to finite signal propagation
speed in contrast to first order or Navier-Stokes (NS) theories.
In fact MC theory has derivatives in both space and time.
This makes the resulting MC equations of motion hyperbolic,
whereas the NS equations are parabolic in nature. Some of the
consequences of noninear modes particularly on relaxation
time has been discussed in the later sections.

III. FORMALISM

The basic formulation of relativistic hydrodynamics can be
found in the literatures mentioned in previous sections. Here,
a simple fluid with massless particles and no electromagnetic
fields has been considered. The fluid is characterized by

Nμ(x), particle four-current, (1)

T μν (x), energy-momentum tensor, (2)

Sμ(x), entropy four-current. (3)

The equations for the conservation of net charge and energy-
momentum are given by

∂μNμ = 0, (4)

∂μT μν = 0. (5)

Also, the second law of thermodynamics dictates

∂μSμ � 0. (6)
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The energy flow vector is similarly defined as

W μ = uνT νλ�
μ
λ = qμ + hvμ, (7)

where h = ε+P
n is the enthalpy, vμ is the particle flow vector,

and qμ is the heat flow or heat four-current. In Eckart frame,
the particle flux vμ = 0 which implies W μ = qμ. In the
Landau and Lifshitz frame or energy frame, we have W μ = 0
which implies qμ = −hvμ.

The net charge four-current might be written of the form

Nμ = nuμ + vμ. (8)

In the Eckart frame, where there is no particle flux, the
particle number density in the fluid rest frame is given by
n = √

NμNμ. It can be shown that uμ = Nμ√
NμNμ

is the fluid

four-velocity such that uμuμ = 1, while the energy momen-
tum tensor can be written as

T μν = εuμuν − (P + 
)�μν + 2q(μuν) + π 〈μν〉 , (9)

where ε = uμuνT μν is the energy density, P is the pressure
in fluid rest frame, 
 is the bulk viscous pressure, and π 〈μν〉
is shear stress tensor. �μν = gμν − uμuν is the projection
tensor in three-dimensional space.

In the present calculation, Grad’s 14-moments approxima-
tion has been used to develop the equations for dissipative
fluxes. A system of relativistic fluid has been considered
that departs slightly from the local thermal distribution. The
distribution for particles in that system can then be written as

f (x, p) = f eq(x, p)[1 + �eqφ(x, p)] , (10)

where

f eq(x, p) = A0
1

eβν pν−α − a
(11)

is the equilibrium distribution function. The factor, �eq,
is expressed as 1 + aA−1

0 f (x, p) and φ(x, p) is the
deviation/departure function. The definition of f (x, p) has
been used in Eq. (10) for the following expressions for num-
ber, energy-momentum tensor, and fluxes equations:

Nμ(x) =
∫

f (x, p)pμ dw,

T μν (x) =
∫

f (x, p)pμ pν dw, (12)

Fμνλ(x) =
∫

f (x, p)pμ pν pλ dw ,

and it can be shown that particle four-current, energy momen-
tum tensor, etc., are divided into equilibrium and nonequilib-
rium parts as follows:

Nμ(x) = Nμ
eq(x) + δNμ(x) ,

T μν (x) = T μν
eq (x) + δT μν (x) , (13)

where δNμ, etc., is the nonequilibrium/deviation part from the
corresponding quantity. The entropy four-current can also be
divided into an equilibrium part and a nonequilibrium part as
follows:

Sμ(x) = Sμ
eq(x) + δSμ(x). (14)

Now to calculate δSμ, we may similarly resort to Grad’s 14-
moment approximation with Sμ(x) defined as

Sμ(x) = −
∫

dw pμψ ( f ), (15)

where

ψ ( f ) = f (x, p) ln
[
A−1

0 f (x, p)
] − a−1A0 × ln �(x, p). (16)

Now we can expand ψ ( f ) around ψ ( f eq) up to third order
in derivative to obtain

ψ ( f ) = −a−1A0 ln �eq(x, p)

+ [α(x) − βν (x)pν][ f (x, p) − f eq(x, p)]

+ 1
2

[
f eq(x, p)A−1

0 �eq(x, p)
]−1

[ f (x, p) − f eq(x, p)]2

+ 1
6

[ − f eq(x, p)A−1
0 �eq(x, p)

]−2

× [ f (x, p) − f eq(x, p)]3. (17)

Inserting the above equation in the entropy flux expression,
i.e., Eq. (15) we have

Sμ = Sμ
eq +

∫
dw pμ[α(x) + βν (x)pν]( f − feq)

− 1

2

∫
dw pμ

[
f eq(x, p)A−1

0 �eq(x, p)
]−1

( f − f eq)2

− 1

6

∫
dw pμ

[
f eq(x, p)A−1

0 �eq(x, p)
]−2

( f − f eq)3,

(18)

where second, third, and fourth integration should give us first,
second, and third terms of the entropy current, respectively.

A small linear departure function (non-equilibrium)
φ(x, p) in f (x, p) has been taken as

φ(x, p) = y(x, p) − yeq(x, p)

≈ ε(x) − εμ(x)pμ + εμν (x)pμ pν, (19)

where

y(x, p) = ln
[
A−1

0 f (x, p)/�(x, p)
]

(20)

differs from its local equilibrium value, yeq by quantity
φ(x, p). The moments ε, εμ, and εμν are assumed small. The
expressions for these coefficients are given in the Appendix A
of this paper.

After integration, the entropy four-current can be written
up to third order or cubic in dissipative fluxes as

Sμ = S0
1uμ + S1

1
uμ + S1
2qμ

+ (
S2

1

2 − S2

2qαqα − S2
3π

2〈αα〉)βuμ

+β
(
S2

4
qμ + S2
5π

〈μα〉qα

)
+ (

S3
1


3 − S3
2
qαqα + S3

3
π2〈αα〉

+ S3
4qαqβπ 〈αβ〉 − S3

5π
3〈αα〉)βuμ

+ (
S3

6

2 − S3

7qαqα + S3
8π

2〈αα〉)βqμ

+β
(
S3

9
π 〈μα〉qα + S3
10π

2〈μα〉qα

)
, (21)
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where the coefficients Sm
n are calculated as functions of ε

and n and are shown in Appendix A. The superscript in the
coefficients denotes the order and the subscript labels the co-
efficient number in that order. The terms π2〈αα〉 = π 〈αβ〉π〈αβ〉,
π3〈αα〉 = π 〈αβ〉π〈αδπ

δ
β〉, etc., are written in shortened form.

In case of second order theory, S2
ns are equivalent to the

coefficients αi and βi shown in Ref. [17]. For thermodynamic
processes, the entropy principle suggests ∂μSμ � 0. The dissi-
pative fluxes can be obtained either from the equations of the
balance of the fluxes or from entropy principle. We may recall
that at zeroth order the dissipative fluxes take their equilibrium
values, 
 = 
eq = 0, qα = qα

eq = 0, and π 〈αβ〉 = π 〈αβ〉
eq = 0.

The complete third order equations of motion or relax-
ation equations of dissipative fluxes have been given in
Appendices A and B.

A. Bjorken scaling solution

In the Bjorken scaling solution, the thermodynamic vari-
ables such as temperature, chemical potential, pressure, and
dissipative fluxes are functions of proper time τ only. This
means that the explicit transverse space derivatives of tem-
perature, fluid velocity, coupling coefficients, etc., are ab-
sent. Also under such condition heat flow is shown to be
qμ = 0 [15,18]. However this does not imply that the number
density n = 0. In the current scenario ε + P is the effec-
tive enthalpy, P + 
 + π is the longitudinal pressure, and
P + 
 − π/2 is the transverse pressure of the system. The
four-velocity in Bjorken (1 + 1) dimensional expansion is
defined as uμ = (t/τ, 0, 0, z/τ ), and the derivatives of the
four-velocity are shown to be ∂μuμ = 1

τ
and uμ∂μ = ∂

∂τ
. In

the comoving frame, the shear tensor is diagonal with a
positive shear pressure: πμν = diag(0, π/2, π/2, −π ). The
parentheses on the indices denote symmetrization and skew-
symmetrization as follows:

a(μν) ≡ 1
2 (aμν + aνμ),

a〈μν〉 ≡ (
�(μ

α �
ν)
β − 1

3�μν�αβ

)
aαβ. (22)

Thus in Bjorken (1 + 1) dimensional scaling, the first order
transport equation could be reduced to


 = −ζ
1

τ
, (23)

qμ = 0 , (24)

π = 4

3
η

1

τ
. (25)

From the entropy principle, the general equation in dissipative
fluxes can be shown to be

T ∂μSμ = 
2

ζ
− qμqμ

κT
+ πμνπ

μν

2η
� 0 with

ζ , κ, η � 0, (26)

where ζ , κ , and η are bulk viscous, thermal conductivity, and
shear viscous coefficients, respectively.

The expressions for shear πμν , bulk pressures 
, and heat
qμ flux derived from Eqs. (21) and (26) have been shown in
Appendix B. In the present calculations where we are working

in Bjorken scaling solution, and the ultrarelativistic regime
(massless fluid particles), only the shear pressure equation
remains to be solved. The third order shear pressure expres-
sion thus obtained as

π 〈μν〉 = −2ηT �αμ�βν
[ − ∂〈αuβ〉 + 2βS2

3 (uλ∂
λπ〈αβ〉)

+π〈αβ〉∂λ
(
βuλS2

3

) + 3βS3
5 (uλ∂

λπ〈αδ )πδ
β〉

+π〈αδπ
δ
β〉∂

λ
(
βS3

5uλ

)]
. (27)

Using Eq. (27), the third order equation can also be written as

uλ∂
λπ 〈μν〉 = − π 〈μν〉

τπ

+ 2η ∂μuν

τπ

− 2ηT

τπ

π 〈μν〉∂λ

(
S2

3

2T
uλ

)

− 3ηS3
5

τπ

(uλ∂
λπ 〈μδ )πν〉

δ

− 2ηT

τπ

π 〈μδπ
ν〉
δ ∂λ

(
S3

5

2T
uλ

)
, (28)

where τπ = 2ηS2
3 is relaxation time for the shear pressure.

The coefficient S2
3 is taken to be ≈9/4ε in the ultrarelativistic

limits. We have used the equation of state (EoS) due to the
assumed ultrarelativistic scenario to be ε = 3P.

After simplification and keeping all the terms, the final
equations for shear pressure for third order viscous and mass-
less fluids is found to be

π̇ = − π

τπ

− 1

2

π

τ
+ 3

10

ε

τ
+ 5

8

π

ε
ε̇ − 3

2

π2

ετ

+ 27

8

π2

ε2
ε̇ − 12

5

π

ε
π̇. (29)

Also in (1 + 1) dimensional Bjorken flow, the energy and
number density equations calculated from Eqs. (8) and (9) are
similarly given by

ε̇ = −ε + P

τ
+ π

τ
, ṅ = −n

τ
. (30)

The shear differential equation shown in Eq. (28) has an order
by order implication on the final output or calculated energy
and entropy densities. The effects due to the inclusion of
various orders on the solutions of dissipative equations will
be discussed in the next section.

IV. RESULTS AND DISCUSSIONS

Pressure isotropy is the measure of a system’s isotropiza-
tion and indicates the system’s return to its equilibrium state.
It is calculated as the ratio of longitudinal pressure (PL) to
transverse pressure (PT ) of the system. A system of quarks and
gluons in equilibrium behaves like a fireball where PL equals
PT , and the ratio remains unity and independent of time. But
with the presence of viscous forces, the ratio diverges from
unity (i.e., the system is out of equilibrium) but gradually
returns to equilibrium with time. Usually the collision axis
for the heavy ions is taken to be a longitudinal axis (viz.
z axis) with zero momentum along ‘x’ or ‘y’ (transverse)
directions. After the collision, because of the presence of
viscous drag along the z axis, the particles tend to push more
on the transverse direction than the longitudinal direction.
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FIG. 1. Pressure isotropy of relativistic fluid using second and
third order shear equations with π0 = 0.

However the system due to particle interaction and decreasing
dissipative fluxes, the pressure continues to build along the
z axis and, if given enough time, the system could return to
equal pressures along both longitudinal and transverse axes.
Let us now move to a discussion of the results. We may recall
that calculations have been done in the (1 + 1) dimensional
Bjorken scenario with boost-invariance assumed along the z
axis.

Figure 1 shows pressure isotropy as a function of proper
time for an expanding fluid with an initial condition match-
ing that of an ideal relativistic fluid. The figure shows the
a comparison between shear pressure in second and third
order equations. Two different values of η/s have been used.
Because of the initial π0 = 0 GeV/fm3 the fluid is initially
isotropic and thereafter the dissipative fluxes put the system
rapidly out of equilibrium. The system tries to get back
to equilibration and the trends show a continuous rise in
isotropization although a certain degree of saturation already
sets after 4–5 fm/c. The ideal scenario is represented by a
unit valued line (dotted). Initially the second order shows a
greater dip than the third order, which indicates that third
order tends to limit or decrease the dissipative effects brought
in by lower orders. One may also find that higher values of η/s
bring in more of a difference between second and third order
shear equations. An initial temperature of T0 = 500 MeV at
QGP formation time of τ0 = 0.4 fm/c has been used in the
calculations. It is interesting to mention that in some earlier
studies higher orders beyond third order have been considered
by El et al. and the seminal paper has heuristically explained
that a higher order beyond third might increase the shear
effects and observables might be closer to second order.
However, it is also suggested in that literature that the effects
might be oscillatory in nature if more ordered corrections
are taken in the picture. This is yet to be studied more
extensively [39].

Figure 2 shows pressure isotropy when initial shear pres-
sure is changed from an ideal fluid to π0 = P0. We also
recall that while deriving transport equations, we assumed
that the dissipative fluxes should be small as compared to
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η/s = 0.2, π0 = P0, τ0 = 0.4 fm/c, T0 = 500 MeV

FIG. 2. Pressure isotropy of relativistic fluid using second and
third order shear equations with π0 = P0.

the primary physical quantities (ε, n, P). In terms of π this
condition can be written as (πμνπμν )1/2 < P. In general the
thermodynamic quantities will decrease with time as long as
the condition π � ε + P, which in our case is π0 � 4P0. A
moderate value of π0 � P0 has been used to avoid negative
effective enthalpy and negative longitudinal pressure. Unlike
the first order theories such limitations could be put on initial
conditions in both second and third order theories. But for
investigative studies one may relax this binding on π0 to 4P0.
The quantity PL/PT rises rapidly for the second and third
order equations similar to the previous figure but the rates
decrease and the curves try to merge beyond 6 fm/c. The first
order result starts slower but tends to merge around 12 fm/c.
Here too, the inclusion of third order decreases the effects of
dissipative fluxes when compared to second order and first
order shears. The initial temperature and time identical to
Fig. 1, and a modest value of η/s = 0.2 have been used for
this plot.

Next we move over to a comparison between various mod-
els which incorporated third order viscous hydrodynamics.

To begin with Figs. 3 and 4, it can be stated that values
of the coefficients in relaxation equations from models differ
from each other, respectively. The models used for compar-
ison are referred here as El I. (AE), a third order thermo-
dynamic theory, Jaiswal I. (AJ), a third order kinetic theory,
and the current work, Muronga et al. (AM) which is based on
third order theory based on thermodynamic entropy principle.
The differential equations in these models have been found
to be very sensitive to the values of coupling coefficients.
One may also find that certain terms have been neglected
in Muller-Israel-Stewart theories for second order because of
their nonlinearity. The Muronga et al. model has included
these terms in developing the shear differential equations.
Figures 3 and 4 aim to highlight the sensitivity of values of the
coefficients and terms used in the models. The model by AM
calculates the full expansion of the entropy four-current using
Grad’s 14-moments theory. As approximations, mass of fluid
particles and heat flux have been neglected in order to obtain
a very simple picture of how viscous drag forces work within
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FIG. 3. Comparison of models on time evolution of pressure
isotropization for different η/s values. Muronga et al. (AM) denotes
inclusion of ∂iS2

3 and ∂iS3
5 terms in the third order equation.

the system. Also compared to the AE model, terms of order
4 in π/ε have also been included in the AM model. As seen
from the figure, the models do not differ much for lower η/s
values. For higher values of the parameter, the models differ
by a small magnitude at low τ while for at later times they
tend to merge. Figures 3 and 4 also differ from each other at
the starting point of the curve due to the choice of initial values
of π0. However the evolution of pressure isotropy ratios show
a similar trend after τ = 2 fm/c in both figures. The effects
of various terms in Eq. (28) [simplified into Eq. (29)] will be
discussed for Figs. 6 and 7.

In Fig. 5 the pressure isotropy ratio PL/PT calculated
from current model (AM) has been compared to results from
BAMPS transport theory. BAMPS data points have been
extracted from El et al.’s paper which has up to τ = 4 fm/c
and hence the figure has a shorter x-axis range compared
to other figures. The main focus of this plot is to highlight
the difference between the transport calculation and effective
third order theory shown in the current work. The BAMPS
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exhibits larger transverse pressure compared to the AM model
for η/s values �0.2. The ratio however shows a similar trend
for both models as the system evolves with time.

In Figs. 6 and 7, Eq. (28) has been dissected and discussed
term by term. If Eq. (28) is simplified and the first two terms
on the right-hand side (r.h.s.) of the equation are considered,
they give us a Maxwell-Cattaneo (M-C) like equation. As
known from earlier studies, the M-C equation has been used
to study the propagation of second sound in the presence
of dissipative heat flux in materials [43]. One may draw an
analogy and write

dq

dt
= − q

t0
+ k

�

t0
⇐⇒ dπ

dτ
= − π

τπ

+ 2η

τ

1

τπ

, (31)

where t0 is the relaxation time, � is absolute temperature. We
have labeled the solutions to the above set of terms in the AM
equation as M-C in the figures. In addition we have also com-
pared the solutions of Muller-Israel-Stewart equations (M-IS)
and second order theory. One may recall that certain terms
such as 
∂iε, π〈αβ〉∂iε, qα∂in and consequently ∂iS2

3 and ∂iS3
5

have been neglected in M-IS equations due to their non-
linear nature [13]. MI-S theory developed for second order
shows that these terms (including vorticity terms) may not
be explicit from the entropy principle or kinetic theory [44].
However the extra terms are consistent with conformal
theories [31,45].

It can be seen from the figures that the terms ∂iS2
3 and

∂iS3
5 have discernible effects on solutions. The calculations

are done at a moderate η/s = 0.4. The differences in the
solutions are more visible at low τ . The M-C equation gives
more shear pressure and energy density (see Fig. 6) for low
and intermediate time, and consequently the pressure isotropy
parameter, PL/PT , calculated from the M-C equation, (see
Fig. 7) goes below zero for τ < 3 fm/c. MI-S equations which
have second order shear terms do not contain a ∂iS2

3 term. As
a result the solutions to the M-IS equation although closer to
AM second order theory, have considerable differences with
it and thus the effects of nonlinear terms could be highlighted.
AM second order theory decreases the overall dissipative
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FIG. 6. (a) Energy density solution for Maxwell-Cattaneo–like equations, Muller-Israel-Stewart theory, and Muronga et al. second and
third order equations. (b) Solutions for shear pressure for the models mentioned.

effects of the shear. AM third order theory shows a further
decrease in shear pressure and almost merges with second or-
der solution around τ = 12 fm/c. Third order energy density
solution also differs from an ideal solution by a magnitude.
This difference however may be due to the assumed value of
η/s = 0.4. The effects of the η/s on ordered theories have
already been discussed in the context of Fig. 1.

In Eq. (28) the term − 3ηS3
5

τπ
uλ(∂λπμδ )πν

δ appearing in the
third order shear relaxation equation is nonlinear and has been

simplified into the last term in Eq. (29). The ratio 3ηS3
5

τπ
π ≈ π

ε

has been neglected in Ref. [39] for all time. However for
earlier times when τ < τπ , this term proves to be relevant.
This is evident in Fig. 8, where for a moderate value of
η

s = 0.4, the calculation of the ratio π
ε

has approximate values
between 0.161 and 0.11 at τ = 1.0 fm/c to 7 fm/c but drops
down to 0.060 around τ = 12 fm/c. Hence for the major part
of QGP evolution this term although nonlinear becomes a
contributing factor.

Following the above discussion, the term 3ηS3
5 π can be

referred to as a relaxation time that comes from the third order
equation. This term also provides a correction factor to second
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FIG. 7. Time evolution of pressure isotropy for various terms in
shear pressure differential equation.

order relaxation time τπ in Eq. (28) as follows:

τπ

(
gμδ + 3ηS3

5

τπ

π 〈μδ

)
uλ∂

λπ
ν〉
δ

= −π 〈μν〉 + 2η ∂μuν − 2ηT π 〈μν〉∂λ

(
S2

3

2T
uλ

)

− 2ηT π 〈μδπ
ν〉
δ ∂λ

(
S3

5

2T
uλ

)
, or

τ 〈μδ
π uλ∂

λπ
ν〉
δ

= −π 〈μν〉 + 2η ∂μuν − 2ηT π 〈μν〉∂λ

(
S2

3

2T
uλ

)

− 2ηT π 〈μδπ
ν〉
δ ∂λ

(
S3

5

2T
uλ

)
, (32)

where τμδ
π = τπ (gμδ + 3ηS3

5
τπ

πμδ ) can be termed as the modi-
fied relaxation time for the third order shear viscous pressure.
τμδ
π is in a tensorial form and depends on the form of the shear

pressure tensor. We find that third order correction explicitly
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s values at T0 = 500 MeV and τ0 = 0.4 fm/c.

034902-7



MOHAMMED YOUNUS AND AZWINNDINI MURONGA PHYSICAL REVIEW C 102, 034902 (2020)

10

20

 S
he

ar
 r

el
ax

at
io

n 
tim

e

 3rd ord. τπ
(3) (fm/c)

 2nd ord. τπ (fm/c)

1 10
 Proper time, τ (fm/c)

1

1.1

1.2

1.3

 R
el

ax
at

io
n 

tim
e 

ra
tio

π0 = 0.0 GeV/fm3, τ0 = 0.4 fm/c, T0 = 500 MeV

τπ
(3)/τπ

FIG. 9. Time evolution of shear relaxation time for η/s = 0.4
values at T0 = 500 MeV and τ0 = 0.4 fm/c.

brings in the shear fluxes in the expression for the relaxation
time. This was absent in second order. Another interesting
feature is that no direction dependent effects were present in
second order relaxation time whereas in third order theory we
have τ xx

π , τ
yy
π , and τ zz

π along x, y, and z directions. In the case
of the Bjorken (1 + 1) dimensional scenario, the effect of the
correction term for relaxation time has been obtained from
Eq. (29) and the modified relaxation time, τ zz

π = τ (3)
π is shown

in Fig. 9. The figure shows a clear difference between second
and third order effects. Thus it would be interesting to study
the effects of various ordered theories on the relaxation times.

Let us now discuss the effects of shear viscosity to
entropy ratio on the pressure isotropization. It can be
shown from transport models that parameter η/s shows
a coupling between medium particles or the strength of
particles’ interaction. The parameter could be shown to
be η/s ≈ 0.066 ∗ [α2

s ln(α−1
s )]−1 (Nf = 3 and 0 � αs �

1) [46,47]. The equation shows the viscosity to entropy ratio
as a function of strong coupling. In the current calculation, η/s
has been treated as a parameter with constant values which
also indicate constant values for strong coupling assumed in
our calculations. However it should be recalled that strong
coupling is a running coupling and depends on the system
temperature or momentum transfer during particle interaction.

Figure 10 shows the dependence of the shear viscosity to
entropy ratio on pressure isotropization. As η/s is increased,
the system is removed further from equilibrium and at high
values of η/s = 1.0–3.0 (highly viscous fluid), the ratio PL/PT

is almost flat after 2 fm/c with a slow rise. This indicates that
fluid with high viscosity may not return to isotropy quickly.
The earlier studies [18] have however shown that second order
theories break down beyond η/s ≈ 0.4–0.5, possibly limiting
the maximum values for η/s.

For a very low value of η/s = 0.07, the pressure isotropy
ratio goes closer to unity around the time τ = 10–12 fm/c.
This suggests the importance for the study of time or length
scale dependence of isotropization or equilibration of viscous
fluids.
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FIG. 10. Time evolution of pressure isotropy for various η/s
values at T0 = 500 MeV and τ0 = 0.4 fm/c.

Figure 11 shows proper-time evolution of shear pressure
with two different initial shear pressure. π0 = 0 matches that
of ideal fluid, while π0 = P0 provides a high initial dissipative
flux. The results from second and third order equations for an
ideal fluid-like initial condition, rise rapidly from zero but tend
to fall off more quickly when compared to the corresponding
results using a large initial shear. Irrespective of the initial
conditions both second and third order theories bring down
the dissipative fluxes as compared to the first order theory.
Also third order theory brings shear viscosity to lower value
than the second order although the difference decreases as the
system evolves in time. Overall the decrease of shear pressure
with time indicates that the system attempts to return to local
equilibration (perfect fluid).

In Fig. 12, the proper-time evolution of QGP’s energy
density calculated from ideal, first, second, and third order
equations has been shown. The top plot shows time evolution
of energy density for a moderate value of η/s = 0.4, and two
initial values of π0 = 0 and P0. The results are shown for
an initial temperature of T0 = 500 MeV and τ0 = 0.4 fm/c.
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FIG. 11. Comparison of different orders of shear pressure for two
initial conditions of π0 = 0.0 and π0 = P0.
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The bottom plot keeps π0 = P0 fixed while varying η/s. The
ideal equation in the Bjorken (1 + 1) dimensional expansion
shows the expected trend with energy density decreasing as
≈ 1

τ 4/3 . The first order equation shows a slight rise in the
energy content of the system to a peak until 1 fm/c and then
decreases slowly. The peak is more visible in the top plot
for the fixed value of η/s. The first order theory differs from
the ideal scenario by an order of magnitude around 12 fm/c
in both plots. The second and third order brings down this
difference to values closer to the ideal situation. We may also
notice from both plots that initial value of π0 = 0.0 GeV/fm3

or η/s = 0.07 brings energy density closer to the ideal case
than π0 = P0 or η/s = 0.4.

Similar to Fig. 12, time evolution of temperature of the
relativistic fluid is shown in Fig. 13. In both plots ideal flow
quickly takes an initial temperature of 500 MeV to an assumed
critical temperature of Tc � 155–160 MeV [48,49] (when
hadronization sets in) around τ = 10–12 fm/c approximately.
The first order theory is still far above Tc by a factor. The
ideal and first order theories thus represent two opposite and
extreme scenarios of dissipative fluids. In general for the ideal
and first order equations, the temperature varies as

T

T0
=

[
τ0

τ

]1/3
{

1 + R−1
0

2

(
1 −

[
τ0

τ

]2/3
)}

, (33)

where T0 and R0 are temperature and Reynolds number
at τ = τ0. The Reynolds number is given by ε+P

π
. With

R−1
0 = 0, the temperature evolves in the ideal condition

(perfect fluid). For ideal fluid, we get T � 160 MeV at
τ = 12 fm/c. Also for τ = τ0, the temperature for the
two extreme scenarios start from the same point while
higher order theories lie in between. The third order equa-
tions could bring the temperature closest to the ideal sce-
nario for initial conditions such as π0 = 0 , η/s = 0.4 and
π0 = P0 , η/s = 0.07. One may infer that choice of initial
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FIG. 13. Comparison of temperature evolution between vari-
ous orders of dissipative equations at initial LHC temperature of
500 MeV. Two different initial shear values of π0 = 0.0 and π0 = P0

are used.

conditions has considerable effects on temperature evolu-
tion. Detailed study of transport coefficients used as initial
conditions could be carried out using various transport cal-
culations viz. ultra-relativistic quantum molecular dynamics
(UrQMD), Boltzmann approach for many parton scatter-
ing (BAMPS), parton cascade model/Bass-Muller-Srivastava
(PCM-VNI/BMS), etc. Next we move onto a discussion of
entropy density.

The entropy density, s has a direct relation to the particle
production. The enhancement of the production of particles
generates more entropy. However, with expansion of the
medium or system, as temperature falls off, particle produc-
tion decreases along with it. Figure 14 shows a change in
the entropy density with time. Ideal evolution gives a rapid
entropy decrease as the system nears the critical temperature,
assumed to be around 155–160 MeV. The first order theories
on the other hand decrease most slowly and differ from the
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FIG. 14. Proper-time evolution of entropy density for various
orders of shear pressure equation.
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between orders for π0 = 0.0 and π0 = P0.

ideal scenario by an order of magnitude. The third order
theory on the other hand brings the system closer to the ideal
scenario although it differs by a small factor.

It is known from Bjorken (1 + 1)D hydrodynamics that in
the ideal scenario, τ s should be conserved over time where
τ is the proper time and s is the entropy density. The ideal
scenario in Fig. 15 shows the conservation of the quantity
as expected from Bjorken’s hydrodynamics. The first order
theory on the other hand keeps generating more and more en-
tropy which makes the trend rise although there is a small sign
of saturation at a later time. The higher orders, particularly
third order, bring this increasing trend down although there
is a small increase in the value. However the saturation for
the third order develops earlier than the first and second order
theories. One may notice that zero initial shear pressure puts
the curves closer to the ideal situation. The calculation is done
for a moderate value of η/s = 0.4 at an initial temperature
of T0 = 500 MeV and τ0 = 0.4 fm/c. It can be shown from
Bjorken hydrodynamics [36,50,51] that in case of ideal fluid

τ0 s0 = τ s = 2π4

4πζ (3)πR2
T

dN

dy
, (34)

where dN
dy is the observed particle rapidity density distribution

and RT is the transverse radius of the system. We have
assumed chemical freeze-out time to be equal to hadroniza-
tion or critical time and ignored hadronic medium effects.
Although an exact analytical expression for second and third
orders is not possible but using Eq. (33) and the expression
s = 4a T 3 one can have a straightforward expression for ideal
and first order

τ s = τ0 s0

⎡
⎣1 +

⎧⎨
⎩R−3

0

8

(
1 − τ

2/3
0

τ 2/3

)3

+ 3R−1
0

2

×
(

1 − τ
2/3
0

τ 2/3

)
+ 3R−2

0

4

(
1 − τ

2/3
0

τ 2/3

)2
⎫⎬
⎭

⎤
⎦, (35)
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FIG. 16. Time evolution of τ s with proper time and compari-
son between values of η/s for π0 = 0.0, τ0 = 0.4 fm/c, and T0 =
500 MeV.

where the terms in {· · · } can be termed asthe first order
correction factor to the ideal equation. Hence we can write
to the first approximation that

τ s = τ0 s0[1 + F1(τ )], (36)

where F1(τ ) is the first order correction factor and might be
calculated analytically for higher orders. This also shows that
correction to multiplicity density can be approximately treated
as an additive quantity to the ideal scenario. In our case the
calculations have been done for the midrapidity where boost-
invariance along longitudinal direction is assumed. From the
above relation and results from Fig. 15 at τ = 12 fm/c, one
finds for the ideal scenario dNch

dη
= 1749 which is 14% lower

than experimental data ≈2035 at LHC energy of
√

sNN =
5.02 TeV [52]. Similarly, for the initial conditions of π0 = 0
and η/s = 0.4, the third order equation gives dNch

dη
= 2390

which is about 17% more than data and 36% more than the
ideal case. Second order equation gives dNch

dη
= 2578 which is

26% more than the experimental value and 47% more than the
ideal scenario. The first order theory on the other hand gives
dNch
dη

= 11741 which is 7 times higher than the ideal value or
500% increase approximately.

As mentioned earlier, initial conditions for transport coef-
ficients play a vital role in the precise calculation of entropy
or particle production. This is shown in Fig. 16 for third
order theory. Keeping π0 = 0, if η/s is taken to be 0.07,
dNch
dη

at τ = 12 fm/c is calculated to be 1927 which is 10%
more than ideal equation but 5% less than the experimental
value. Similarly if we have η/s = 0.2, we have dNch

dη
= 2157

which is 23% more than ideal equation and 6% more than
experimental results. Similar calculation with η/s = 0.07 and
0.2 in second order theory (not shown in figure) gives dNch

dη
=

1931 and 2222 which are 5% less and 10% more than the
experimental values, respectively. If one uses first order theory
to calculate dNch/dη, it is found to be 3936 for η/s = 0.07
at τ = 12 fm/c. It can be seen that first order gives particle
production 93% more than experimental data. Following the
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above results, one could put limits on the values of η/s
through a calculation of particle multiplicity density. However
different order theories give a slightly different range for
the parameter although part of this range overlaps. On the
other hand, such dissimilarities might also limit the universal
adaptation of a particular ordered theory for dissipative fluids.
This aspect would be further investigated and reported.

It could be recalled that no effects due to dissipative heat
flow as well as from bulk viscous pressure have been included
in the present calculations. Bjorken scaling solution excludes
the heat flow coefficient and the ultrarelativistic scenario
neglects effects of bulk viscosity. Consequently most of the
terms in Eq. (21) are absent and give us a very simplistic
picture. The goal of developing the third order viscous hydroe-
quations is to highlight the coupling coefficients Sm

n s which
display not only the correlation of dissipative fluxes among
themselves but also with each other. Such correlations are ab-
sent in second order theories. In our current work the Bjorken
scenario has eliminated the possibilities of correlations among
fluxes except the shear viscous pressure term, παβπαβ . The
inclusions of the other two important fluxes and all types
of correlations should bring in changes in the production of
entropy [see Eq. (26)], energy density, relaxation time, and
other rich components and these effects must be extensively
studied in the near future. No hadronic medium effects have
been included in our simple model. It naively assumes the
chemical freeze-out scenario occurs at the critical temperature
itself. Relaxing this condition should bring in an extra particle
production from the hadronic medium mainly from hadron
decay channels. Earlier studies on temperature evolution on
pion gas with second order theory have already been done
in Ref. [15].

V. CONCLUSIONS

In the present article the third order shear relaxation equa-
tion in the Bjorken scenario has been developed following the
earlier second order calculation by Muronga. In comparison
to other third order models in similar scaling, solutions by
El et al. and Jaiswal have been done. Consequently we have
worked on checking the consistency of our calculations in a
very simplistic scenario. This would serve as a test for future
development into (3+1)D dissipative hydrodynamics. The
differences in the results have been highlighted and discussed.
The coupling coefficients in the relaxation equations from
these models have been found to be slightly different from
our calculations and the output is found to be sensitive to
values of the coefficients. The difference also indicates one
of the possible sources of uncertainties in the output and thus
must be precisely evaluated. More detailed investigations on
the effects of the coefficients on thermodynamic variables are
being carried out. A comparison with the transport theory
of BAMPS has been carried out via the PL/PT ratio plot.
The BAMPS data have a similar trend to the results from
the AM model. However the present method of using Grad’s
14 moment approximation shows a considerable difference
with transport results especially at high η/s values. This
should be investigated and reported in the future. Nonlinear
terms such as ∂iS2

3 and ∂iS3
5 associated with shear viscous

pressure have been included in the relaxation equation and
have shown effects on the calculated thermodynamic quan-
tities at low τ or for higher η/s values. However, because
of the absence of coupling coefficients associated with other
fluxes or correlated terms, the final outcome on the observed
thermodynamic quantities is not conclusive. The assumptions
are being relaxed and the precise determination of the cou-
pling coefficients Sm

n and effect of EoS on them are being
currently studied and will be reported soon. The third order
correction to shear relaxation time τπ has explicit effects of
shear pressure π which was absent in the second order. Also
the third order relaxation time τ (3)

π is more than τπ but appears
to converge to it at later time. It would be interesting to study
what effects ordered theories higher than 3 would bring on the
relaxation time.

The ratio of longitudinal pressure to transverse pressure
ratio calculated for η/s > 0.5 shows an almost flat and hor-
izontal trend with time. This might indicate that system with
high viscosity may not go back to equilibrium during a QGP
lifetime. Consequently a detailed study of time-scale or sys-
tem length-scale dependence of the relaxation time of dissi-
pative fluxes and the correlation between the thermodynamic
variables and transport coefficients could be carried out. This
would also bring out in-depth information on ordered theories
and correlation between system evolution, hadronization, and
freeze-out times and various coupling coefficients. A precise
determination of transport coefficients such as shear η and
bulk ζ viscosities and thermal conductivity κ must also be
carried out. Parton cascade and transport models like UrQMD,
BAMPS, VNI/BMS, etc., could help us in the study. The
study of time evolution of thermodynamic variables and trans-
port coefficients would also help us develop the equation of
state (EoS) which is vital for transport simulation [53–63].

It is also seen from first order theory, that there is a
large increase in temperature and entropy production. They
are almost an order in magnitude different from the ideal
equation results. Both second and third order theories bring
down this difference. As mentioned in Ref. [39], it would be
also an interesting study to go beyond third order in present
calculations to study the oscillatory nature of ordered theories
on thermodynamic variables. Calculations needed to be done
with full transport theories which include dissipative heat
flow and bulk viscous pressure along with shear pressure and
extend our theories to full dissipative hydrodynamics. One
needs to study the changes in variables due to the additional
effects of heat flow and bulk viscous pressure. Inclusion of
bulk viscosity becomes important for the heavy ion collision
systems with massive particles, large chemical potential, or
other small systems from proton-proton collisions. Also our
current study has been carried out for a single initial temper-
ature of 500 MeV. Other values for initial temperature could
be included to further elucidate temperature dependences of
dissipative fluxes, entropy production, etc. Hadron medium
effects were not included in this simple model. Works are
being carried out although some results for the hadronic
regime using second order theories have already been shown
by Muronga et al. [15]. One of the many purposes of de-
termining hydrodynamic attractors is to test the convergence
of hydrodynamics coefficients to an arbitrary high order. It
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shows the viability and applicability of the present form of
relativistic fluid mechanics we are using today. The techniques
could be extended to both massless and massive particles. A
part of the current work could also be directed along the study
of attractors in the near future.
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APPENDIX A

Some of the mathematical terms used in our calculations
and shown in the paper have been explained here briefly. The
deviation function φ(x) in Eq. (10) is written as a function of
moments ε, εμ, and εμν :

φ(x) = ε − εμ pμ + εμν pμ pν, (A1)

where the moments are function of dissipative fluxes as

ε = A0,

εμ = A1uμ
 − B0qμ, (A2)

εμν = A2(4uμuν − gμν )
 − B1uμqν + C0πμν.

The coefficients in the moments in φ(x) are calculated to be

A0 = 3A2D−1
20 (D30 + I41I20 − I30I31),

A1 = 3A2D−1
20 (4(I10I41 − I20I31)),

A2 = 1

4I42�
,

B0 = B1
I41

I31
,

B1 = 1

�I21
,

C0 = 1

2I42
(A3)

with

� = D31

I2
21

(A4)

and

� = − I10

D20I31

[
I30

(
I30 − I31

I21I20

)
− I40

(
I20 − I31

I21
I10

)]

+β
I41

I31
. (A5)

The integration Ink is a scalar coefficient that depends on the
equilibrium distribution parameters α and β. It appears in the

nth moment of the distribution function as (see Ref. [17])

Iμ1 ···μn (x) =
∫

dw pμ
1 · · · pμ

n f (x, p)

=
i∑

k=0

ank Ink�
(2kun−2k), (A6)

where Ink is given by

Ink = A0

(2k + 1)!!

∫
dw(pαuα − pα pα )k (pμuμ)

n−2k

× 1

eβμ pμ−α − a
. (A7)

The quantity, Dnk , can be shown to be

Dnk = In+1,kIn−1,k − I2
n,k . (A8)

In the ultrarelativistic limit, as rest mass m −→ 0 with
respect to a particles’ kinetic energy, it can be shown that

Ink = 4πA0

(2k + 1)!!
T n+2

∫ ∞

0
dx xn+1 1

ex−φ
(A9)

with x = p
T and z = m

T are the new variables. φ being the
chemical potential has been taken to be zero here. Then we
have

Ink = 4πA0

(2k + 1)!!
T n+2(n + 1)!. (A10)

The quantities � that come in the bulk viscosity and �

that appears in the thermal conductivity coefficient can now
be reduced to

� = 0 , � = 4T 2. (A11)

Using Eqs. (18)–(20), the coefficients for the second order in
the entropy four-current, Eq. (21) have been calculated as

S2
1 = 3

βI2
42�

2

(
5I52 − 3

D20
[I31(I31I30 − I41I20)

+ I41(I41I10 − I31I20)]

)
,

S2
2 = D41

β�I2
21I31

,

S2
3 = 1

2

I52

βI2
42

,

S2
4 = D41D20 − D31D30

β��I42I21I31D20
,

S2
5 = I31I52 − I41I42

β�I42I21I31
. (A12)

The coefficients for the third order dissipative quantities
in the entropy four-current, Eq. (21), have similarly been
calculated as

S3
1 = 1

β

[
I10A3

0 − 3I20A2
0A1 + 9I30A2

0A2

− I40A1
(
A2

1 + 18A0A2
) + 9I50A2

(
3A0A2 − A2

1

)
− 27I60A1A2

2 + 27I70A3
2

]
,

034902-12



THIRD ORDER VISCOUS HYDRODYNAMICS … PHYSICAL REVIEW C 102, 034902 (2020)

S3
2 = − 1

β

[
3I41B0(2A0B1 + A1B0) + 3I51

(
2A1B0B1 − A0B2

1

+ 3A2B2
0

) + 3I61
(
6A2B0B1 + A1B2

1

) − 9I71A2B2
1

]
,

S3
3 = 1

β

[
6I52A0C

2
0 − 6I62A1C

2
0 + 18I72A2C

2
0

]
,

S3
4 = 3C0

β

[
I52B2

0 − 2I62B0B1 + I72B2
1

]
,

S3
5 = 2I73C3

0

β
,

S3
6 = 3

β

[
I21A2

0B0 + I31A2
0B1 + I41

(
A2

1B0 + 2A0A1B1

+ 6A0A2B1
) + I51

(
A2

1B1 − 6A0A2B1 + 6A1A2B0
)

+ 3I61A2(2A1B1 + 3A2B0) − 9I71A2
2B1

]
,

S3
7 = − 1

β

[
I42B3

0 − 3I52B2
0B1 + 3I62B0B2

1 − I72B3
1

]
,

S3
8 = 3

β

[
I73B1C

2
0 − I63B0C

2
0

]
,

S3
9 = − 1

β
[I42A0B0C0 − I52A1B0C0 + I52A0B1C0

+ I62A1B1C0 + 3I62A2B0C0 − 3I72A2B1C0],

S3
10 = 1

β

[
I73B1C

2
0 − I63B0C

2
0

]
. (A13)

In the ultra-relativistic limits, the coefficients can be shown
to be, e.g.,

� → 1

2
P−1 , S2

2 → 5

4
P−1 , S2

3 → 3

4
P−1 ,

S2
5 → 1

7
P−1 , S3

4 → 6P−2 , S3
5 → 3

4
P−2 ,

S3
7 → 2P−2 , S3

10 → 1

32
P−2, etc.,

where P = I21 = 4πA0

3
T 43! is the pressure.

(A14)

APPENDIX B

Using the entropy principle ∂μSμ � 0 and Eq. (21) the
third order expression for the dissipative fluxes been calcu-
lated as


 = −ζ
[∇αuα + 2S2

1
̇ + S2
4∇αqα + 


(
Ṡ2

1 + S2
1∇αuα

)
+ qα

(∇αS2
4 − S2

4 u̇α
) + 3S3

1
̇
 + 2S3
2 q̇αqα

+ 2S3
3π̇〈αβ〉π 〈αβ〉 + S3

6 (
∇αqα + qα∇ + α
)

+ S3
9 (π 〈αβ〉∇αqβ + qβ∇απ 〈αβ〉)

+
2
(
Ṡ3

1 + S3
1∇αuα

) − qαqα

(
Ṡ3

2 + S3
2∇αuα

)
+π2〈αβ〉(Ṡ3

3 + S3
3∇αuα

) + 
qα
(∇αS3

6 − S3
6 u̇α

)
+π 〈αβ〉qβ

(∇αS3
9 − S3

9 u̇α

)]
, (B1)

qα = κT �αμ

[(∇αT

T
− u̇α

)
+ 2S2

2 q̇α + S2
4∇α


+ S2
5∇βπ〈αβ〉+ qα

(
Ṡ2

2 + S2
2∇νuν

) + 

(∇αS2

4 − S2
4 u̇α

)
+π〈αβ〉

(∇βS2
5 − S2

5 u̇β
) − S3

2

(
2
q̇α + qα
̇

)
+ S3

4 (2q̇βπ〈αβ〉 + qβπ̇〈αβ〉) + 2S3
6
∇α


− 2S3
7qβ∇qβ

+ S3
9 (
∇βπ〈αβ〉 + π〈αβ〉∇β
)

+ 2S3
10π〈βν〉∇απ 〈αν〉 − 
qα

(
Ṡ3

2 + S3
2∇νuν

)
+ qβπ〈αβ〉

( ˙S3
4 + S3

4∇νuν
) + 
2∇αS3

6

− qλqλ∇αS3
7 + π2〈λλ〉∇αS3

8 + 2S3
8π

〈μν〉∇απ〈μν〉

+
π〈αβ〉
(∇βS3

9 − S3
9 u̇β

) + π2
〈αβ〉

(∇βS3
10 − S3

10u̇β
)

+ S2
7qαqλqλ

]
, (B2)

π 〈μν〉 = 2η�αμ�βν
[∇〈αuβ〉 + 2S2

3 ˙π〈αβ〉

+ S2
5∇〈αqβ〉 + π〈αβ〉

(
Ṡ2

3 + S2
3∇λuλ

)
+ q〈α

(∇β〉S2
5 − S2

5 ˙uβ〉
) + S3

3 (2
π̇〈αβ〉 + π〈αβ〉
̇)

+ 2S3
4 q̇〈αqβ〉 + 3S3

5π̇〈αλ〉π
〈λ
β〉 + S3

8π〈αβ〉∇λuλ

+ S3
9 (
∇〈αqβ〉 + q〈α∇β〉
) + S3

10(q(α∇λπ〈α)λ〉

+π〈λ(α〉∇λqβ ) + 
π〈αβ〉
(
Ṡ3

3 + S3
3∇λuλ

)
+ q〈αqβ〉

(
Ṡ3

4 + S3
4

)∇λuλ + π〈αλ〉π
〈λ
β〉

(
Ṡ3

5 + S3
5∇λuλ

)
+π〈αβ〉qλ

(∇λS3
8 − S3

8 u̇λ

) + 
q〈α
(∇β〉S3

9 − S3
9 u̇β〉

)
+π〈αλqλ

(∇β〉S3
10 − S3

10u̇β〉
)]

. (B3)

Thus up to third order the bulk, heat, and shear equations
are the sum of the zeroth, first, second, and third order
contributions.
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