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Imprint of a nuclear bubble in nucleon-nucleus diffraction
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Background: The density of most nuclei is constant in the central region and is smoothly decreasing at the
surface. A depletion in the central part of the nuclear density can have nuclear structure effects leading to the
formation of “bubble” nuclei. However, probing the density profile of the nuclear interior is, in general, very
challenging.
Purpose: The aim of this paper is to investigate the nuclear bubble structure, with nucleon-nucleus scattering,
and quantify the effect that the bubble structure has on the nuclear surface profile.
Method: We employed high-energy nucleon-nucleus scattering, using the Glauber model to analyze various
reaction observables, which helps in quantifying the nuclear bubble. The effectiveness of this method is tested
on 28Si with harmonic-oscillator (HO) densities, before applying it on even-even N = 14 isotones, in the
22 � A � 34 mass range, with realistic densities obtained from antisymmetrized molecular dynamics (AMD).
Results: Elastic scattering differential cross sections and reaction probability for the proton-28Si reaction are
calculated using the HO density to design tests for signatures of the nuclear bubble structure. We then quantify
the degree of bubble structure for N = 14 isotones with the AMD densities by analyzing their elastic scattering
at 325, 550, and 800 MeV incident energies. The present analyses suggest 22O as the most measurable candidate
for a bubble nucleus, among even-even N = 14 isotones, in the 22 � A � 34 mass range.
Conclusion: We have shown that the bubble structure information is imprinted on the nucleon-nucleus elastic
scattering differential cross section, especially in the first diffraction peak. Bubble nuclei tend to have a sharper
nuclear surface and deformation seems to be a hindrance in their emergence.
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I. INTRODUCTION

Advances of radioactive beam facilities have allowed us to
study nuclei with extreme neutron to proton ratios. In fact,
close to the neutron drip line, exotic features such as the
halo [1,2]—an extended low density tail in the neutron matter
distribution—have been discovered. At least for light nuclei,
this was thought to be a threshold phenomenon resulting from
the presence of a loosely bound state near the continuum. In
this context, with current interest moving towards the medium
mass region, another exotic structure—that of a depression
in the central part of nuclear density, called a “bubble”—has
attracted considerable attention.

Systematic studies of electron scattering on stable nuclei
have revealed that the central density of stable nuclei is almost
constant, ρ0 ≈ 0.16 fm−3 [3]. In light nuclei, distinct nuclear
orbitals play a role in the emergence of the bubble structure. If
the s orbitals are empty, the interior density of nuclei becomes
depleted. For example, using several mean-field approaches
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Refs. [4,5] showed that the central depression of the pro-
ton density in 34Si is about 40% as compared to stable 36S,
originating from the proton deficiency in the 1s1/2 orbit. The
possibilities of forming bubble nuclei have also been explored
theoretically in the medium [4,6–11] and superheavy mass
regions [12,13].

The experimental indication of the central depression of
protons in the unstable nucleus 34Si was recently reported
using γ -ray spectroscopy [14]. Electron scattering on un-
stable nuclei is the most direct way to probe the central
depression of proton density in bubble nuclei. Recently,
the SCRIT electron scattering facility at RIKEN has suc-
ceeded in extracting information about the nuclear shape of
132Xe [15].

However, unlike a hadronic probe, which is sensitive to
both neutrons and protons, electron scattering poses diffi-
culties for probing the neutron density distribution even for
stable nuclei [16]. In this context, it is worth mentioning
that proton-nucleus scattering has been successfully applied
to deduce the nuclear matter density distributions [17]. Proton
scattering can also be extended for unstable nuclei with the
use of inverse kinematics measurement, as demonstrated in
Ref. [18]. Indeed, this motivates us to inquire if information
on the bubble structure in nuclei can be investigated with
nucleon-nucleus scattering.
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In this paper, we perform a systematic study to test
nucleon-nucleus scattering as a probe of the nuclear bubble
structure. This paper is organized as follows. Section II briefly
presents the formalism that describes the nucleon-nucleus
collision at high incident energy within the Glauber model,
wherein the elastic scattering and total reaction cross sections
are evaluated. Using this formulation, in Sec. III we discuss
how signatures of the nuclear bubble structure are reflected in
the cross sections by using an example of a simple ideal case,
28Si. We show the relationship between the internal depression
and the surface diffuseness, and propose a practical way to
evaluate the bubble structure. For this purpose, the generalized
“bubble” parameter is introduced as a measure of the nuclear
bubble structure. In this work, we also examine the structure
of N = 14 isotones, 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, and
34Ca. Section IV presents details of the structure calculation
by the antisymmetrized molecular dynamics (AMD) model.
The formalism is briefly explained in Sec. IV A, and the re-
sulting structure information focusing on the bubble structure
is given in the following Sec. IV B. Section V demonstrates
how the nucleon-nucleus scattering works for extracting the
bubble parameter of the nuclear density distributions. We
discuss the feasibility through a systematic analysis of the
elastic scattering differential cross sections with various den-
sity profiles. The conclusions of our study are presented in
Sec. VI. Some details on how nuclear structure parameters are
evaluated in the AMD are in the Appendix.

II. NUCLEON-NUCLEUS REACTIONS
WITH GLAUBER MODEL

The Glauber theory offers a powerful description of high-
energy nuclear reactions [19]. Here we consider the normal
kinematics in which the incident proton is bombarded on a
target nucleus. Thanks to the eikonal and adiabatic approx-
imations, the final state wave function of the target nucleus
after the collision is simplified as

|φ f 〉 = eiχ |φi〉, (1)

where |φi〉 represents the initial wave function of the target
nucleus, and eiχ is the phase-shift function, which includes
all the information about the nucleon-nucleus collision. The
elastic scattering amplitude for the nucleon-nucleus reaction
is given by

F (q) = iK

2π

∫
db eiq·b(1 − eiχN (b)

)
, (2)

where K is the relative wave number of the incident nucleon,
b is the impact parameter vector perpendicular to the beam di-
rection, and q is the momentum transfer vector of the incident
nucleon. With this scattering amplitude, the elastic scattering
differential cross section can be evaluated by

dσ

d�
= |F (q)|2. (3)

The total reaction cross section of the nucleon-nucleus colli-
sion can be calculated by

σR =
∫

db P(b) (4)

with the nucleon-nucleus reaction probability defined as

P(b) = 1 − ∣∣eiχ (b)
∣∣2

. (5)

Since the evaluation of the phase-shift function is de-
manding in general, for the sake of simplicity we employ
the optical-limit approximation (OLA). As presented in
Refs. [20–23], the OLA works well for many cases of proton-
nucleus scattering, so the multiple scattering effects can be
ignored. The optical phase-shift function for the nucleon-
nucleus scattering in the OLA is given by

eiχN (b) ≈ exp
[
−

∫
drρN (r)	NN (b − s)

]
, (6)

where r = (s, z), and s is the two-dimensional vector perpen-
dicular to the beam direction z. ρN (r) denotes the nucleon
density distributions measured from the center of mass of the
system. The crux of any calculation will be to calculate this
density with reliable nuclear structure models. This is also
the primary point where information on the bubble structure
enters into the Glauber model and is reflected in the scattering
or reaction observables.

	NN is the profile function, which describes the nucleon-
nucleon collisions. The profile function for the nucleon-
nucleon scattering is usually parametrized as given in
Ref. [24]:

	NN (b) = 1 − iαNN

4πβNN
σ tot

NN exp

(
− b2

2βNN

)
, (7)

where αNN is the ratio of the real part to the imaginary part
of the nucleon-nucleon scattering amplitude in the forward
direction, βNN is the slope parameter of the differential cross
section, and σ tot

NN is the nucleon-nucleon total cross section.
Standard parameter sets of the profile function are listed in
Refs. [25,26].

III. HOW IS NUCLEAR BUBBLE STRUCTURE
REFLECTED?

In this section, we discuss how the nuclear bubble gets
reflected in the proton-nucleus scattering at high incident en-
ergies, where the Glauber model works fairly well. For the
sake of simplicity, we use the averaged NN profile function
given in Ref. [25] and ignore the Coulomb interaction. Note
that the difference between the pp and pn cross sections in the
profile functions can be neglected in the total reaction cross
section calculations at the incident energy of E � 300 MeV
[21].

A. Density distribution of 28Si

Here, we discuss the density distribution of 28Si within the
harmonic-oscillator (HO) model. First, we consider two types
of configurations, (0d )12 and (0d )8(1s)4, and calculate their
density distributions with the center-of-mass correction [22],
which are denoted as ρd (r) and ρs(r), respectively. Note that
ρd (r) shows the most prominent bubble structure because of
the vacancy of the 1s orbit, while ρs(r) does not. Then, we
interpolate these two densities as

ρ(α; r) = (1 − α)ρd (r) + αρs(r), (8)
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FIG. 1. Matter density distributions of 28Si with various bubble
parameters (G). The arrow indicates the reference radius, 1.8 fm. See
text for more details.

where the mixing parameter α (0 � α � 1) controls the occu-
pation probability of the 1s orbit. Consequently, α = 0 yields
the most bubbly density, whereas α = 1 yields nonbubble
density. For a given value of α, the size parameter of HO
is chosen to reproduce the observed point-proton root-mean-
square (rms) radius, 3.01 fm [27].

To quantify a degree of “bubble,” we introduce the bubble
parameter (G) as

G = ρ(D) − ρ(0)

ρ(D)
, (9)

where D denotes the reference radius at which the ρd (r) or
ρ(α = 0; r) takes its maximum value. In the case of 28Si, D =
1.8 fm. ρ(0) and ρ(D) represent the densities at r = 0 and D,
respectively. We remark that this is an extension of the bubble
parameter (depletion fraction) given in Ref. [4], where it is
defined only by positive values. This extension enables us to
quantify the degree of the bubble structure for any nuclear
density distribution irrespective of whether it exhibits a bubble
or not.

Figure 1 displays how the matter density distribution of
28Si and the corresponding G value change depending on the
mixing parameter α. In the present case of 28Si, the values
of G range from 0.34 (α = 0) to −0.89 (α = 1), allowing for
negative values which signify that the central density is higher
than the density at the reference radius. Apparently, the bubble
degree is maximized at G = 0.34 with α = 0, which clearly
exhibits a strong depression of the central density, thereby
suggesting the bubble structure. The value of G decreases with
increasing mixing of the 1s orbits. An almost flat behavior of
the density distribution (G ≈ 0) is obtained with α = 0.33.

In the same manner, we construct the model densities for
other N = 14 isotones from 22O to 34Ca. We calculate ρd (r)
and ρs(r) as the density distributions of the (0d )A−16 and
(1s)4(0d )A−20 configurations with 22 � A � 34. These two
densities are interpolated as in Eq. (8) and used for the reac-
tion calculation in the following sections. The reference radius
D and the bubble parameters are also defined in the same way.
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FIG. 2. Reaction probabilities multiplied by 2πb for proton-28Si
reactions at (a) 325, (b) 550, and (c) 800 MeV. The configurations
with α = 0 (G = 0.34) and 1 (G = −0.89) are employed.

B. Bubble structure in proton-28Si reactions

How are the different density profiles displayed in Fig. 1
reflected in the reaction observables? To address this ques-
tion, we calculated the reaction probability P(b) given in
Eq. (5), which is the integrand of the total reaction cross
section [Eq. (4)]. Figure 2 shows the reaction probability
multiplied by 2πb for proton-28Si scattering as a function of
the impact parameter. The density distributions with α = 0 (d
dominance, G = 0.34) and 1 (maximum s configuration, G =
−0.89) are examined to see the difference between the two
extreme configurations. The reaction probabilities for these
configurations are almost identical at small impact parameters
up to ≈2 fm despite the fact that these two density profiles
show significant difference in Fig. 1. Since the nucleon-
nucleon interaction is large enough, the reaction occurs almost
entirely in the internal region below the nuclear radius, as pre-
dicted by the black sphere model, which explains high-energy
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FIG. 3. Elastic scattering differential cross sections of proton-
28Si reactions at 325, 550, and 800 MeV with various bubble
parameters.

proton-nucleus scattering fairly well [28–30]. Therefore, it
cannot directly probe the internal part of the nuclear density
profile.

However, we see some differences beyond b ≈ 2 fm at
the nuclear surface, which suggests the possibility of ex-
tracting the surface information from the cross sections. In
fact, the relation between elastic scattering differential cross
sections and nuclear surface diffuseness has been discussed
in Ref. [31] and recently in Ref. [23]. It was shown that
the smaller the nuclear diffuseness is, the larger is the cross
section at the peak position of the first diffraction. Note that
the bubble density distribution has smaller diffuseness than
the nonbubble density distribution as seen in Fig. 1, because
the former (α = 0) includes only the d-wave configuration,
while the latter (α = 1) includes the 1s configuration which
has a longer tail in the asymptotic region. Consequently, we
expect that the bubble structure gives the larger cross section
at the first diffraction peak.

To confirm this numerically, we calculated the proton-28Si
elastic scattering differential cross sections. Figure 3 plots
the elastic scattering differential cross sections of proton-28Si
reactions at 325, 550, and 800 MeV with various bubble
parameters. As expected, the cross section at the first peak
position is largest for the ideal bubble configuration with
α = 0 and it decreases with increasing α and decreasing G.
This suggests a practical way to identify the bubble structure
using a hadronic probe.

IV. BUBBLE STRUCTURE OF N = 14 ISOTONES

We have seen that the difference between the bubble and
nonbubble nuclei can be detected in the elastic scattering
differential cross sections. To demonstrate the feasibility of
this idea, we take the density distributions obtained from a
microscopic structure model, the AMD, and try to extract the

information on the nuclear bubble from the reaction observ-
able. Here the ground-state density distributions of N = 14
isotones are examined as they exhibit the bubble structure in
its isotone chain [4].

A. Framework of AMD

The AMD [32,33] is a fully microscopic approach and
offers a non-empirical description of light to medium nuclei.
Here we briefly explain how we obtain the density distribu-
tions for the N = 14 isotones within the AMD framework.
The Hamiltonian for a nucleon system with the mass number
A is given by

H =
∑

i

t (i) − Tcm +
∑

i j

vNN (i j), (10)

where t (i) is the kinetic energy of the ith single nucleon and
the center-of-mass kinetic energy Tcm is exactly removed. The
Gogny D1S parameter set [34] is employed as a nucleon-
nucleon effective interaction vNN , which is known to give a
fairly good description for this mass region [35–37].

The variational basis function of the AMD is represented
by a Slater determinant projected to the positive-parity state
as

� = 1 + Px

2
A{ϕ1, . . . , ϕA}, (11)

where Px is the parity operator and ϕi is a Gaussian nucleon
wave packet defined by

ϕi =
∏

σ=x,y,z

(
2νσ

π

)1/2

exp{−νσ (rσ − Ziσ )2}

× (αiχ↑ + βiχ↓)(|p〉 or |n〉). (12)

The centroids Z and width ν vectors of the Gaussian and the
spin variables αi and βi are the variational parameters. They
are determined by the the frictional cooling method [38] in
such a way to minimize the energy of the system under the
constraint on the quadrupole deformation parameter β.

To describe the ground state of the N = 14 isotones, the
wave functions obtained by the frictional cooling method are
projected to the angular momentum J = 0 and superposed
employing β as a generator coordinate (generator coordinate
method, GCM [39]),

�0 =
∑

i

giP
J=0�(βi ), (13)

where PJ=0 represents the angular momentum projector and
the amplitudes gi are determined by the diagonalization of the
Hamiltonian. In the present study, the value of β is chosen
from 0.0 to 0.6 with an interval of 0.025. The deformation
parameter γ is determined variationally, and hence it takes an
optimal value for each �(βi ). Finally, the ground-state density
distribution is calculated as

ρ(r) = 〈�0|
∑A

i=1 δ3(ri − rcm − r)|�0〉
〈�0|�0〉 . (14)

Note that the resulting density distribution is free from
the center-of-mass coordinate rcm. We also evaluate
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FIG. 4. Density distributions of N = 14 isotones (a) 22O, (b) 24Ne, (c) 26Mg, (d) 28Si, (e) 28Si (spherical), (f) 30S, (g) 32Ar, and (h) 34Ca
obtained from the AMD wave function. The arrows indicate the reference radii for each isotone. See text for details. The density distribution
of 34Si which is the mirror nucleus of 34Ca and has prominent proton bubble structure is also shown in panel (i) for comparison.

the quadrupole deformation parameters and occupation
probabilities of the 1s orbit according to the procedure
described in the Appendix.

B. Density distributions of N = 14 isotones

Figure 4 plots the matter, neutron, and proton density distri-
butions of N = 14 isotones obtained with the AMD. The rms
matter radii, quadrupole deformation parameters, and occupa-
tion probabilities of the 1s orbit are summarized in Table I.
The bubble parameters GAMD were also calculated from the
AMD densities using Eq. (9), where the reference radius (D),
for each isotone, was derived from an effective density ρd (r).
This ρd (r) is essentially a HO density [as in Sec. (III A)]
whose size parameter is adjusted so as to reproduce the rms
matter radius, for each isotone, as obtained from the AMD
density.

We clearly see a prominent bubble structure in 22O in
which both the proton and neutron density distributions ex-
hibit depressed central densities. Consequently, it has the
largest bubble parameter among the N = 14 isotones. This
is due to the almost spherical closed-shell configuration of
this nucleus and the resultant small occupation probabilities
of the 1s orbit. As the proton number increases, the nuclear
quadrupole deformation becomes strong, which mixes the
s, d , and g orbits and effectively increases the occupation

probabilities of the 1s orbit. As a result, the bubble structure
in the matter density distributions is weakened in 24Ne and
26Mg, and diminished in 28Si which is most strongly deformed
among the N = 14 isotones. Indeed, Table I shows that the
bubble parameter strongly correlates with the quadrupole de-
formation parameter β and neutron occupation probability
P1s(n). The bubble parameter decreases as a function of the
proton number and becomes negative (nonbubble) from 28Si.

TABLE I. rms matter radii rm and the quadrupole deformation
parameters β, γ , and neutron (proton) occupation probabilities of the
1s orbit, P1s(n) [P1s(p)], for N = 14 isotones obtained by the AMD.
The bubble parameters GAMD are extracted from the matter density
distributions shown in Fig. 4. See text for more details.

rm (fm) β γ P1s(n) P1s(p) GAMD

22O 2.90 0.20 60◦ 0.21 0.01 0.21
24Ne 2.97 0.37 60◦ 0.28 0.01 0.09
26Mg 3.06 0.40 37◦ 0.26 0.05 0.04
28Si 3.11 0.40 60◦ 0.29 0.29 −0.16
28Si (sph.) 2.98 0.00 0.01 0.01 0.34
30S 3.11 0.27 43◦ 0.17 0.65 −0.29
32Ar 3.21 0.27 60◦ 0.21 0.62 −0.25
34Ca 3.26 0.12 60◦ 0.06 0.91 −0.05
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We also see that, if we restrict the AMD calculation to spher-
ical shape, 28Si also shows the bubble structure, as displayed
in Fig. 4(e). This confirms a strong impact of the nuclear
deformation on the bubble structure. With further increase of
the proton number, in 30S, 32Ar, and 34Ca the bubble structure
in the matter density distributions is not seen since the central
densities of protons are already filled by the excess protons,
while the neutron density distributions still keep the bubble
structure.

Thus, the present AMD calculation suggests that 22O has
both proton and neutron bubble structure. We note, however,
this is in contradiction to the conclusion of the mean-field
calculations [4]. It was shown that the bubble structure of
22O is rather model dependent, and pairing correlation tends
to diminish the bubble structure as it increases the neutron
occupation of the 1s orbit. Since the present AMD calculation
does not handle the pairing correlation explicitly, the stability
of the bubble structure of 22O shown in Fig. 4 needs to be
investigated. To check the reliability of the AMD densities,
we calculated the mirror nucleus of 34Ca, i.e., 34Si, for which
many calculations predicted proton bubble structure [4,40]
and indirect experimental evidence was obtained [14]. The
calculated density shown in panel (i) of Fig. 4 clearly exhibits
the proton bubble structure, which is very similar to that of
34Ca and also to that obtained by the mean-field calculations
[4]. Therefore, we conclude that the proton (neutron) bubble
structure of 34Si (34Ca) is robust, while the bubble structure of
22O is somewhat model dependent.

V. DISCUSSIONS

A. Extraction of bubble parameters for N = 14 isotones

In the previous section, we saw that N = 14 isotones show
remarkable variations in their nuclear density profiles, with
22O exhibiting the most prominent bubble structure, although
strong model dependence was reported [4]. We now examine
the possibility of extracting the degree of the bubble structure
from the reaction observables by performing a numerical test
as follows. First, we calculate the elastic scattering differential
cross sections using the density distributions obtained by the
AMD, which we regard as the experimental data (mock-up
data). Then, by assuming spherical HO type density distribu-
tions defined in Eq. (8), we fit the α (the mixing parameter)
and size parameter of the HO to reproduce the position and
magnitude of the first diffraction peak of the mock-up data.
This procedure uniquely determines the spherical HO type
density distribution from which we extract the bubble param-
eter G. Thus, the obtained bubble parameter G is compared
with that of the original one, GAMD listed in Table I, to test the
feasibility of the method.

Figure 5 plots the bubble parameters of N = 14 isotones
obtained from the mock-up data at the incident energies of
325, 550, and 800 MeV, in comparison with GAMD. It is
noted that all the mock-up data (total reaction cross sections
calculated with AMD densities) are reproduced within 1%
differences. The differences of the extracted bubble parame-
ters are also less than 1% for all the incident energies. These
show the robustness of this analysis. Although the bubble
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FIG. 5. Comparison of the bubble parameters obtained directly
from the AMD densities and the elastic scattering analysis at the
incident energies of 325, 550, and 800 MeV.

parameters extracted from the elastic scattering cross sec-
tions always undershoot the “exact” bubble parameters GAMD

(overestimate the bubble structure), we do notice similarity
in their behavior as a function of the proton number. The
disagreement is apparently due to the inappropriate assump-
tion of the model density; we assumed spherical HO density
distributions for all N = 14 isotones. However, most of the
nuclei are deformed, inducing some deviations in the bubble
parameter extraction. In fact, as we see in Fig. 5, the bubble
parameter of 28Si is perfectly reproduced when we constrain
the AMD calculation to the spherical configuration. We also
see a reasonable description of almost spherical nuclei, 22O
(Z = 8) and 34Ca (Z = 20). Although it is beyond the scope
of this paper, an analysis with more elaborated model density
distributions including such as nuclear deformation is worth
considering to obtain more precise determination of the bub-
ble parameters.

B. How effective is proton scattering in probing
the nuclear bubble?

One may think that proton scattering does not probe the
nuclear bubble structure but only probes the nuclear surface
regions, the nuclear diffuseness. To address this self-criticism,
we performed the same analysis as in the previous section but
with the two-parameter Fermi (2pF) model density, ρ0/[1 +
exp (r − R)/a], whose parameters (R, a) are fixed so as to re-
produce the first peak position and its magnitude in the elastic
scattering differential cross sections. ρ0, the central density,
gets fixed from the normalization of the density distribution.
Obviously, the 2pF distribution has no bubble. Note that with
this analysis the 2pF model density nicely reproduced the
density profile near the nuclear surface of the realistic den-
sity distributions obtained from the microscopic mean-field
model [23].

Figure 6 displays the proton-22O elastic scattering differ-
ential cross sections with the AMD, HO, and 2pF model
densities as a function of the four-momentum transfer | − t | at
the incident energies of 325, 550, and 800 MeV. The cross sec-
tions are essentially the same up to | − t | ≈ 3 GeV/c, which
is understandable as both the HO and 2pF model densities are
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adjusted to reproduce the position and magnitude of the first
diffraction peak. However, beyond this limit, while the HO
and AMD results agree with each other, those with the 2pF
model density deviate significantly.

We already know from Fig. 2 that the incident proton can-
not probe differences in the internal densities below ≈2 fm.
The difference of the density profiles in the middle to the sur-
face regions, in which the bubble structure is still not masked,
can be distinguished by analyzing the cross sections in the
backward angles beyond the first peak. The proton-nucleus
scattering can indeed be an effective tool to probe the bubble
structure in exotic nuclei. We remark that a similar indication
was found in the analysis of proton-48S scattering with bubble
and nonbubble density profiles [41].

VI. CONCLUSIONS

Nuclei with a depression in the central part of their
density—the so-called bubble structure—have attracted atten-
tion in recent times. Considerable efforts are under way to
look for suitable probes for these exotic systems. In this work,
we have discussed the feasibility of using a proton probe to
extract the degree of the bubble structure. We have calcu-
lated the structure of even-even N = 14 isotones in the 22 �
A � 34 mass range using a microscopic structure model, the
antisymmetrized molecular dynamics (AMD). The Glauber
model is then employed to evaluate reaction observables of
high-energy nucleon-nucleus scattering.

Due to the strong absorption in the internal region of the
target nucleus, the bubble structure or the central depression
of the target density cannot be directly measured using the
proton probe. However, effects of this structure are reflected
from the middle to the surface regions of the nuclear density.
They also tend to have a sharper nuclear surface. Furthermore,

nuclear deformation acts as an hindrance to the emergence of
the bubble structure.

We find that the AMD calculation predicts prominent bub-
ble structure of 22O, which exhibits a small deformation,
after analyzing a host of N = 14 isotones. The degree of the
bubble structure is extracted by a systematic analysis of the
calculated cross sections obtained with the AMD by using
simple harmonic-oscillator type model densities. To improve
the accuracy of the extraction, it is necessary to employ a
more realistic model density that can describe the nuclear
deformation.

We have shown that the bubble structure information is im-
printed on the nucleon-nucleus elastic scattering differential
cross sections and is possibly extracted by analyzing the cross
sections up to the first diffraction peak. Nevertheless a more
accurate analysis involving the second diffraction peak would
be a welcome addition.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants
No. 18K03635, No. 18H04569, No. 19H05140, and No.
19K03859, the Collaborative Research Program 2020, In-
formation Initiative Center, Hokkaido University, and the
Scheme for Promotion of Academic and Research Collab-
oration (SPARC/2018-2019/P309/SL), MHRD, India. V.C.
also acknowledges MHRD, India for support via a doctoral
fellowship and a grant from SPARC to visit the Hokkaido
University.

APPENDIX: ESTIMATION OF THE DEFORMATION
PARAMETERS AND OCCUPATION PROBABILITIES

FROM THE AMD WAVE FUNCTIONS

Here, we explain how we estimated the quadrupole
deformation parameters and single-particle occupation proba-
bilities of the AMD wave functions for N = 14 isotones listed
in Table I. The AMD wave function given in Eq. (13) is, in
general, a superposition of the Slater determinants with differ-
ent deformation and different single-particle configurations.
Therefore, to estimate these quantities, we pick up the Slater
determinant �(β ), which has the maximum overlap with the
AMD wave function | 〈PJ=0�(β )|�0〉 |, and regard it as an
approximation of the AMD wave function �0.

The deformation parameters β and γ of �0 may be approx-
imated by those of �(β ). The occupation probabilities of the
1s orbit are also estimated in a similar manner. We calculate
the single-particle orbits of �(β ) by using the AMD+HF
method [42]. Because of the nuclear deformation, the single-
particle orbits, φ1(r), . . . , φA(r), are no longer the eigenstates
of the angular momentum. Therefore, we consider the multi-
pole decomposition of them,

φi(r) =
∑
jl jz

φi; jl jz (r)[Yl (r̂) × χ1/2] j jz
. (A1)
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The squared amplitudes for the j = 1/2 and l = 0 compo-
nents should give us an estimate of the occupation probability.
Assuming the complete filling of the 0s orbit, the neutron (n)
and proton (p) occupation probabilities of the 1s orbit are

obtained approximately as

P1s(n/p) =
N/Z∑
i=1

1
2∑

jz=− 1
2

∣∣〈φi; 1
2 0 jz

∣∣φi; 1
2 0 jz

〉∣∣2 − 2. (A2)

[1] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N.
Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N.
Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

[2] I. Tanihata, H. Savajols, and R. Kanungo, Prog. Part. Nucl.
Phys. 68, 215 (2013).

[3] R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
[4] M. Grasso, L. Gaudefroy, E. Khan, T. Nikšić, J. Piekarewicz, O.
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