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Elastic α- 12C scattering at low energies with the sharp resonant 0+
3 state of 16O
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An inclusion of the sharp resonant 0+
3 state of 16O and the first excited 2+

1 state of 12C in a study of s-wave
elastic α- 12C scattering at low energies is investigated in an effective Lagrangian approach. The elastic scattering
amplitude is separated into two parts: one is for the sharp resonant 0+

3 state of 16O parametrized by the Breit-
Wigner formula, and the other is for the nonresonant part of the amplitude parametrized by effective range
expansion. In the nonresonant part of the amplitude, a contribution from the 2+

1 state of 12C is included. I discuss
a large correlation between a coupling for the 2+

1 state of 12C and an effective range parameter Q0 as well as the
necessity of including a vertex correction in the initial and final α- 12C state interactions. After fixing parameters
appearing in the amplitudes by using experimental data, I calculate asymptotic normalization coefficients for the
ground 0+

1 state and the first excited 0+
2 state of 16O and compare them to previous results found in the literature.

DOI: 10.1103/PhysRevC.102.034611

I. INTRODUCTION

Radiative α capture on 12C, 12C(α, γ ) 16O, is a key re-
action to determine the ratio of 12C/16O production in stars
[1]. Due to subthreshold lπ

i−th = 1−
1 and 2+

1 states of 16O
just below α- 12C breakup threshold, the radiative α capture
reaction will be dominated by E1 and E2 transitions while a
small contribution comes out of so-called cascade transitions
where α and 12C first form an excited bound state of 16O
and it subsequently decays down to the ground 0+

1 state of
16O. Asymptotic normalization coefficients (ANCs) of bound
states of 16O play an important role to estimate the radiative
α capture rates, equivalent to the astrophysical S factor at
Gamow-peak energy, EG = 0.3 MeV, for R-matrix analysis
[2]. Values of the ANCs for the subthreshold 1−

1 and 2+
1 states

of 16O converge in both theory and experiment while scattered
values for 3−

1 , 0+
2 , and 0+

1 states of 16O are found in the litera-
ture. During the last half century, numerous experimental and
theoretical studies related to the radiative α capture reaction
have been carried out. For review, see, e.g., Refs. [3–6] and
references therein.

In my recent works, I constructed an effective field theory
(EFT) for the 12C(α, γ ) 16O reaction at EG [7]; parameters
appearing in an effective Lagrangian were fitted to experi-
mental data for elastic α- 12C scattering [8–10] and for the S
factor of the 12C(α, γ ) 16O reaction through the E1 transition
[11], and a value of the SE1 factor at EG was estimated in
the theory for the first time [11].1 An EFT may provide us a
model-independent method for theoretical calculation at low
energies, in which one needs to introduce a separation (mo-
mentum) scale between relevant physical degrees of freedom

*sando@sunmoon.ac.kr
1Recently, the EFT was applied to a study of β-delayed α emission

from 16N [12].

at low energy and irrelevant degrees of freedom at high en-
ergy. An effective Lagrangian is constructed using the relevant
low-energy degrees of freedom and expanded in terms of the
number of derivatives order by order. The irrelevant degrees of
freedom are integrated out of the effective Lagrangian, and the
effects from those at high energy are presumed to be embed-
ded in the coefficients of the terms appearing in the effective
Lagrangian. Those coefficients are possibly determined from
its mother theory while they are practically fixed by using
experimental data. The derivative expansion scheme provides
us a perturbative expansion, which is useful to estimate a
theoretical error for a reaction in question. For review for
EFTs, see, e.g., Refs. [13–17]. In my subsequent works, I
could incorporate the broad resonant 1−

2 and 3−
2 states of 16O

in the reaction amplitudes using effective range expansion but
could not include the sharp resonant 0+

3 and 2+
2 states of 16O

[10,11]. In this work, I study an inclusion of the sharp resonant
0+

3 state of 16O, along with the first excited 2+
1 state of 12C, in

the elastic α- 12C scattering for the l = 0 channel.
Counting rules for a resonant state, when one includes

the Coulomb interaction between two charged particles, for
a halo-like system are discussed by Higa, Hammer, and van
Kolck [18] and for a resonance state that is parametrized as a
Breit-Wigner form by Gelman [19]. I follow a prescription
suggested by Higa, Hammer, and van Kolck to rewrite a
scattering amplitude presented in terms of effective range pa-
rameters to an amplitude presented by using the Breit-Wigner
formula. I also follow another prescription by Gelman to sepa-
rate a scattering amplitude into two parts: one is an amplitude
for a sharp resonant state, and the other is that for the rest of
the nonresonant part of the amplitude. As I discussed in my
previous work [8], because of a modification of the counting
rules for the elastic α- 12C scattering at low energies, I include
the terms up to p6 order in the effective range expansion,
where p is the magnitude of relative momentum between α

and 12C. In this work, parameters appearing in the amplitudes
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are fixed by using the following experimental data: binding
energies for bound states, a resonant energy and a width
for a resonant state of 16O, and phase shift data for elastic
α- 12C scattering. Because the energy range for the experi-
mental phase shift data reported by Tischhauser et al. [20] is
2.6 � Eα � 6.62 MeV, where Eα is the α energy in labora-
tory frame,2 I include the first excited 2+

1 state of 12C whose
excited energy is E (2+

1 ) = 4.44 MeV in the present study. I
also include a vertex correction for the initial and final state
interactions between α and 12C in a phenomenological way.

Two parameters appearing in the scattering amplitude for
the sharp resonance state are fixed by experimental values for
the resonant energy and the width for the 0+

3 state of 16O
while two effective parameters appearing in the nonresonant
part of the amplitude are fixed by using the binding ener-
gies of the ground 0+

1 state and the first excited 0+
2 state of

16O. The other four parameters—P0 and Q0 for the effective
range parameters, a coupling constant g̃0 for a contribution
from the 2+

1 state of 12C, and a constant R2 for a vertex
correction for the initial and final states of α and 12C—are
fitted to experimental phase shift data δ0 for the elastic α- 12C
scattering for the l = 0 channel. I find that the experimental
data, including a sharp peak of the resonant 0+

3 state of 16O in
the energy range 2.6 � Eα � 6.62 MeV, are well reproduced,
while a coupling g̃0 cannot be fixed by using the phase shift

data because of a large correlation with Q0. I then calculate
asymptotic normalization coefficients (ANCs) for the 0+

1 and
0+

2 states of 16O and compare the results with those found in
the previous studies.

The present article is organized as follows. In Sec. II, an
effective Lagrangian for the elastic α- 12C scattering for the
l = 0 channel, including the sharp resonant 0+

3 state of 16O
and the first excited 2+

1 state of 12C, is discussed. In Sec. III,
the scattering amplitude for the part of the sharp resonance
0+

3 state of 16O and for the rest of the nonresonant part of the
amplitude are derived. In Sec. IV, four parameters are fixed
by using the two binding energies, resonant energy, and width
of the 0+

1 , 0+
2 , and 0+

3 states of 16O, and remaining parameters
are fitted to the experimental phase shift data for the elastic
α- 12C scattering for the l = 0 channel. I then calculate the
ANCs for the 0+

1 and 0+
2 states of 16O and compare the results

of the ANCs to those found in the previous works. In Sec. V,
results and discussion of this work are presented.

II. EFFECTIVE LAGRANGIAN

An effective Lagrangian to derive a scattering amplitude
for s-wave elastic α- 12C scattering at low energies, including
the sharp resonant 0+

3 state of 16C and the first excited 2+
1 state

of 12C, may be written as [7–9,21]

L = φ†
α

(
iD0 + �D2

2mα

+ · · ·
)

φα + φ
†
C

(
iD0 + �D2

2mC
+ · · ·

)
φC

+φ
(l=2)†
C,i j

(
iD0 + 1

2mC

�D2 − �(2) + · · ·
)

φ
(l=2)
C,i j

+
3∑

n=0

C(rs)
n d†

(rs)

[
iD0 + �D2

2(mα + mC )

]n

d(rs) − y(rs)[d
†
(rs)(φαφC ) + (φαφC )†d(rs)]

+
3∑

n=0

C(nr)
n d†

(nr)

[
iD0 + �D2

2(mα + mC )

]n

d(nr) − y(nr)[d
†
(nr)(φαφC ) + (φαφC )†d(nr)]

− y′
(rs)[d

†
(rs)(φαO′

0φC ) + (φαO′
0φC )†d(rs)] − y′

(nr)[d
†
(nr)(φαO′

0φC ) + (φαO′
0φC )†d(nr)]

− g0
[
d†

(nr)

(
φαO2,i jφ

(l=2)
C,i j

) + (
φαO2,i jφ

(l=2)
C,i j

)†
d(nr)

] + · · · , (1)

where φα (mα) and φC (mC) are scalar fields (masses) of
α and 12C, respectively. Dμ is a covariant derivative, Dμ =
∂μ + iQAμ, where Q is a charge operator and Aμ is the
photon field. The dots denote higher-order terms. φ

(l=2)
C,i j (�2)

is a field (an excited energy) for the first excited 2+
1 state

of 12C. d(rs) and d(nr) are composite fields of 16O consisting
of α and 12C for the l = 0 channel for the sharp resonant
state (rs) and the nonresonant (nr) part, respectively, which
are introduced for perturbative expansion around the unitary
limit [22–25]. The coupling constants, C(rs)

n and C(nr)
n with

2One has a relation Eα = 4
3 E , where E is the total kinetic energy of

α and 12C in center-of-mass frame.

n = 0, 1, 2, and 3, correspond to effective range parame-
ters of elastic α- 12C scattering while the coupling constants
y(rs) and y(nr) are redundant,3 and are conventionally taken
as y(rs) = y(nr) = √

2π/μ. y′
(rs) and y′

(nr) are higher-order ver-
tex corrections for d(rs,nr)-α- 12C vertices at next-to-next-to
leading order (NNLO). In the following sections, I will not
mix these two fields, d(rs) and d(nr), for the sharp resonant
part and the nonresonant part of the amplitude through the

3In the denominator of the elastic scattering amplitudes, the cou-
plings appear in the form, C (rs,nr)

n /y2
(rs,nr) with n = 0, 1, 2, 3, and are

fitted to, e.g., the effective range parameters, 1/a0, r0, P0, Q0, for
l = 0, respectively. The y(rs,nr) couplings are redundant, and one can
arbitrarily fix their values.
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= + + + ...

FIG. 1. Diagrams for dressed 16O propagator. A thick (thin)
dashed line represents a propagator of 12C (α), and thick and
thin double dashed lines with and without a filled circle rep-
resent dressed and bare 16O propagators, respectively. A shaded
blob represents a set of diagrams consisting of all possible one-
potential-photon-exchange diagrams up to infinite order and no
potential-photon-exchange one.

y(rs) and y(nr) interactions or the y′
(rs) and y′

(nr) interactions. In
addition, I include the y′

(rs) and y′
(nr) interactions only in the

initial and final state interactions of α and 12C. Those issues
will be discussed later. g0 is a coefficient for the transitions
between the s-wave α and first excited 2+

1 state of 12C and
the nonresonant part of the composite 16O field, d(nr). The
operators are given as

O2,i j = −
↔
Di

M

↔
D j

M
+ 1

3
δi j

↔
D

2

M2
,

O′
0 = −

↔
D

2

M2
, i

↔
Di

M
≡ i

(→
DC

mC
−

←
Dα

mα

)
i

. (2)

III. AMPLITUDES FOR THE ELASTIC SCATTERING

The elastic scattering amplitude A0 is decomposed into two
parts:

A0 = A(rs)
0 + A(nr)

0 , (3)

where A(rs)
0 is the amplitude for the sharp resonant 0+

3 state
of 16O parametrized by the Breit-Wigner formula and A(nr)

0
is the scattering amplitude for the nonresonant contribution
parameterized by the effective range expansion.

Both the scattering amplitudes A(rs)
0 and A(nr)

0 are calculated
from the diagrams depicted in Figs. 1 and 2. For the elastic
scattering amplitude for the sharp resonant 0+

3 state of 16O, I
first write it down in terms of the effective range expansion as

A(rs)
0 = 2π

μ

e2iσ0C2
ηF (p)2

Kr
0 (p) − 2κH (η)

, (4)

with

e2iσ0 = 
(1 + iη)


(1 − iη)
,

C2
η = 2πη

e2πη − 1
, H (η) = ψ (iη) + 1

2iη
− ln(iη), (5)

FIG. 2. Diagram of the scattering amplitude. See the caption of
Fig. 1 as well.

where ψ (z) is the digamma function and η = κ/p where κ

is the inverse of the Bohr radius, κ = ZαZCμαE ; Zα and ZC

are the numbers of protons in α and 12C, μ is the reduced
mass of α and 12C, and αE is the fine-structure constant. One
may note that the Coulomb self-energy term, −2κH (η), is
obtained from a bubble diagram due to propagation of the
ground states of α and 12C. Here the self-energy contribution
from the 2+

1 state of 12C is ignored because the amplitude
will be rewritten as the Breit-Wigner-like expression below,
which has a sharp peak at the resonant energy Er , and the
off-peak energy contribution will be regarded as a higher order
correction. The functions F (p) and Kr

0 (p) contain dynamics
for the elastic scattering through the sharp resonant state. The
function F (p) is a vertex correction of the initial and final state
interactions between α and 12C while the function Kr

0 (p) is a
polynomial function expanded around the unitary limit, which
is presented in terms of the effective range parameters. Thus,
one has

F (p) = 1 − 1

6
R2 p2, (6)

Kr
0 (p) = − 1

ar
0

+ 1

2
rr

0 p2 − 1

4
Pr

0 p4 + Qr
0 p6, (7)

where I have introduced a squared radius-like parameter
R2, R2 = −6y′

(rs)/(y(rs)μ
2) in Eq. (6), and the coefficients,

C(rs)
n /y2

(rs) with n = 0, 1, 2, 3, have been replaced by the ef-
fective range parameters in Eq. (7).

Following a prescription suggested by Higa, Hammer, and
van Kolck [18] to rewrite the amplitude parametrized by the
effective range expansion to that by the Breit-Wigner formula,
I have

A(rs)
0 = −2π

μ

e2iσ0

√
2μE

1
2
(E )F (p)2

ZrDr (E ) + i 1
2
(E )

, (8)

with


(E ) = 
r
e2πηr − 1

e2πη − 1
, ηr = κ√

2μEr
, (9)

ZrDr (E ) = E − Er + Zr

{
μ2Pr

0 (E − Er )2

−8μ3Qr
0(E + 2Er )(E − Er )2

+ 2κ

[
Re H (η) − Re H (ηr )

− ∂

∂E
Re H (η)

∣∣∣
E=Er

(E − Er )

]}
, (10)

Z−1
r = ∂

∂E
Dr (E )

∣∣∣
E=Er

, Zr = e2πηr − 1

4πκ

r, (11)

where E is the energy of the α- 12C system in the center-of-
mass frame, E = p2/(2μ), and Er and 
r are the energy and
the width of the resonant 0+

3 state of 16O, which are related to
two effective range parameters, ar

0 and rr
0 in Eq. (7). Pr

0 can be
fixed by using a condition that a large contribution from the
Coulomb self-energy term at p4 order is canceled with the Pr

0
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term. Thus, I have

Pr
0 = 24μErQr

0 − κ

μ2

∂2

∂E2
Re H (η)|E=Er , (12)

where Qr
0 can be chosen arbitrarily. Thus, the scattering am-

plitude A(rs)
0 for the sharp resonant state is represented by the

three parameters R2, Er , and 
r .
For the nonresonant part of the amplitude A(nr)

0 , I have

A(nr)
0 = 2π

μ

e2iσ0C2
ηF (p)2

K0(p) − 2κ
[
H (η) + 2g̃2

0
3μ4 H2(η̃)

] , (13)

with g̃0 = g0/y(nr) and

H2(η̃) = W2( p̃)H (η̃),

W2( p̃) = 1

4
(κ2 + p̃2)(κ2 + 4 p̃2), (14)

η̃ = κ/p̃, p̃ = i
√

−2μ(E − �2) − iε, (15)

where �2 is the excitation energy of the 2+
1 state of 12C,

�2 = 4.440 MeV. The second Coulomb self-energy term,
−2κH2(η̃), is obtained from a bubble diagram propagating

the ground state of α and the excited 2+
1 state of 12C where

those two states are in relative d-wave state and coupled to
the s-wave composite 16O field for the nonresonant contribu-
tion. Interaction between α and 12C in the function K0(p) is
parametrized by the effective range expansion; one has

K0(p) = − 1

a0
+ 1

2
r0 p2 − 1

4
P0 p4 + Q0 p6. (16)

I fix two parameters among the four effective range param-
eters, a0, r0, P0, and Q0, by using conditions that the inverse of
the scattering amplitude A(nr)

0 vanishes at the energies of the
ground 0+

1 state and the first excited 0+
2 state of 16O. Thus, the

denominator of the scattering amplitude vanishes,

D0(p) = K0(p) − 2κ

[
H (η) + 2g̃2

0

3μ4
H2(η̃)

]
= 0, (17)

at p = iγ0 and p = iγ1, where γ0 and γ1 are binding momenta
for the 0+

1 and 0+
2 states of 16O, respectively; γ0,1 = √

2μB0,1

where B0 and B1 are the binding energies for the 0+
1 and 0+

2
states of 16O from the α- 12C breakup threshold, respectively.
Using the conditions from Eq. (17), I fix two effective range
parameters, a0 and r0, as

1

a0
= 1

4
γ 2

0 γ 2
1 P0 + (

γ 4
0 γ 2

1 + γ 2
0 γ 4

1

)
Q0 + 2κ

γ 2
0 − γ 2

1

{
γ 2

1

[
H (ηb0) + 2g̃2

0

3μ4
H2(η̃b0)

]
− γ 2

0

[
H (ηb1) + 2g̃2

0

3μ4
H2(η̃b1)

]}
, (18)

r0 = −1

2

(
γ 2

0 + γ 2
1

)
P0 − 2

(
γ 4

0 + γ 2
0 γ 2

1 + γ 4
1

)
Q0 − 4κ

γ 2
0 − γ 2

1

{[
H (ηb0) + 2g̃2

0

3μ4
H2(η̃b0)

]
−

[
H (ηb1) + 2g̃2

0

3μ4
H2(η̃b1)

]}
, (19)

where ηb0,b1 = κ/(iγ0,1) and η̃b0,b1 = κ/(i
√

γ 2
0,1 + 2μ�2 ). Using the two relations in Eqs. (18) and (19), I rewrite the denomi-

nator of the amplitude D0(p) as

D0(p) = −1

4

[
γ 2

0 γ 2
1 + (

γ 2
0 + γ 2

1

)
p2 + p4]P0 + [−γ 4

0 γ 2
1 − γ 2

0 γ 4
1 − (

γ 4
0 + γ 2

0 γ 2
1 + γ 4

1

)
p2 + p6]Q0

−2κ

{
γ 2

1 + p2

γ 2
0 − γ 2

1

[
H (ηb0) + 2g̃2

0

3μ4
H2(η̃b0)

]
− γ 2

0 + p2

γ 2
0 − γ 2

1

[
H (ηb1) + 2g̃2

0

3μ4
H2(η̃b1)

]
+ H (η) + 2g̃2

0

3μ4
H2(η̃)

}
, (20)

where three constants, P0, Q0, g̃0 in the function D0(p) and
one constant R2 in the function F (p) for the nonresonant
amplitude A(nr)

0 will be fixed by using the phase-shift data. One
may notice that the same parameter R2 for both the amplitudes
A(rs)

0 and A(nr)
0 is used because the parameter R2 commonly

appears in the initial and final state interactions between α and
12C. Thus, there are six parameters {P0, Q0, g̃0, R2, Er, 
r} in
the scattering amplitude A0.

The ANCs |Cb|0 and |Cb|1 for the 0+
1 and 0+

2 states of 16O
are calculated by using the formula

|Cb|n = 
(1 + ηbn)F (iγn)

[
(−1)n ∂D0(p)

∂ p2

∣∣∣∣
p2=−γ 2

n

]−1/2

, (21)

with n = 0 or n = 1, where I have included the vertex correc-
tion F (p) in the expression for the ANCs, which is found in
Ref. [26].

IV. NUMERICAL RESULTS

To fix the coefficients appearing in the scattering amplitude
A0 for the l = 0 channel, the data for the phase shift δ0 re-
ported by Tischhauser et al. [20] are employed, as mentioned
before. The elastic scattering amplitude for l = 0 in terms of
the phase shift δ0 is given as

A0 = 2π

μ

e2iσ0

p cot δ0 − ip
.

Because the scattering amplitude A0 is represented by two
terms, A(rs)

0 and A(nr)
0 , as given in Eq. (3), the parameters are

fitted to the data by using a relation for the squared amplitude
as

1

p2
sin2 δ0 =

∣∣∣∣ 1

p cot δ0 − ip

∣∣∣∣
2

= μ2

4π2

∣∣A(rs)
0 + A(nr)

0

∣∣2
.

As mentioned above, the six parameters
{P0, Q0, g̃0, R2, Er, 
r} remain in A0 while the resonant
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TABLE I. Values and errors of five parameters {P0, Q0, R2, Er, 
r} fitted to the phase shift δ0 of elastic α- 12C scattering for l = 0 using
some values of g̃0: g̃0 = 0, 20, 40, 60. The ANCs, |Cb|0 and |Cb|1, for the 0+

1 and 0+
2 states of 16O are calculated by using each set of the fitted

values of the parameters.

g̃0 0 20 40 60

P0 (fm3) −0.03573(3) −0.03575(3) −0.03578(3) −0.03584(3)
Q0 (fm5) 0.002055(9) 0.002894(9) 0.005408(9) 009598(9)
R2 (fm2) 0.976(14) 0.954(15) 0.869(15) 0.731(16)
Er (MeV) 4.88763(6) 4.88763(6) 4.88760(6) 4.88758(6)

r (MeV) 0.00168(4) 0.00167(4) 0.00164(4) 0.00157(4)

|Cb|0 (fm−1/2) 41.0(1) 30.9(0) 20.2(0) 14.2(0)
|Cb|1 (fm−1/2) 443(3) 278(1) 166(0) 115(0)

energy Er and its width 
r for the sharp resonant 0+
3 state

of 16O are experimentally known as Er = 4.887(2) MeV
and 
r = 1.5(5) keV [27]. [The corresponding laboratory
energy of Er is Eα,r = 4

3 Er = 6.516(3) MeV.] I include them
in the fitting because more precise adjustment is necessary to
reproduce the sharp peak appearing in the data. R2 basically
accounts for the slowly varying shape of the phase shift
in the high-energy region, 5.5 � Eα � 6.62 MeV. g̃0 is a
dimensionless parameter and represents a contribution from
the first excited 2+

1 state of 12C. As will be discussed below,
I find that the parameter g̃0 is strongly correlated to Q0 and
cannot be determined from the phase shift data. Because there
is no restriction for g̃0, I give some values for g̃0 (here values
of g̃0 are arbitrarily chosen as g̃0 = 0, 20, 40, 60) and fit the
remaining five parameters {P0, Q0, R2, Er, 
r} to the phase
shift data employing a standard χ2 fit4 where the number of
the data is N = 351 [20].

In Table I, values and errors of the five parame-
ters {P0, Q0, R2, Er, 
r} using the four values of g̃0, g̃0 =
0, 20, 40, 60, fitted to the phase shift data δ0 are displayed.
Values and errors of the ANCs, |Cb|0 and |Cb|1, for the ground
0+

1 state and the first excited 0+
2 state of 16O calculated by

using each set of the fitted parameters are also displayed in the
table. I obtain almost the same χ2 values for the four fittings,
χ2/N = 1.60, and one can see that the errors of those fitted
parameters almost do not change for the four cases. One can
see that the fitted values of Er and 
r almost do not change
either for all the g̃0 values and agree well with the experi-
mental data within the error bars. A similar tendency can be
seen for the fitted values of P0 as well. On the other hand,
one can notice that remarkable g̃0 dependence for the values
of Q0; g̃0 and Q0 are strongly correlated with each other and
cannot simultaneously be fitted by using the phase shift data.
Minor but significant g̃0 dependence can be seen for the values
of R2. Because the self-energy contribution, −2κH2(η̃), from
the first excited 2+

1 state of 12C appears out of the d-wave
coupling while R2 accounts for the nonresonant shape of the
phase shift data at high energies, 5.5 < Eα < 6.62 MeV, those
contributions may become competitive at high energies. In
Fig. 3, a curve for the squared amplitude, sin2 δ0/p2, is plotted
as a function of Eα by using the fitted values of the parameters;

4I employ a Python package, emcee [28], for the fitting.

those four sets of the fitted parameters displayed in the table
give almost the same curve plotted in the figure. The experi-
mental data are included in the figure as well. One can see the
calculated curve well reproduces the experimental data.

Regarding estimate of the ANCs, |Cb|0 and Cb|1, for the
ground 0+

1 state and the first excited 0+
2 state of 16O, respec-

tively, I find the results for the ANCs are significantly sensitive
to the g̃0 values; those two ANCs decrease as the g̃0 value
increases. In addition, a value of |Cb|1 is about one order of
magnitude larger than that of |Cb|0 for a given value of g̃0.
In Fig. 4, a curve for D0(p)/F (p)2 is plotted as a function of
Eα; two filled (red) squares in the figure denote the binding
energies of the two bound states. Those points are fixed in
Eq. (17), and the ANCs are calculated from the slope of
the curve at those points by using the relation in Eq. (21).
Because the function by which the curve is plotted is given
as a polynomial function whose coefficients are the effective
range parameters, the slope of the curve becomes steep when
the magnitude of Eα becomes large. Thus, the slope at the
ground 0+

1 state is steeper than that of the 0+
2 state, i.e., |Cb|0

is smaller than |Cb|1. In addition, when a value of g̃0 becomes
larger, the contribution from the higher order terms in the
polynomial function [in the −2κH2(η̃) function, compared to
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FIG. 3. Squared amplitude, sin2 δ0/p2, as a function of Eα cal-
culated by using the fitted values of the parameters in Table I.
Experimental data are included in the figure as well.
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FIG. 4. Real part of the denominator of the dressed 16O propaga-
tor for l = 0, D0(p), including vertex form factors F (p)2 is plotted
as a function of Eα . Filled (red) squares denote the binding energies
for the 0+

1 and 0+
2 states of 16O.

those in the −2κH0(η) term] become larger; thus both the
ANCs, |Cb|0 and |Cb|0, become smaller. Though there is no
clear clue for a value of g̃0, one can fix it by using a value of
one of the two ANCs, and then the other one can be predicted.

I now discuss values of the ANCs found in the previous
studies and compare them to the present results. For the ANC,
|Cb|1, for the first excited 0+

2 state of 16O, I have |Cb|1 =
443–115 fm−1/2 for g̃0 = 0–60. One can find in the literature
[6] two groups for values of |Cb|1: a large value group and
a small value group. For the large value group, one may
find three results, which are about more than 4 times larger
than the present result: |Cb|1 = (15.6 ± 1.0) × 102 fm−1/2 ob-
tained from the α transfer reaction 6Li(12C, d ) 16O reported
by Avila et al, [29], 1800 fm−1/2 from the R-matrix analysis
for broad level structure of 16O by deBoer et al. [30], and
1560 fm−1/2 from the R-matrix analysis for the 12C(α, γ ) 16O
reaction by deBoer et al. [6]. For the small value group,
one finds two results, which agree with the present result:
|Cb|1 = 44+270

−44 fm−1/2 from the study of the 0+
2 state cascade

transition in the 12C(α, γ ) 16O reaction by Schürmann et al.
[31] and 405.7 fm−1/2 from the so-called � method based on
the effective range theory by Orlov, Irgaziev, and Nabi [32].

For the ANC |Cb|0, for the ground 0+
1 state of 16O, I have

|Cb|0 = 41.0–14.2 fm−1/2 for g̃0 = 0–60. One can also find
two groups for values of |Cb|0, a large value group and a
small value group, in the literature. For the large value group,
one may find two results, which are one or two orders of
magnitude larger than the present result: 709 fm−1/2 from
E2 interference effects in the 12C(α, γ ) 16O reaction by Sayre
et al. [33] and 4000 fm−1/2 (WS1), 1200 fm−1/2 (WS2), and
750 fm−1/2 (FP) from a study of 12C(16O, 12C) 16O reaction,
where the results depend on the use of nuclear potentials: the
Wood-Saxon 1 and 2 potentials (WS1, WS2) and the folding
potential (FP) by Morais and Lichtenthäler [34]. For the small
value result, one may find four results, which agree with the
present ones: |Cb|0 = 13.9(24) fm−1/2 from the continuum

discretized coupled channels (CDCC) study for a resonant
breakup of 16O by Adhikari and Basu [35], 20.33 fm−1/2 from
the effective range expansion by Orlov, Irgaziev, and Nikitina
[36], 21.76 fm−1/2 from the � method based on the effec-
tive range expansion by Orlov, Irgaziev, and Nabi [32], and
58 fm−1/2 from the R-matrix analysis for the 12C(α, γ ) 16O
reaction by deBoer et al. [6].

V. RESULTS AND DISCUSSION

In this work, I studied an inclusion of the sharp resonant
0+

3 state of 16O and the first excited 2+
1 state of 12C for elastic

α- 12C scattering for the l = 0 channel up to the energy at
which the sharp resonant 0+

3 state of 16O appears. I separate
the scattering amplitude into two parts: one is an amplitude
for the sharp resonant state, and the other is for the rest
of the nonresonant part of the amplitude. The resonant part
of the amplitude is presented in the Breit-Wigner-like form
while the nonresonant part of the amplitude is parametrized by
the effective range expansion. A contribution from a bubble
diagram due to the propagation of α and the 2+

1 state of
12C is included in the nonresonant part of the amplitude. I
also include a vertex correction for the initial and final state
interactions of α and 12C. Four parameters appearing in the
amplitude are fixed by using the binding energies for the 0+

1
and 0+

2 states and the resonant energy and the width for the
0+

3 state of 16O, while the remaining four parameters, P0, Q0,
g̃0, and R2, are fitted to the experimental phase shift data of
the elastic α- 12C scattering for the l = 0 channel. I find a
large correlation between Q0 and g̃0 and that a value of g̃0,
which represents a contribution from the 2+

1 state of 12C, is
not fixed from the phase shift data, while a vertex correction,
R2, for the initial and final states of α and 12C is found to
be crucial to reproduce the phase shift data in the energy
range 5.5 � Eα � 6.62 MeV. I then calculate the ANCs for
the 0+

1 and 0+
2 states of 16O. I find that the numerical results of

the ANCs significantly depend on the values of g̃0 while the
values of the ANC for the 0+

2 are about one order of magnitude
larger than those for the 0+

1 state. The obtained results for
the ANCs are compared to those in the literature. Scattered
values of the ANCs in the previous results are found, and those
can be separated into two groups, a large value group and
a small value group, for both the ANCs. The present results
reasonably well agree with those of the small value groups for
both the ANCs.

As one might have noticed, I did not mix the composite
16O fields, d(rs) and d(nr), for the sharp resonant amplitude and
the nonresonant part of the amplitude. Those two fields can
be mixed in the amplitudes through the α- 12C propagation; in
the α- 12C bubble diagram, the α- 12C state is created through
the y(rs) or y(nr) interaction, and, after a propagation of α and
12C, they are destroyed through the y(rs) or y(nr) interaction.
Here I have assumed a naive counting rule in which the sharp
resonant part of the amplitude becomes a leading order (LO)
contribution near the resonant energy while at the off-resonant
energy the resonant part of the amplitude is suppressed and
the nonresonant part of the amplitude becomes a LO contri-
bution. As a part of the higher order corrections at NNLO,
I phenomenologically included it as a vertex correction, the
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R2 term, in the initial and final state interactions between α

and 12C. I found that the correction is crucial to reproduce the
phase shift data in the energy region 5.5 � Eα � 6.62 MeV,
close to the sharp resonant energy Eα (0+

3 ) = 6.52 MeV. A
complete treatment for the terms at NNLO would be inter-
esting for a future work.

I also found a significant g̃0 dependence in the numeri-
cal results for the ANCs for the 0+

1 and 0+
2 states of 16O

while a value of g̃0 could not be fixed from the phase shift
data of the elastic α- 12C scattering. As mentioned above, a
value of g̃0 can be fixed by using an experimental datum
of one of the two ANCs, and then one can predict the other
one of the two ANCs, though the values of the ANCs in

the literature are significantly scattered. Another way to fix
g̃0 is to use experimental data for inelastic α- 12C scattering,
α + 12C(0+

1 )→ α + 12C∗(2+
1 ). For a better understanding of

the present situation, further studies for the ANCs for the 0+
1

and 0+
2 states of 16O, both experimentally and theoretically,

would be required
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