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Pre-equilibrium neutron emission in fission or fragmentation
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Fissioning nuclei and fission fragments, nuclear fragments emerging from energetic collisions, or nuclei
probed with various external fields can emit one or more pre-equilibrium neutrons, protons, and potentially other
heavier nuclear fragments. I describe a formalism which can be used to evaluate the pre-equilibrium neutron
emission probabilities and the excitation energies of the remnant fragments.
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I. INTRODUCTION

Instances when particles are emitted or knocked-out of a
quantum system after probing those systems are ubiquitous.
In the Auger-Meitner effect [1,2] in atoms, when an inner
shell electron is removed, the left behind hole state is filled
by an electron from a higher energy level and the energy
released is used to eject another electron. In nuclear physics
the ejection of a deeply bound proton in a (e, e′ p), (p, 2p),
or in a relativistic Coulomb excitation reaction is often ac-
companied by the emission of an additional nucleon. When
a nucleus undergoes either a β or α decay, the change of
the Coulomb field of the nucleus leads to electron ionization
[3]. In fission, at scission immediately after the neck rupture
the fission fragments are in each other’s repulsive Coulomb
fields and start accelerating, and the single-particle potential
experienced by nucleons changes [4–10], see also Fig. 1. The
reference framework of each fission fragment is a nonnertial
one and the equilibrium of the nuclear fluid is disturbed in
a similar manner to what happens to water in an accelerated
container. The nuclear matter accumulates at first near the
edges of the fission fragments facing each other and at the
same time the protons in the fragments are pushed towards
the opposite edges. As a result both isoscalar and isovector
vibrational modes are excited in both fragments [11,12]. Nu-
cleons are partially promoted onto unoccupied orbitals and a
fraction of them onto unbound orbitals. The nucleons in the
unbound orbitals can evaporate, in a similar fashion to the
evaporative cooling method used for decades in cold atom
experiments [13–21]. The goal here is to estimate the number
and the probability of emitting one or more pre-equilibrium
neutrons while the fission fragments are Coulomb accelerated.
The formalism described here, while having a number of
similarities with the previous studies quoted above, clarifies
the role of various approximations used and it is also extends
in a number of ways the range previously not considered in
literature observables.

*bulgac@uw.edu

II. PROBABILITIES OF PRE-EQUILIBRIUM
NEUTRON EMISSION

The time evolution of the neutrons is described by a
time-dependent Slater determinant �(x1, . . . , xN , t ) within a
energy density functional approach, which is built from the
time-dependent single-particle wave functions φk (x, t ) with
k = 1, . . . , N , which are solutions of the evolution time-
dependent equations

ih̄
∂φk

∂t
= hφk, (1)

where h is the time-dependent mean field single-particle
Hamiltonian. One can consider pre-equilibrium neutrons
emitted for example from a Coulomb excited nucleus or from
a fragment in a nucleus breakup, before a compound nucleus
is formed. One possible approximation is to treat the excita-
tion within the random phase approximation (RPA), which is
the small amplitude limit of the Hartree-Fock approximation
or of the density functional theory (DFT). If the nucleus is
weakly excited then the RPA is valid and it should be in good
agreement with the full DFT approach, which is considered
here.

I will concentrate at first on the case of a single nu-
clear fragment and discuss the case of two fragments below,
see Eqs. (35) and (37). The neutrons populate M > N
bound single-particle orbitals ψn(x) in a fragment and M +
1, . . . ,∞ unbound orbitals in a final fragment moving with
the velocity v,

vL,R(t ) = 1

Nm
〈�|P̂L,R

N∑
k=1

p̂kP̂L,R|�〉, (2)

where p̂k = −ih̄∇k is the momentum operator, m the nucleon
mass, and

P̂L,R(N ) =
∫ π

−π

dη

2π
eiη(N̂L,R−N ), (3)

NL,R =
∫

dξ�(∓z)
A∑

n=1

|φn(ξ )|2, (4)
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FIG. 1. The profile of the potential experienced by nucleons at
rest (black line) and of a uniformly accelerated one (red line) with
acceleration a = F/m in the z direction.

where ξ = r, σ stands for spatial r = (x, y, z), spin σ = ↑,↓,
and isospin τ = n, p coordinates, and the sum is over occu-
pied single-particle states and is a projector onto a specific
final nuclear fragment (the one on the left or the one on the
right). Note that this projector P̂L,R [22–24] simply defines the
part of the space where one fission fragment ends up (basically
�(±z) identifies the part of the volume where one or the other
fragment is after scission, and it is different from the projector
P̂ introduced below).

I introduce now two projectors onto the final single-particle
states of a fragment, resulting after pre-equilibrium neutrons
have been emitted. These projectors can be thought of as de
facto analyzers of the fission fragment structure. For example,
at scission a typically highly excited fragment with Nf neu-
trons was formed. This fission fragment can emit a number
of pre-equilibrium neutrons n, after which the remaining frag-
ment will eventually turn into a compound nucleus with n′ =
Nf − n neutrons, from which neutrons and γ s can be emitted
statistically. In the first approximation one can assume that n
is small enough and n′ ≈ Nf , an approximation which can be
improved iteratively. I will assume for now that no protons
have been emitted after scission, an assumption which can be
easily released if necessary. These projectors are designed to
analyze the character of the single-particle content of a fission
fragment, specifically whether the single-particle orbitals are
bound (k = 1, . . . , M) or unbound or unbound (k > M):

P̂ =
∑
k>M

∣∣ψv
k

〉〈
ψv

k

∣∣, Q̂ =
M∑

k=1

∣∣ψv
k

〉〈
ψv

k

∣∣, (5)

where ψv
k (x) = exp(imv · r/h̄)ψk (x) with x = r, σ are de-

fined in the reference frame moving with velocity v(r, t )1

1In the case of 240Pu induced fission the fragments carry on aver-
age about 0.7 MeV kinetic energy per nucleon, which amounts to
a wave vector k ≈ 0.2 fm−1. In this case eikR ≈ 0.36 + i0.93 and

and

P̂ + Q̂ = 1. (6)

The single-particle wave functions ψk (x) describe a final sta-
tionary nucleus or fission fragment in its ground state onto
which one wants to project the time evolved single-particle
wave functions φk (x, t ).

Following a line of arguments similar to the formalism
described in Refs. [22,23] one can show that the probability
to have n unbound neutrons is given by

P(n) =
∫ π

−π

dη

2π
〈�| exp[iη(P̂ − n)]|�〉 (7)

=
∫ π

−π

dη

2π
e−iηn det[δkl + (eiη − 1)〈φk|P̂|φl〉], (8)

and the probability that the rest of the n′ = N − n neutrons
will be in the M bound states is

Q(n′) =
∫ π

−π

dη

2π
e−iηn′

det[δkl + (eiη − 1)〈φk|Q̂|φl〉], (9)

and where

〈φn|P̂|φm〉 + 〈φn|Q̂|φm〉 = δnm. (10)

These formulas assume that the fission fragments were fol-
lowed in time sufficiently far enough that their accelerations
at times greater than t would lead to only negligible fur-
ther excitations of the nucleons into unbound orbitals and,
hopefully, also the one-body mechanism ceased to be effec-
tive [25–27]. Since a Slater determinant is invariant under a
unitary transformation among single-particle orbitals one can
always diagonalize simultaneously the two overlap matrices
〈φn|P̂|φm〉 and 〈φn|Q̂|φm〉 and obtain for the probabilities
P(n) and Q(n) simpler formulas

〈φk|P̂|φl〉 = α2
k δkl , 〈φk|Q̂|φl〉 = β2

k δkl , (11)

α2
k + β2

k = 1, (12)

P(n) =
∫ π

−π

dη

2π
e−iηn

N∏
k=1

[
1 + (eiη − 1)α2

k

]
, (13)

Q(n′) =
∫ π

−π

dη

2π
e−iηn′

N∏
k=1

[
1 + (eiη − 1)β2

k

]
. (14)

In the case of fission fragments the orbitals ψk (x) with k � M
can describe the bound states in either only one or in both fis-
sion fragments. Thus one can separate the number of neutrons
emitted from each fragment. Note that in order to calculate
P(n) and Q(n) only the overlaps 〈φk|Q̂|φl〉 between the bound
orbitals are needed.

It is useful to introduce the generating functions for the
moments 〈nl〉 and cumulants 〈〈nl〉〉 [28,29], which for the P(n)

eikd ≈ −0.73 + i0.68, where d = 2R ≈ 12 fm is the average fission
fragment diameter. Consequently the correct values of the overlaps
〈φk |eik·r|ψl〉 can be noticeably different from an approximate esti-
mate 〈φk |ψl〉.
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FIG. 2. Two different α2
k distributions of unoccupied overlaps α2

k ,
see Eq. (11), which differ only by their overall magnitude. α2

k are
fractions of the single-particle occupation in orbitals φk (x, t ) lying
in the continuum. One expects that the highest lying orbitals are
depleted the most and α2

k are then roughly ordered in reverse order
of the instantaneous expectation value of the single-particle energy
ε = 〈φk |h|φk〉, where h is the single-particle mean field Hamiltonian.

probability distribution are

GP(τ ) =
N∏

k=1

[
1 + (eτ − 1)α2

k

] =
∞∑

l=0

τ l

l!
〈nl〉, (15)

ln GP(τ ) =
∞∑

l=0

τ l

l!
〈〈nl〉〉, (16)

〈n〉 =
N∑

k=1

α2
k , 〈〈n2〉〉 =

N∑
k=1

α2
k β

2
k , (17)

〈〈n3〉〉 =
N∑

k=1

α2
k β

2
k

(
β2

k − α2
k

)
, (18)

〈〈n2〉〉 � 〈n〉, −〈〈n2〉〉 � 〈〈n3〉〉 � 〈〈n2〉〉, (19)

and one can easily obtain symbolic expressions for higher or-
der cumulants and similar expressions for the cumulants of the
Q(n′) probability distribution. Two potential distributions of
α2

k are displayed in Fig. 2. As expected [22] the probabilities
P(n) and Q(n′) are correctly normalized and one can introduce
the average pre-equilibrium neutron number and its variance

∞∑
n=0

P(n) =
∞∑

n′=0

Q(n′) = 1, (20)

ν = 〈n〉 =
∞∑

n=0

nP(n), (21)

〈〈n2〉〉 =
∞∑

n=0

(n − 〈n〉)2P(n). (22)

Additionally, equivalent formulas for P(n) can be derived

P(0) =
M∏

k=1

β2
l , (23)

P(1) = P(0)
M∑

k=1

α2
k

β2
k

, (24)

P(2) = P(0)
M∑

k>l=1

α2
k α

2
l

β2
k β2

l

, (25)

P(3) = P(0)
M∑

k>l>m=1

α2
k α

2
l α

2
m

β2
k β2

l β2
m

(26)

with similar expressions for P(n > 3).
The neutron density matrix can be represented in two ways

n̂ =
N∑

k=1

|φk〉〈φk| =
N∑

k=1

(|αk〉 + |βk〉)(〈αk| + 〈βk|) (27)

and then show that the average number of neutrons emitted by
a fragment is

ν = 〈�|
∞∑

m=1

P(m)|�〉 =
N∑

k=1

α2
k . (28)

The knowledge of the average number of particles emit-
ted could only incorrectly characterize the evaporation or the
decay process if ν is large. One can envision a situation
when P(0) = 1 − ε and

∑∞
n=1 P(n) = ε 
 1, and P(n) has

a weak intensity peak at a large n = nmax value, which can
be either narrow or wide. In such a case ν = 〈n〉 could be,
for example, O(1) or even much smaller, even though the
nucleus can emit in reality sizable neutron clusters [30], but
with a very low probability. This can happen if the emitted
particles can form a relatively tightly bound cluster or a range
of clusters, which are emitted with a very low probability, a
situation typical in spontaneous fission, α decay, or cluster
radioactivity [31,32]. Cluster radioactivity could be described
adequately by a proper choice of the wave functions ψk (x).
For example, if one were to determine the probability to form
a particular type of cluster, one can chose a density profile
describing two adjacent nuclei, one with the shape of the
daughter and the other with shape of the emitted cluster. Using
the density constrained method proposed by Cusson et al. [33]
one can then construct a set of single-particle wave functions
ψk (x) corresponding to such a combined density profile and
define the projector P̂ to select the clusters and determine their
formation probability.

Thus the evaluation of the entire probability distribution
P(n) and not only ν can be very informative, in order to
correctly characterize the decay or evaporative process, see
Fig. 3. If the probability to emit no particles P(0) is not small,
there will be either a weak or no correlation between ν and the
value nmax, where P(n) is peaked and a small value of ν would
merely point to a small probability to emit many nucleons, but
not characterize their actual average multiplicity. I suggest to
use instead the conditional probability for emitting particles
and define a corrected average multiplicity neutron number
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FIG. 3. This figure illustrates the corresponding probabilities
P(n) (13) (black circles) and PPE(n) (29) (blue squares) extracted
using the overlap distributions from Fig. 2, and the Poisson dis-
tribution defined in Eq. (33). The α2

k distribution with an overall
smaller magnitude leads to a peak in P(n) or PPE(n) with n ≈ 1,
while the larger overlap α2

k distributions have a maximum for n ≈ 6.
The corresponding values for ν Eq. (21) and νPE Eq. (30) for these
two distributions are ν = 1.61 and 6.44, νPE = 1.99 and 6.44, and
the variances 〈〈n2〉〉 are 1.52 and 5.06, respectively. For the Poisson
distribution the mean rate λ = − ln P(0) = 1.66 and 7.28 in these
two cases and the condition λ = 〈n〉 = 〈〈n2〉〉 are only approximately
fulfilled in the case of these two α2

k distributions.

νPE accordingly,

PPE(n) = P(n)∑∞
m=1 P(m)

, (29)

νPE =
∞∑

n=1

nPPE(n),
∞∑

n=1

PPE(n) = 1. (30)

Here,
∑∞

m=1 P(m) is the probability that at least one particle
is emitted. As an illustration let us consider the simple P(n)
distribution with n0 � 1:

P(n) = (1 − ε)δn,0 + εδn,n0 , (31)

ν = εn0 
 n0, but νPE = n0. (32)

A Poisson probability distribution, when the event rate
is constant in time and the events are independent, can be
considered as well, and it is defined as

PPoisson(n) = e−λ λn

n!
, PPoisson(0) = e−λ, (33)

and it is illustrated in Fig. 3. In the case of a Poisson dis-
tribution the relations λ = 〈n〉 = 〈〈n2〉〉 are strictly satisfied.
The probability distribution P(n) approaches the Poisson dis-
tribution when the average neutron multiplicity is ν ≈ 1 and
smaller, and then ν = 〈n〉 ≈ 〈〈n2〉〉. The Poisson limit is satis-
fied strictly only in the limit λ → 0, when

λ = 〈n〉 = lim
all α2

k →0
〈〈n2〉〉 = lim

all α2
k →0

〈〈n3〉〉. (34)

It is not surprising that the Poisson distribution appears to
be quite accurate in the mean field approximation and in the
absence of fluctuations, see Fig. 3. One should remember
however that in the present analysis the α2

k distributions were
considered only at a given time. Even in the mean field ap-
proximation there is no reason to expect that the evaporation
rate and the α2

k distributions weakly depend on time, as the
one-body dissipation mechanism [25] is effective and at work
even after scission [26,27].

One can construct also the probabilities P(nH , nL ) to emit
nH and nL neutrons from a heavy and a light fragment and
study their correlations. If the projectors Q̂H,L on the bound
orbitals of either the heavy or light fragments H, L then one
defines the projectors P̂H,L = 1 − Q̂H,L:

P(nH , nL ) =
∫ π

−π

dηH

2π

∫ π

−π

dηL

2π

〈�| exp[iηH (P̂H − nH ) + iηL(P̂L − nL )]|�〉. (35)

While constructing these projectors one should keep in mind
that the two fragments are moving with different velocities,
see Eqs. (2) and (5). For well-separated fragments the rela-
tions Q̂HQ̂L = Q̂LQ̂H = 0 and P̂H P̂L = P̂LP̂H are satisfied
with exponential accuracy and the final formula for P(nH , nL )
can be brought to a simple form using the relations

eiη f P̂ f = eiη f − (eiη f − 1)Q̂ f , where f = H, L. (36)

The average neutron multiplicity is given by

ν = νH + νL = N − 〈�|Q̂H |�〉 − 〈�|Q̂L|�〉. (37)

These formulas for neutron emission probabilities are ac-
curate only if the probability of emitting any protons can be
neglected. This derivation assumes that the neutrons which
populate the unbound states are emitted before the remnant
fission fragments form a compound nuclei and are not reab-
sorbed by the other fragment. A related assumption is that
once a neutron is in an unbound state it is emitted before it
has a chance to undergo any collisions in the fission fragment
and lose energy. The errors due to this last assumption can be
accounted for by using an optical potential for the neutrons in
the unbound orbitals (as in the distorted wave Born approxi-
mation). A resonant single-particle state in the continuum is
characterized by a total width � = �↑ + �↓, which is related
to the lifetime of the state τ = h̄/�. �↑ is the escape width and
its magnitude is expected to be well described within the mean
field approximation. The spreading width �↓ characterizes
the energy range over which the single-particle strength is
distributed [34], due to the residual interactions and can be
evaluated using an optical potential. The probability that a
particle would be emitted, instead of losing its energy due
to in medium collisions is proportional to the branching ratio
�↑/�. Therefore one can interpret the results obtained without
such corrections as upper bound estimates. An approximate
way to take into account the effect of the collisions is to
replace

α2
k → α2

k × �↑

�↑ + �↓ , (38)

034612-4



PRE-EQUILIBRIUM NEUTRON EMISSION IN FISSION … PHYSICAL REVIEW C 102, 034612 (2020)

assuming that the spreading width �↓ has a weaker energy
dependence and the branching ratio is estimated at the average
energy of the orbital α2

k .
Protons are also excited and can, in principle, be emitted

as well, but most likely only if the corresponding occupied
orbitals are above the proton Coulomb barrier. The pre-
equilibrium proton emission probabilities can be estimated
in the same manner. Pre-equilibrium proton emission can be
neglected only if the corresponding probability to have all
the protons in single-particle states with energies below the
Coulomb barrier is P(0) ≈ 1.

Another limitation of the present approach is the neglect
of the role of fluctuations, see Refs. [35–38] and references
therein.

After the pre-equilibrium neutrons have been evaporated
and the fission fragments are fully accelerated, the excitation
energy of the remnant fission fragments can be used to emit
neutrons and γ s from the formed compound nucleus or fission
fragments. The number of neutrons remaining in either the
heavy or the light fragment is

NH,L =
N∑

k=1

〈φk|Q̂H,L|φk〉. (39)

One can determine the occupation probabilities v2
k in a final

fragment in its ground state in the Bardeen-Cooper-Schrieffer
(BCS) approximation, under the constraint

∑M
k=1 v2

k = NH,L,
and estimate the excitation energy of such a fragment

E∗
H,L =

M∑
k=1

[〈βk|h|βk〉 − v2
k εk

]
. (40)

In deriving this approximate formula I assumed that the
change in the energy is due only to the redistribution of oc-
cupation probabilities and that the densities in the ground and
excited states are basically identical. This assumption is sim-
ilar in spirit to the calculation of the shell energy corrections
due to Strutinsky [39,40].

All these formulas derived above implicitly assume that
the average number of neutrons remaining in the fragments
after evaporation NL,R are known in order to generate the
single-particle wave functions ψk (x). It is also implied that
there exists a separation of time scales, namely one assumes
that the evaporation time—which can noticeably affected by
the presence of the centrifugal barrier—is shorter than the
time needed to form a compound nucleus. The wave functions
ψk (x) naturally depend on the size of the fragment, which is
needed in order to evaluate NL,R and nuL,R, which satisfy the
sum rule

N = NH + NL + νH + νR. (41)

As is typical, the number of evaporated neutrons νH,L is
relatively small, one can neglect such details. Alternatively
one can repeat the calculation once the approximate values
of NL,R have been determined. It is likely that convergence
can be achieved in one or two iterations at most. If however
the number of pre-equilibrium neutrons is relatively large one
might need to repeat such a procedure each time after a small
number of neutrons are emitted.

Within a Hartree-Fock-Bogoliubov (HFB) framework the
quasiparticle wave functions (qpwfs) satisfy the equations

ih̄
∂

∂t

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

h↑↑ − μ h↑↓ 0 �

h↓↑ h↓↓ − μ −� 0

0 −�∗ −(h∗
↑↑ − μ) −h∗

↑↓
�∗ 0 −h∗

↓↑ −(h∗
↓↓ − μ)

⎞
⎟⎟⎟⎠

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠, (42)

where I have suppressed the spatial r and time coordinate
t , and k labels the qpwfs [ukσ (r, t ), vkσ (r, t )] with the z
projection of the nucleon spin σ = ↑,↓. The single-particle
Hamiltonian hσσ ′ (r, t ) and the pairing field �(r, t ) are func-
tionals of various neutron and proton densities, which are
computed from the qpwfs, and μ is the chemical potential,
see Ref. [41] for technical details.

Now one has to construct the projectors onto the final
(stationary) nucleus determined in a mean field approxima-
tion. I assume that after scission a fragment with Nf neutrons
has been formed and n pre-equilibrium neutrons are emitted
and a remnant with n′ = Nf − n neutrons was formed. I will
construct the ground state of the nucleus with n′ neutrons,
and assume that no pre-equilibrium protons were emitted
after scission. In a first approximation one can assume that
n is small enough and n′ ≈ Nf . The quasiparticle eigenstates
with Ek > 0 (designed as occupied quasiparticle states) are
typically used to construct the nucleon densities and the
eigenstates with Ek < 0 describe the unoccupied quasiparticle

states. For Ek > 0 the v components and for Ek < 0 the u
components of the qpwfs have a finite norm, respectively.
If μ < Ek < −μ (as μ < 0 in finite nuclei) both v and u
components have a finite norm [42–45] and the spectrum is
discrete. The projectors P̂ and Q̂ to unbound and bound v
orbitals, respectively, are

P̂ =
∑
Ek<μ

∣∣ψv
k

〉〈
ψv

k

∣∣, Q̂ =
∑
Ek>μ

∣∣ψv
k

〉〈
ψv

k

∣∣, (43)

P̂ + Q̂ = 1, (44)

where now

ψv
k (r, σ ) =

⎛
⎜⎜⎜⎝

uk↑(r)e
imv·r

h̄

uk↓(r)e
imv·r

h̄

vk↑(r)e− imv·r
h̄

vk↓(r)e− imv·r
h̄

⎞
⎟⎟⎟⎠, (45)

as under a boost the u and v components of the qpwfs
transform in opposite manner [46,47]. This aspect is also
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manifested in the structure of the time-dependent density
functional theory (TDDFT) Eqs. (42), as the single particle
Hamiltonian changes under a boost as hσ,σ → hσ,σ + v p̂ [46].

The projector Q̂ projects on both occupied and unoccupied
bound quasiparticle states, for which

∫
dr|vk (r, σ )|2 < ∞ in

the final nucleus or in the fission fragment. If the sum in the
definition of Q̂ would have been restricted to Ek > 0, only the
occupied quasiparticle states in the ground state of the nucleus
or fragment would have been included. In the case of a HFB
framework the quasiparticle spectrum is continuous for both
occupied and unoccupied quasiparticle states if |Ek| > |μ| and
the projector P̂ selects only the unbound unoccupied quasi-
particle states with Ek < μ, when

∫
dr|vk (r, σ )|2 → ∞.

Equations (8) and (9) read in this case [22]

P(n) =
∫ π

−π

dη

2π
e−iηn

√
det [δkl + (eiη − 1)Pkl ], (46)

Q(n′) =
∫ π

−π

dη

2π
e−iηn′√

det [δkl + (eiη − 1)Qkl ], (47)

where

Pkl = 〈φk|P̂|φl〉, Qkl = 〈φk|Q̂|φl〉 (48)

and φk (x) are now the four-component Bogoliubov quasipar-
ticle wave functions obtained by evolving Eqs. (42). After
orthogonalizing 〈φk|P̂|φl〉 and 〈φk|Q̂|φl〉 these expressions
simplify to

P(n) =
∫ π

−π

dη

2π
e−iηn

√√√√ 2�∏
k=1

[
1 + (eiη − 1)α2

k

]
, (49)

Q(n′) =
∫ π

−π

dη

2π
e−iηn′

√√√√ 2�∏
lk1

[
1 + (eiη − 1)β2

k

]
, (50)

where

α2
k = 〈φk|P̂|φk〉, β2

k = 〈φk|Q̂|φk〉, (51)

and 2� is the dimension of the Fock space. The total number
of pre-equilibrium neutrons evaporated can be determined
either from ν = ∑∞

n=0 nP(n) or as

ν =
∑

k

〈φk|P̂|φk〉. (52)

If instead one uses a TDHF-BCS framework [38,48–50] to
describe the initial nucleus then

vk (x, t ) = vk (t )φk (x, t ), uk (x, t ) = uk (t )φk (x, t ). (53)

|vk (t )|2 are the occupation probabilities, φk (x, t ) are two-
component single-particle wave functions obtained as solu-
tions of the TDHF equations, 〈φk|φl〉 = δkl , and |vk (t )|2 +
|uk (t )|2 = 1.

III. CONCLUSIONS

The formalism outlined here can be used to characterize the
fate of the quasiparticle states promoted into the continuum
either in an excited nucleus or in an excited nuclear fragment.
One can calculate for each quasiparticle state, initially local-
ized inside the nucleus, an average transmission probability
into the continuum. These transmission probabilities lead to
upper estimates of the number of the pre-equilibrium neutrons
emitted, up to corrections due to the branching ratio �↑/�.
The only other source of uncertainties is due to the role of
fluctuations, which is expected to lead to wider distributions,
but it will likely not affect radically the average neutron multi-
plicities [35–38]. The role of fluctuations can be accounted for
in a variety of ways [36,51–58]. The extension to the emission
of other kinds of particles is straightforward.

The formalism can be extended to project other single-
particle properties, such as the energies of the emitted
nucleons, and/or their angular momenta in a manner dis-
cussed in Refs. [22,24,59].2 By projecting the linear momenta
of the emitted nucleons one can obtain simultaneously the
angular and energy distributions of the emitted nucleons.
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