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Ab initio leading order effective potentials for elastic nucleon-nucleus scattering
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Background: Calculating microscopic effective interactions (optical potentials) for elastic nucleon-nucleus
scattering has already led to a large body of work. For leading-order calculations a nucleon-nucleon (NN)
interaction and a one-body density of the nucleus were taken as input to rigorous calculations of microscopic
full-folding calculations.
Purpose: Based on the spectator expansion of the multiple scattering series, we employ a chiral next-to-next-to-
leading order (NNLO) nucleon-nucleon interaction on the same footing in the structure as well as in the reaction
calculation to obtain an effective potential for nucleon-nucleus elastic scattering, consistent in leading-order,
which includes the spin of the struck target nucleon.
Methods: The leading order effective folding potential is computed by first deriving a nonlocal scalar density
as well as a spin-projected momentum distribution. Those are then integrated with the off-shell Wolfenstein
amplitudes A, C, and M. The resulting nonlocal potential serves as input to a momentum-space Lippmann-
Schwinger equation, whose solutions are summed to obtain the nucleon-nucleus scattering observables.
Results: We calculate elastic scattering observables for 4He, 6He, 8He, 12C, and 16O in the energy regime between
100 and 200 MeV projectile kinetic energy, and compare to available data. We also explore the extension down
to about 70 MeV, and study the effect of ignoring the spin of the struck nucleon in the nucleus.
Conclusions: In our calculations we contrast elastic scattering off closed-shell and open-shell nuclei. We find
that for closed-shell nuclei the approximation of ignoring the spin of the struck target nucleon is excellent. We
only see effects of the spin of the struck target nucleon when considering 6He and 8He, which are nuclei with an
N/Z ratio larger than 1.

DOI: 10.1103/PhysRevC.102.034606

I. INTRODUCTION AND MOTIVATION

Elastic scattering of protons or neutrons from stable nuclei
has traditionally played an important role in determining
either the parameters of phenomenological optical models or
testing accuracy and validity of microscopic models thereof.
The latter was explored in the 1990s in a large body of work
on microscopic optical potentials in which “high-precision”
nucleon-nucleon (NN) interactions and the density of the
nucleus were taken as input to calculating the leading-order
term in either a Kerman-McManus-Thaler (KMT) or Watson
expansion of the multiple scattering series (see, e.g., [1–6]).
This work concentrated on doubly magic nuclei like 40Ca and
208Pb, for which, e.g., mean field calculations provided the
nuclear densities.

The development of nucleon-nucleon (NN) and three-
nucleon (3N) interactions derived from chiral effective field
theory (see, e.g., [7–12]) together with the utilization of
massively parallel computing resources (e.g., see [13–17]),
have placed ab initio large-scale simulations at the frontier
of nuclear structure and reaction explorations. Among other
successful many-body theories, the ab initio no-core shell-

model (NCSM) approach (see, e.g., [18–21]), has over the last
decade taken center stage in the development of microscopic
tools for studying the structure of atomic nuclei. The NCSM
concept combined with a symmetry-adapted (SA) basis in the
ab initio SA-NCSM [22] has further expanded the reach to
the structure of intermediate-mass nuclei [23]. Following
these developments in nuclear structure theory, it is worth-
while to again consider the rigorous calculations of leading-
order effective folding nucleon-nucleus (NA) potentials, since
now the one-body densities required for the folding with the
NN scattering amplitudes can be based on the same NN
interaction [24,25].

The leading order term of the effective folding potential
in a multiple scattering expansion considers two active nu-
cleons, the projectile and a struck target nucleon, while the
remaining target nucleons are inert spectators [26]. A closer
inspection of the theoretical ingredients of the leading order
term underlying this latest work as well as the works from the
1990s reveals that they cannot be considered fully ab initio.
Those calculations ignore the spin of the struck target nucleon
in the derivation of the leading order effective interaction.
Thus, in Refs. [24,25] all terms of the NN interaction are
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included in the structure calculation but not in the reaction
calculation. In order to construct an ab initio effective NA
interaction in leading order, the underlying NN interaction
must be taken into account on equal footing in all parts of the
calculations.

The idea that an effective interaction may depend on
the spin of the struck target nucleon was pioneered in
Refs. [27,28] in the context of spin-spin terms in elastic scat-
tering from a target with nonzero spin, in which the authors
use as a starting point for the nuclear structure a core and
valence nucleons. However, even when considering scattering
of a proton or neutron from a spin-zero nucleus, as done in
this work, the spin of the struck target nucleon should be
taken into account when employing the NN interaction on the
same footing as in a modern structure calculation. Starting
from a NCSM, we calculate the one-body density for the
spin of the struck target nucleon and combine it with the
corresponding terms in the NN amplitudes. The first goal of
this paper is the presentation of the theoretical formulation of
taking into account the spin of the struck nucleon in the well-
known formalism of the leading order term in the multiple
scattering expansion; the second is a study of its effects on
elastic scattering observables for closed as well as open-shell
nuclei.

In Sec. II we briefly connect to the scattering formalism
for the leading order term in the multiple scattering series as
given in Ref. [25] and introduce the spin-dependent one-body
density together with its spin projections onto the scattering
plane needed to include the full NN interaction into the
leading order term. In Sec. III we present elastic scattering
observables for closed and open-shell nuclei based on a
consistent ab initio calculation and compare to calculations in
which the spin of the stuck nucleon is ignored. We conclude in
Sec. IV.

II. THEORETICAL FRAMEWORK

The standard starting point for describing elastic scattering
within a multiple scattering approach is the separation of the
Lippmann-Schwinger (LS) equation for the transition ampli-
tude,

T = V + V G0(E )T, (1)

into two parts, namely an integral equation for T ,

T = U + UG0(E )PT, (2)

where U is the effective potential operator defined by a second
integral equation

U = V + V G0(E )QU . (3)

Here P is a projection onto the ground state of the tar-
get, P = |�〉〈�|

〈�|�〉 , with P + Q = 1 and [G0(E ), P] = 1. The
free propagator for the projectile and target system is given
by G0(E ) = (E − h0 − HA + iε)−1 where h0 is the kinetic
energy of the projectile and HA is the Hamiltonian of the
target defined by HA|�〉 = EA|�〉. The potential operator

V = ∑A
i=1 v0i consists of the NN potential v0i acting between

the projectile denoted by “0” and the ith target nucleon.
Working in leading order of the spectator expansion means

taking only the interaction between the projectile and one
of the target nucleons into account. Thus, in leading order
the effective interaction is given by U = ∑A

i=1 τ0i, where the
operator τ0i is given by

τ0i = v0i + v0iG0(E )Qτ0i = τ̂0i − τ̂0iG0(E )Pτ0i. (4)

The quantity τ̂0i is the solution of a standard LS equation
with the NN potential as the driving term. For the effective
interaction only Û = ∑A

i τ̂0i needs to be calculated, and U is
then obtained by solving Eq. (4) with Û as the driving term.
Explicitly the leading order effective interaction Û , which is
nonlocal and energy dependent, can be symbolically written
as

Û (q,KNA, ε) =
∑

α=n,p

∑
Ks

∫
d3K η(q,K,KNA) τ̂Ks

α

×
(

q,
1

2

[
A + 1

A
KNA − K

]
; ε

)
× ρKs

α

(
K − A − 1

A

q
2
,K + A − 1

A

q
2

)
. (5)

The sum over α = n for neutrons and p for protons indicates
that, e.g., for a proton as projectile, the pp amplitudes are
integrated with the proton density and the np amplitudes with
the neutron density. The variable ε represents the beam energy
of the projectile minus the kinetic energy of the center of mass
of the interacting particle and the binding energy of the struck
particle. The index Ks is either 0 for spin-independent terms or
1 for spin-dependent terms. The momentum vectors in Eq. (5)
are defined as

q = p′ − p,

K = 1

2
(p′ + p) (6)

KNA = A

A + 1

[
(k′ + k) + 1

2
(p′ + p)

]
,

where p (p′) is the momentum of the struck target nucleon
before (and after) the collision, and k (k′) the momentum of
the projectile before (and after) the collision. The momentum
transfer q is invariant between frames; however, the other vec-
tors given in Eq. (6) are frame dependent. More details about
the different momentum vectors in each frame are discussed in
Appendix A of Ref. [29]. The terms in Eq. (5) are the Møller
factor [30] η, describing the frame transformation relating
the zero-momentum NN frame to the zero-momentum NA
frame, the NN amplitude between the projectile and the target
nucleon, τ̂Ks

α , and the translationally invariant, nonlocal one-
body density matrix describing the distribution of the struck
nucleon in the target, ρKs

α .
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The NN scattering amplitude M can be parametrized in terms of Wolfenstein amplitudes [31–33],

M(q,KNN , ε) = A(q,KNN , ε)1 ⊗ 1 + iC(q,KNN , ε) (σ (0) · n̂) ⊗ 1 + iC(q,KNN , ε) 1 ⊗ (σ (i) · n̂)

+ M(q,KNN , ε)(σ (0) · n̂) ⊗ (σ (i) · n̂) + [G(q,KNN , ε) − H (q,KNN , ε)](σ (0) · q̂) ⊗ (σ (i) · q̂)

+[G(q,KNN , ε) + H (q,KNN , ε)](σ (0) · K̂) ⊗ (σ (i) · K̂)

+D(q,KNN , ε)[(σ (0) · q̂) ⊗ (σ (i) · K̂) + (σ (0) · K̂) ⊗ (σ (i) · q̂)], (7)

where σ (0) describes the spin of the projectile and σ (i) the
spin of the struck nucleon. The average momentum in the
NN frame is defined as KNN = 1

2 (k′
NN + kNN ). The scalar

functions A, C, M, G, H , and D are referred to as Wolfenstein
amplitudes and only depend on the scattering momenta and
energy. Each term in Eq. (7) has two components, namely
the scalar function and the coupling between the operators of
the projectile and the struck nucleon, in that order. The linear
independent unit vectors q̂, K̂, and n̂ are defined in terms of
the momentum transfer and the average momentum as

q̂ = q
|q| , K̂ = K

|K| , n̂ = K × q
|K × q| , (8)

and span the momentum vector space. Again, with the excep-
tion of the momentum transfer q, which is invariant under
frame transformation, the vectors in Eq. (8) need to be con-
sidered in their respective frames.

All Wolfenstein amplitudes need to be considered when
evaluating the effective interaction in Eq. (5). For the struck
target nucleon the expectation values of the operator 1 and the
scalar products of σ (i) with the linear independent unit vectors
of Eq. (7) need to be evaluated with the ground state wave
functions. Evaluating the expectation value of the operator
1 in the ground state of the nucleus results in the scalar
nonlocal one-body density that has traditionally been used
as input to microscopic or ab initio calculations of leading
order effective interactions [3,4,24,25]. The other operators
from Eq. (7), namely (σ (i) · n̂), (σ (i) · q̂), and (σ (i) · K̂) have,
to our knowledge, not yet been considered in a systematic
fashion together with realistic nuclear structure calculations.
Only within the framework of a toy model [34] was such an
attempt made.

To begin, we start with the general expression of nonlocal
density as previously described in Ref. [35] but include the
spin operator σ (i) explicitly,

ρKs
qs

(p, p′) = 〈�′|
A∑

i=1

δ3(pi − p)δ3(p′
i − p′)σ (i)Ks

qs
|�〉, (9)

where σ (i)Ks
qs

is the spherical representation of the spin opera-
tor, and the wave function � (p1, . . . , pA) = 〈p1, . . . , pA|�〉
is defined in momentum space. This nonlocal density, after
defining σ (i)Ks

qs
using Eq. (A1), can be evaluated using Ks = 0

to become the nonlocal one-body scalar density that has been
used in traditional calculations or using Ks = 1 to become a
nonlocal one-body spin density which up to now has not been
evaluated.

Without loss of generality, we choose to present the deriva-
tion of the expectation value of the term (σ (i) · n̂) explicitly.
We define a scalar function Sn(p, p′) using Eq. (9) as

Sn
(
p, p′) ≡ ρKs (p, p′) · n̂ =

∑
qs

(−1)qsρKs=1
qs

(p, p′)n̂1
−qs

,

(10)

where Ks = 1 due to the tensor coupling. The scalar product
of (σ i · n̂) is, in principle, inside the bra-ket of Eq. (9). When
defining Sn(p, p′), the vector n̂ can be moved outside the
bra-ket since it only depends on p and p′. The scalar function
Sn(p, p′) will be from here on referred to as the intrinsic
spin-projected momentum distribution.

Following the same procedure as laid out in Ref. [35],
we use the Wigner-Eckart theorem, decouple the orbital an-
gular momentum l and the spin s instead of using the total
angular momentum j. Then the reduced matrix elements are
evaluated. This procedure guarantees that in the calculation of
the reduced matrix element of the spin operator is included
explicitly as

〈s′||σ Ks ||s〉 = ŝK̂sδs′s, (11)

with s′ = s = 1/2, ŝ = √
2s + 1, and K̂s = √

2Ks + 1. The
translationally invariant one-body density is obtained by using
the Talmi-Moshinsky transformation from the (p, p′) vari-
ables to the (q,K) variables and removing the center-of-
mass motion of the nucleus. The scalar product of the den-
sity with n̂, written in terms of spherical harmonics [n̂α =
|n|√4π/3Y 1

α (n̂)] leads to the expression for the expectation
value of (σ (i) · n̂) in the ground state of the nucleus,

Sn(q,K) =
∑

qs

(−1)−qs

√
4π

3
Y 1

−qs
(n̂)

∑
nl jn′l ′ j′

l+l ′∑
Kl =|l−l ′ |

Kl∑
kl =−Kl

∑
Kk

〈Kl kl1qs|Kk〉

× (−1)J−M

(
J K J

−M k M

)
(−1)−l ĵ ĵ′ŝ1̂K̂l

⎧⎨⎩l ′ l Kl

s s 1
j′ j K

⎫⎬⎭
×

∑
nq,nK,lq,lK

〈nKlK, nqlq : Kl |n′l ′, nl : Kl〉d=1RnKlK (K)Rnqlq (q)Y∗lqlK
Kl kl

(q̂, K̂)〈AλJ||(a†
n′l ′ j′ ãnl j )

(K )||AλJ〉e 1
4A b2q2

, (12)
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where the term e
1

4A b2q2
stems from the removal of the center-of-mass motion of the nucleus. The notation used in Eq. (12) and

the removal of the center-of-mass motion is explicitly derived in Ref. [35]. The use of the radial harmonic oscillator wave

functions Rnqlq and harmonic oscillator length parameter b =
√

h̄2c2

mc2 h̄ω
indicates a use of the harmonic oscillator basis in the

NCSM calculation. By choosing the vector q̂ in the z direction and K̂ in the x-z plane, the direction of n̂ is in the negative
y direction. Since the ground state of a 0+ nucleus is in a state of angular momentum J = 0, the expression can be further
simplified to

Sn(q,K) = (−i)
√

3
∑

nl jn′l ′ j′
(−1)−l ĵ ĵ

⎧⎨⎩l ′ l 1
1
2

1
2 1

j j 0

⎫⎬⎭ ∑
nq,nK,lq,lK

〈nKlK, nqlq : 1|n′l ′, nl : 1〉d=1RnKlK (K)Rnqlq (q)

×
∑

qs=−1,1

Y∗lqlK
1−qs

(q̂, K̂)〈Aλ0||(a†
n′l ′ j′ ãnl j )

(0)||Aλ0〉e 1
4A b2q2

. (13)

The scalar function Sn(q,K) represents the expectation value of the spin operator projected along n̂ in the ground state of the
nucleus. More details of its derivation are given in Appendix A and Ref. [36].

The expectation values of the remaining scalar products, (σ (i) · q̂) and (σ (i) · K̂), can be derived in a similar fashion, leading
to functions Sq(q,K) and SK(q,K). However, considering the scalar products more closely, (σ (i) · q̂) represents a scalar product
of a pseudovector with a vector, a construct that is not invariant under parity transformations, and thus should not contribute to
the effective interaction. We verified that this is indeed the case by explicitly calculating that the expectation value Sq(q,K) is
zero. The same is true for the expectation value (σ (i) · K̂), which also gives a zero contribution in the ground state. Therefore,
none of the Wolfenstein amplitudes G, H , and D contribute to the NA elastic scattering amplitude.

After evaluating the expectation values of the scalar products of the spin of the struck target nucleon with all three momentum
vectors, and realizing that only the expectation value of (σ (i) · n̂) leads to a nonvanishing contribution, we know that only the
first four terms of the NN scattering amplitude as written in Eq. (7) contribute to the effective interaction Û (q,KNA, ε) from
Eq. (5). The first two of them, Wolfenstein amplitudes A and C, traditionally correspond to the central and spin-orbit parts of
the effective interaction. Taking into account the spin of the struck nucleon leads to additional contributions. The spin-orbit
term iC(q,KNN , ε)1 ⊗ (σ (i) · n̂) of Eq. (7) leads to a modification of the central part of the NA effective potential, whereas the
term M(q,KNN , ε)(σ (0) · n̂) ⊗ (σ (i) · n̂) contributes to the spin-orbit part of the NA effective potential. In order to calculate the
quantity in Eq. (5), we need to combine the Wolfenstein amplitudes in Eq. (7) with the density defined in Eq. (9) projected along
the relevant vectors. Thus, the effective interaction of Eq. (5) between, e.g., a proton and a nucleus is explicitly written as

Û (q,KNA, ε) =
∑

α=n,p

∫
d3Kη(q,K,KNA)Apα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
ρKs=0

α (P ′,P )

+ i(σ (0) · n̂)
∑

α=n,p

∫
d3Kη(q,K,KNA)Cpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
ρKs=0

α (P ′,P )

+ i
∑

α=n,p

∫
d3Kη(q,K,KNA)Cpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
Sn,α (P ′,P ) cos β

+ i(σ (0) · n̂)
∑

α=n,p

∫
d3Kη(q,K,KNA)(−i)Mpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
Sn,α (P ′,P ) cos β, (14)

where P ′ = (K − A−1
A

q
2 ) and P = (K + A−1

A
q
2 ). The quantity ρKs=0

α is the scalar density derived in Ref. [25] and Sn,α is given in
Eq. (13). The term i(σ (0) · n̂) represents the “usual” spin-orbit operator in momentum space. The above expression clearly shows
how taking into account the spin of the struck nucleon adds a term to the central as well as the spin-orbit part of the effective
interaction.

The last two terms in Eq. (14) show a factor cos β, which represents the frame transformation 1 ⊗ (σ (i) · n̂) between the
frame of the target nucleus and the NN frame. It is necessary to take this transformation into account, since the Wolfenstein
amplitudes are calculated via the solution of a LS equation in the NN center-of-mass (c.m.) frame with a given NN potential. In
that calculation the unit vector n̂ is defined in the NN frame. The function Sn(p, p′) from Eq. (10) is calculated in the frame of
the target nucleus. Thus only the component of n̂ projected on the normal of the NN scattering frame, n̂NN , will contribute to the
effective interaction. We therefore define the scalar product n̂ · n̂NN ≡ cos β, which will project the normal vector of the nucleus
frame to the NN frame, with β given as

cos β = cos(φ − φNN ) = cos

[
φ − tan−1

(
−K sin(θ ) sin(φ)

A+1
A KNA sin(θNA) − K sin(θ ) cos(φ)

)]
. (15)

The explicit derivation of cos β is described in Appendix B.
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FIG. 1. Wolfenstein amplitudes A and C f as function of the scatting angle and momentum transfer for np scattering at 200 MeV laboratory
kinetic energy. The solid (red) line represents the NNLOopt chiral interaction [38], and the dashed (green) line the CD-Bonn potential [42]. The
solid diamonds stand for the extraction from the GW-INS analysis [41].

III. RESULTS AND DISCUSSION

In this section we present calculations of observables for
elastic scattering from closed as well as open-shell nuclei
in which the leading order effective interaction is calculated
ab initio, i.e., the NN interaction is taken into account con-
sistently in the structure as well as reaction calculation. For
the reaction calculation the NN amplitudes are represented in
form of Wolfenstein amplitudes, Eq. (7). We are considering
elastic scattering off 0+ nuclei. As discussed in Sec. II, the
spin-projections of the struck target nucleon with the vectors
q and K are zero, leaving only the Wolfenstein amplitudes
A, C, and M contributing to the effective NA interaction,
representing scalar, vector, and tensor components of the NN
interaction.

Traditional calculations of the leading order term
[3,24,25,37], despite using realistic one-body densities, ne-
glected the spin of the struck target nucleon, and concentrated
on closed-shell nuclei, arguing that for closed-shell nuclei
those spin contributions most likely average out. If the spin
of the struck target nucleon is ignored, one can immediately
see from Eq. (7) that only the Wolfenstein amplitudes A and
C contribute, leading to the traditional central and spin-orbit
parts of the effective interaction.

In the following sections we will inspect the effect of
ignoring the spin of the struck target nucleon in the effective
interaction for closed-shell and open-shell nuclei on elastic
scattering observables at projectile kinetic energies where the
leading order term in the multiple scattering expansion should
dominate. We will also examine scattering observables at
lower energies, which are somewhat outside the validity realm
of the leading order, to study the energy dependence of the
effective interaction compared to the approximation in which
the spin of the struck target nucleon is ignored.

For the calculations of the scalar and spin projected one-
body densities as well as the NN scattering amplitudes we
choose the optimized chiral NN interaction at the next-to-
next-to-leading order, NNLOopt, from Ref. [38]. This inter-
action is fitted for NN laboratory energies up to 125 MeV.
In the A = 3 and A = 4 systems the contributions of the
3N forces are smaller than in most other parameterizations
of chiral interactions. As a consequence, nuclear quantities
like root-mean-square radii and electromagnetic transitions
in light and intermediate-mass nuclei can be calculated rea-
sonably well without invoking 3N forces [23,39,40]. Since
NA scattering calculations discussed here concentrate on the
energy regime between about 100 and 200 MeV, we will
have to employ this interaction beyond its fitted energy range.
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FIG. 2. Same as Fig. 1 for pp scattering at 200 MeV laboratory kinetic energy.

The authors of Ref. [38] give a χ2/datum ≈ 2 for np scatter-
ing between 125 and 183 MeV and ≈24 for pp scattering. In
Figs. 1 and 2 we show the Wolfenstein amplitudes A, C, and
M for np and pp scattering at 200 MeV laboratory kinetic
energy together with the experimental extraction from the
George Washington University Institute for Nuclear Studies
(GW-INS) analysis [41]. To compare, we also show those
Wolfenstein amplitudes obtained from the charge-dependent
Bonn potential (CD-Bonn) [42], which is fitted to the NN data
up to 300 MeV with χ2/datum ≈ 1. The largest deviations
from the experimental extraction occurs for the amplitude C,
which for np scattering is moderately overpredicted, while
for pp scattering the real part of the amplitude is severely
overpredicted. This is consistent with remarks in Ref. [38]
that the NN p waves are less well represented. The NN
spin-orbit force is dominated by p waves and manifests itself
in the Wolfenstein amplitude C. The Wolfenstein amplitude
M captures contributions of the tensor part of the NN inter-
action, which is quite well represented by the NNLOopt chiral
interaction.

At 100 MeV the description of the same Wolfenstein
amplitudes by the NNLOopt chiral interaction is much better,
since this energy is still within the regime where the interac-
tion is fitted with a much smaller χ2/datum. However, even
at 100 MeV, the amplitude C is still slightly overpredicted.

Corresponding figures can be found in the Supplemental
Material [43].

A. Closed-shell nuclei 4He and 16O

The most natural question is how the scattering observ-
ables for closed-shell nuclei are affected by neglecting the
spin of the struck target nucleon, having in mind that this
approximation has always been employed. Thus, comparing
the ab initio leading order calculation with the traditionally
employed approximation should answer the question whether
ignoring the spin of the struck nucleon in this case was
reasonable.

In Fig. 3 both the angular distribution of the differential
cross section divided by the Rutherford cross section as well
as the analyzing power for elastic scattering of protons off
4He is shown at 200 as well as 100 MeV laboratory projectile
kinetic energy. The figure compares the ab initio calculation,
labeled “All NN,” with the traditional approximation ignoring
the spin of the struck target nucleon, labeled “AC only.”
For both calculations we used Nmax = 18 and h̄ω = 20 MeV,
which is sufficient to obtain converged results to within the
plotted line thickness. The grey bar seen in all four figures
represents the momentum transfer corresponding to the en-
ergy range of 125 MeV in the NN system, for which NNLOopt
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FIG. 3. The angular distribution of the differential cross section
divided by the Rutherford cross section and the analyzing power for
elastic proton scattering from 4He at 200 and 100 MeV laboratory
kinetic energy as a function of the momentum transfer and the c.m.
angle calculated with the NNLOopt chiral interaction [38]. The solid
(red) line represents the calculations with the full NN interaction,
while for the calculations represented by the dashed (black) line the
spin of the struck nucleon in the target is neglected. Both calculations
employ Nmax = 18 and h̄ω = 20. The data for 200 MeV are taken
from Ref. [47], and for 100 MeV from Ref. [48]. The dashed vertical
line in each figure indicates the momentum transfer q = 2.45 fm−1

corresponding to the laboratory kinetic energy of 125 MeV of the NN
system.

was fitted. The figure clearly shows that the spin of the struck
nucleon plays an almost imperceptible role in the final result
at both projectile energies and in both observables.

In Fig. 4, the same type of comparison is shown for 16O
at 200 and 100 MeV. In the case of 16O, Nmax = 10 is used,
which is not high enough to arrive at a converged result
independent of h̄ω. The spread of the results as they relate to
h̄ω is given in Ref. [25]. In Fig. 4 only the calculations using

FIG. 4. The angular distribution of the differential cross section
divided by the Rutherford cross section and the analyzing power for
elastic proton scattering from 16O at 200 and 100 MeV laboratory
kinetic energy as a function of the momentum transfer and the c.m.
angle calculated with the NNLOopt chiral interaction [38]. The lines
follow the same notation as Fig. 3. Both calculations employ Nmax =
10 and h̄ω = 20. The data for 200 MeV are taken from Ref. [49], and
for 100 MeV from Ref. [50].

h̄ω = 20 MeV are shown. The spread due to different values
of h̄ω is not affected by the inclusion of the spin of the struck
nucleon.

For 16O, NNLOopt gives a significantly smaller charge
radius compared to the experimental value: about 2.39 fm
versus 2.70 fm [44]. This can be seen in the location of the
first minimum of the differential cross section in Fig. 4 at both
energies. For 4He the prediction of the charge radius matches
more closely, about 1.66 fm compared to the experimental
value of 1.68 fm [44]. The same Nmax and h̄ω are used in the
charge radii calculations as in the scattering calculations. This
result can partially explain the particularly good description
of the calculation as compared to the experimental data.
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FIG. 5. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 6He, 8He, and 12C at 200 MeV laboratory kinetic energy as
a function of the momentum transfer and the c.m. angle calculated
with the NNLOopt chiral interaction [38]. The lines follow the same
notation as Fig. 3. All calculations employ h̄ω = 20 with Nmax = 18
for 6He, Nmax = 14 for 8He and Nmax = 10 for 12C. The data for 6He
are taken from Ref. [51], and for 12C from Ref. [52].

Both closed shell nuclei, 4He and 16O, lead to the conclu-
sion that here the spin of the struck nucleon can be neglected
in calculating observables for elastic scattering. They confirm
that the traditional approximation of ignoring the spin of the
struck target nucleon when considering closed-shell nuclei
was justified.

B. Open-shell nuclei 6He, 8He, and 12C

In open-shell nuclei an assumption that spin contributions
of the struck target nucleon average out when summing over
all nucleons is less justified. Thus we examine elastic scatter-
ing observables of the helium isotopes, 6He and 8He, as well
as 12C at 200 and 100 MeV projectile kinetic energy.

In Fig. 5, the differential cross sections divided by the
Rutherford cross section for elastic scattering of protons off
6He, 8He, and 12C are shown for 200 MeV laboratory projec-
tile energy. The 6He calculations employ Nmax = 18, while for
the 8He calculations Nmax = 14 and for the 12C calculations
Nmax = 10 are used. In all cases we use h̄ω = 20 MeV. The

FIG. 6. The angular distribution of the analyzing powers for elas-
tic proton scattering from 6He, 8He, and 12C at 200 MeV laboratory
kinetic energy as a function of the momentum transfer and the c.m.
angle calculated with the NNLOopt chiral interaction [38]. The lines
follow the same notation as Fig. 3, using the parameters for the
structure calculation given in Fig. 5. The data for 12C are taken from
Ref. [52].

dependence of the 12C calculation on h̄ω is shown in detail in
Ref. [25] while the convergence of 6He and 8He with respect
to h̄ω is within the line thickness. The line styles follow those
of Fig. 3. All three nuclei show almost no difference between
the ab initio calculation and the traditional approximation of
ignoring the spin of the struck nucleon in the nucleus.

The corresponding analyzing powers for scattering off 6He,
8He, and 12C are shown in Fig. 6. For 12C, the effect is again
negligible. However, for the helium isotopes, 6He and 8He,
there is a small but noticeable effect from the spin of the
target nucleon at higher momentum transfers. The change in
the h̄ω dependence due to the addition of the spin of the struck
nucleon is negligible.

For the predictions of the charge radii of 6He, 8He, and
12C, the NNLOopt interaction performs reasonably well. The
charge radii predicted for the helium isotopes 6He and 8He fall
within 6% for both: 1.95 fm compared to the experimental
value of 2.07 fm for 6He and 1.90 fm compared to the
experimental value of 1.92 fm for 8He [44]. For 12C, the
predicted charge radius lies within 5% using the h̄ω value
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FIG. 7. Same as Fig. 5 but for 100 MeV projectile kinetic energy
in the case of 6He and 8He, and 122 MeV projectile kinetic energy
for 12C. The data for 12C at 122 MeV are taken from Ref. [53].

of 20 MeV, namely 2.35 fm compared to the experimental
value of 2.47 fm [44]. The same Nmax and h̄ω are used
in the calculations of the charge radii and in the scattering
calculations. The spread of the calculated values of the charge
radius due to the choice of h̄ω contains the experimental value.
This accuracy can be seen in the analyzing power results at
200 MeV and the very close replication of the dip location
around q = 1.5fm−1. However, the cross section for 12C is
less well described.

In Fig. 7, the differential cross section divided by the
Rutherford cross section is shown at 100 MeV projectile
kinetic energy for the helium isotopes and 122 MeV for 12C.
Again, the cross section is almost unaffected whether the spin
of the struck nucleon in the nucleus is taken into consideration
or not. However, in the analyzing powers calculated at the
same energies, Fig. 8, a difference between the ab initio
calculation and the approximation neglecting the spin of the
struck nucleon can be seen. Both helium isotopes show an
effect that is larger for 8He than 6He at this energy. For 12C
the difference between the calculations is much smaller, indi-
cating that ignoring the spin of the struck nucleon may be also
a reasonable approximation in the case of 12C. One should
however keep in mind that these observations may or may not
hold for other NN interactions. In particular, NNLOopt signif-

FIG. 8. Same as Fig. 6, but for 100 MeV projectile kinetic energy
in the case of 6He and 8He, and 122 MeV projectile kinetic energy
for 12C. The data for 12C at 122 MeV are taken from Ref. [53].

icantly overpredicts the pp Wolfenstein amplitude C, and as
a consequence the pp contribution to proton-12C scattering is
artificially large and may create an appearance that there is
no net effect from the spin of the struck nucleon. We have
more confidence in the qualitative results for the He isotopes,
because NNLOopt provides a reasonable description for the
pn Wolfenstein amplitude C, and in 6He and 8He the effect is
dominated by the scattering of protons off the neutrons in the
target nucleus, while the pp contributions are small.

Last, we examine the total cross sections for neutron scat-
tering off 16O and 12C, shown in Fig. 9. Since the differential
cross sections for proton scattering off those nuclei did not
show any sensitivity to the spin of the struck target nucleon,
we expect that the total neutron cross section behaves accord-
ingly. This is indeed the case, as is illustrated in Fig. 7, where
only the ab initio calculation is shown, since neglecting the
spin of the struck nucleon leads to almost identical results.
Here both the experimental data and the calculations are
divided by the experimental values in order to magnify small
differences. The error band for the calculations reflects a range
of h̄ω from 16 to 24 MeV, indicating that both calculations
are not converged at the Nmax = 10 value used here. The
calculations deviate on average from the experimental values
by about 5% for both 16O and 12C. It is noteworthy to observe
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FIG. 9. The total cross section for neutron scattering from 16O
and 12C as a function of the neutron incident energy normalized to
the experimental cross section. The solid (red) error bars indicate the
calculations with the full NN interaction, and coincide with calcula-
tions in which the spin of the struck target nucleon is neglected. The
calculations use h̄ω = 20 in both cases and go to Nmax = 10 for both
16O and 12C. The data are taken from Ref. [54].

that the energy dependence of the calculated values of the total
cross sections slightly deviates from that given by experiment,
being larger for 12C even in the energy range between 100 and
200 MeV, which should be dominated by the leading order
term in the multiple scattering expansion.

C. Observables for projectile energies smaller than 100 MeV

Though the leading order term in the multiple scattering
expansion is expected to be valid for projectile kinetic ener-
gies larger than about 100 MeV, it is worthwhile to explore the
behavior of the leading order calculations at lower energies
to study its energy dependence. For this study we use the
helium isotope chain together with 12C, and choose energies
for which experimental information is available.

In Fig. 10, the differential cross section divided by the
Rutherford cross section for all helium isotopes is shown for
projectile kinetic energy 71 MeV and for 12C at 65 MeV.
All line styles follow the same convention given in Fig. 3.
We first notice that the magnitude of the differential cross
sections for the helium isotopes is predicted correctly for a
momentum transfer up to about 2 fm−1, slightly less for 4He.
In the case of 12C the magnitude of the differential cross
section is still correctly predicted, but only for momentum
transfers up to 1 fm−1. In addition, the first minimum for 12C
is shifted to a slightly higher momentum transfer with respect
to the experimental values. In general, it is expected that for
projectile energies smaller than 100 MeV corrections to the
leading order term [45,46] as well as higher order terms in
the multiple scattering expansions become important and are
visible for higher momentum transfers. This can be seen in the
differential cross sections for 4He and 12C. The remarkable
agreement of the leading order term for the differential cross
sections for 6He and 8He may be explained by the fact that

FIG. 10. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 4He, 6He, and 8He at 71 MeV laboratory kinetic energy and 12C
at 65 MeV laboratory kinetic energy as a function of the momentum
transfer and the c.m. angle calculated with the NNLOopt chiral
interaction [38]. The meaning of the lines is the same as in Fig. 3.
All calculations employ h̄ω = 20 with Nmax = 18 for 4He and 6He,
Nmax = 14 for 8He, and Nmax = 10 for 12C. The square (blue) data
points for 6He and 8He are taken from Ref. [55] while the circles
(black) are taken from Refs. [56,57].

those nuclei are halo nuclei, and thus at those lower energies
a large fraction of the scattering occurs from the neutrons in
the halo.

While the differential cross sections exhibit no difference
with respect to including or omitting the spin of the struck
nucleon in the nucleus, the analyzing powers do. In Fig. 11,
the analyzing powers for the elastic scattering of protons
off 6He, 8He, and 12C are shown at the same energies. The
calculations confirm the pattern already seen for 100 MeV in
Fig. 8, where the nuclei with a larger N/Z ratio are sensitive
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FIG. 11. Same as Fig. 10 but for the analyzing power. The data
for 6He are taken from Ref. [58] and the data for 8He are from [57].

to treating the spin of the struck nucleon correctly. Though
the effects seen in 6He, 8He are most likely too small to be
experimentally verified, it is still important to point out that
for nuclei with a larger N/Z ratio the spin of the struck nucleon
should not be ignored.

Finally, we show in Fig. 12 the intrinsic spin-projected
momentum distribution Sn(q,K), as given in Eq. (13), as a
function of the magnitudes of q and K with the angle between
the two vectors fixed at 90 degrees. The scalar function
Sn(q,K) is shown for the three nuclei 6He, 8He, and 12C with
the proton spin-projected momentum distribution in the left
panels and the neutron distribution in the right panels. These
distributions show the effects of filling up the p shell with
either protons or neutrons and how that flips the sign from
negative for the s shell, as seen in the helium isotopes, to
positive for the p shell.

The red bands shown on each plot represent three different
on-shell momentum conditions, given through q2 + 4K2 =
4k2

0 , where k0 is the momentum of the beam. For 6He and 8He
the dashed line is for 200 MeV, the solid line for 100 MeV,
and the dotted line for 71 MeV, while 12C follows the same
scheme except that the dotted line is for 65 MeV. This shows
clearly that the 100 and 71 MeV on-shell conditions are much
closer to the peak of the spin-projected distributions while the
200 MeV line is significantly further out for both 6He and 8He.

This could explain the energy dependence seen in the previous
scattering results and may indicate which nuclei will exhibit
spin effects.

For 6He and 8He there is a disparity between the magnitude
and shape of the neutron and proton momentum distributions,
as one might expect. The spin-projected proton density of
the α core in 6He and 8He is significantly smaller than the
spin-projected neutron density in these nuclei, which is in
agreement with the earlier observation that the spin-projected
density does not play a role in 4He. And not surprisingly,
having two more neutrons than 6He, the spin-projected neu-
tron distribution for 8He is twice as large, even though the
spin-projected proton distribution is approximately the same
in magnitude as in 6He. For 12C on the other hand, the proton
and neutron spin-projected densities are approximately the
same, as one would expect for a N = Z nucleus; furthermore,
the shape of these nonlocal spin-projected distributions is
somewhat similar to that of the corresponding neutron distri-
butions of 6He and 8He. However, even though 12C has two
more neutrons than 6He, and the same number of neutrons as
8He, the magnitude of the spin-projected neutron distribution
is half as large as that of 6He, and about a quarter of that of
8He. This suggests that the detailed structure of the nucleus as
well as the number of protons matters for the spin-projected
momentum distributions, and could explain why ignoring the
spin of the struck nucleon is a reasonable approximation in the
case of 12C, but not for 6He and 8He. These results warrant fur-
ther investigation into other nuclei and different interactions.

IV. CONCLUSIONS AND OUTLOOK

In this work we concentrated on pursuing the theoretical
advancement of the description of the leading order term
in the multiple scattering series. We calculated for the first
time a complete leading order ab initio effective potential
for nucleon-nucleus elastic scattering using the spectator ex-
pansion of multiple scattering theory. This term includes two
active nucleons: the projectile and the struck target nucleon.
Thus, complete means here that we treat the NN interaction
in the reaction part of the calculation on the same footing as
in the structure part. Taking the complete NN interaction into
account in the leading order term implies that not only the
spin of the projectile has to be considered but also the spin
of the struck target nucleon. Since this work concentrates on
advancing the theoretical description, we only use a single NN
interaction, the NNLOopt interaction from Ref. [38]. In the
future, similar studies will have to be carried out with different
chiral interactions.

In order to include the spin of the struck nucleon, we
needed to explicitly include its spin operator into the definition
of the nonlocal density. This is carried out by introducing
a spherical spin tensor of rank 1 into the definition of the
density, allowing us to extract the usual scalar one-body
density as well as a spin density. To combine this with the
structure of the NN amplitudes given in the Wolfenstein
representation, we needed to derive the projections of the
spin operator of the struck nucleon onto the three different
linear independent momenta spanning the target space. We
found that for nucleon-nucleus scattering off 0+ nuclei the
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FIG. 12. The scalar function Sn(q,K) as function of the momentum transfers q and K with cos q · K = 0 for 6He, 8He, and 12C. The left
column depicts Sn calculated using the proton density, while the right column represents Sn derived from the neutron density. The dashed,
solid, and dotted lines represent the on-shell conditions for 200, 100, and 71 MeV (for 12C 65 MeV) respectively.

projection of the spin along the normal of the plane spanned
by the momentum transfer and the average momentum gives
a nonvanishing result. This leads to an additional contribution
of the Wolfenstein amplitude C to the central part and of
Wolfenstein amplitude M to the spin-orbit part of the effective
potential.

We calculated proton elastic scattering observables for the
closed-shell nuclei 4He and 16O at multiple energies between
100 and 200 MeV and compared to calculations in which
the spin of the struck nucleon is ignored. We find that the
difference between the two is negligible. That confirms qual-
itative arguments in traditional calculations that for closed-
shell nuclei spin contributions most likely average out.

Scattering observables for the open-shell nuclei 6He, 8He,
and 12C were also examined with respect to their sensitivity to
the spin of the struck nucleon. Each nucleus was examined
in the energy range of 100 MeV to 200 MeV for proton
elastic scattering. The results of this analysis show a trend of
larger effects for lower projectile energies as well as larger
effects for nuclei that have a higher N/Z ratio. These trends,
however, are not conclusive due to the small number of
nuclei we examined; again, a more extensive study of these
observables for other nuclei and with different interactions
will be necessary in order to draw firm conclusions.

The differential cross sections at lower energies examined
for the helium isotopes along with 12C as well as the analyzing
powers for 6He, 8He, and 12C show similar energy dependence

for the contribution of the spin of the struck nucleon. A some-
what surprising result from this study is that the differential
cross sections for the halo nuclei 6He and 8He agree much
better with experiment as one would expect for leading order
calculations. That could indicate that due to the loosely bound
structure of a halo nucleus multiple scattering effects appear
at somewhat lower energies and higher momenta. However,
to see if this is a general feature for halo nuclei, one will
need to study more cases. Analyzing powers usually give a
more detailed view of the effective interaction. Here it is quite
obvious that a leading order calculation does not capture the
measured structure at lower energies.
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APPENDIX A: SPIN-PROJECTED MOMENTUM
DISTRIBUTION

In this Appendix we show more details of the derivation of
the function, Sn(q,K), that is related to the expectation value
of σi · n̂ in the ground state of the nucleus. The momentum
vectors q and K are defined in Eq. (6). We start with the
scalar function Sn(p, p′) defined in Eq. (9), with the one-body
spherical spin tensor of rank Ks = 0, 1, σ̂ Ks

qs
, defined as

Ks = 0 : (σ̂)0
0 = 1,

Ks = 1 : (σ̂)1
0 = σz,

(σ̂)1
−1 = 1√

2
(σx − iσy),

(σ̂ )1
1 = − 1√

2
(σx + iσy). (A1)

Since for Ks = 0, Eq. (9) becomes the scalar density that
we derived in previous work [35], we are going to show
here derivations for Ks = 1. In this case the spin-projected
momentum distribution will be

Sn(p, p′) =
∑

qs

〈�|
A∑

i=1

δ3(pi − p)δ3(p′
i − p′)σ̂ (i)Ks=1

qs
|�〉

× (−1)qs
(
n̂1

t .i.

)
−qs

. (A2)

Following the procedure from [35], we expand the delta
functions in terms of the spherical harmonics and couple them
to bipolar harmonics, which we then couple to the spin tensor
to get a total tensor of rank K and get the expression

Sn(p, p′) =
∑

qs

(−1)qs (n̂1
t .i.)−qs

∑
μμ′

μ+μ′∑
Kl =|μ−μ′|

Kl∑
kl =−Kl

Y∗μμ′
Kl kl

( p̂, p̂′)
∑
Kk

〈Kl klKsqs|Kk〉

× 〈AλJM|
A∑

i=1

[
δ(pi − p)

p2

δ(p′
i − p′)
p′2 Yμμ′

Kl kl
( p̂i, p̂′

i )σ̂
(i)1
qs

]K

k

|AλJM〉. (A3)

We expand the tensor of rank K in terms of single-particle matrix elements,

Sn(p, p′) =
∑

qs

(−1)qs (n̂1
t .i.)−qs

∑
μμ′

μ+μ′∑
Kl =|μ−μ′|

Kl∑
kl =−Kl

Y∗μμ′
Kl kl

( p̂, p̂′)
∑
Kk

〈Kl klKsqs|Kk〉(−1)J−M

(
J K J

−M k M

)

× 1

K̂

∑
αβ

〈α||
[
δ(p1 − p)

p2

δ(p′
1 − p′)
p′2 Yμμ′

Kl
( p̂1, p̂′

1)σ̂ 1

]
K

||β〉〈AλJ||(a†
α ãβ )(K )||AλJ〉, (A4)

where α and β represent the final and initial single particle states, respectively, (a†
α ãβ )(K ) represent the single particle transition

operator of rank K , and K̂ is defined as K̂ = √
2K + 1. After evaluating the reduced matrix elements we obtain

Sn
(
p, p′) =

∑
qs

(−1)qs (n̂1
t .i.)−qs

∑
nl jn′l ′ j′

l+l ′∑
Kl=|l−l ′ |

Kl∑
kl =−Kl

∑
Kk

〈Kl klKsqs|Kk〉(−1)J−M

(
J K J

−M k M

)
Y∗ll ′

Kk ( p̂, p̂′)

× (−1)−l ĵ ĵ′ŝK̂sK̂l

⎧⎨⎩l ′ l Kl

s s Ks

j′ j K

⎫⎬⎭Rn′l ′ (p′)Rnl (p)〈AλJ||(a†
n′l ′ j′ ãnl j )

(K )||AλJ〉. (A5)

In order to obtain the translational invariant spin-projected momentum distribution, we are using the Talmi-Moshinsky
transformation from the (p, p′) variable to the nonlocal variables (q, K).

Rn′l ′ (p′)Rnl (p)Y∗l ′l
Kl kl

( p̂, p̂′) =
∑

nq,nK,lq,lK

〈nKlK, nqlq : Kl |n′l ′, nl : Kl〉d=1RnKlK (K)Rnqlq (q)Y∗lKlq
Kl kl

(q̂, K̂). (A6)

The intrinsic spin-projected momentum distribution, Sn(q,K) becomes

Sn(q,K) =
∑

qs

(−1)qs (n̂1
t .i.)−qs

∑
nl jn′l ′ j′

l+l ′∑
Kl =|l−l ′ |

Kl∑
kl =−Kl

∑
Kk

〈Klkl Ksqs|Kk〉

× (−1)J−M

(
J K J

−M k M

)
(−1)−l ĵ ĵ′ŝK̂sK̂l

⎧⎨⎩l ′ l Kl

s s Ks

j′ j K

⎫⎬⎭
×

∑
nq,nK,lq,lK

〈nKlK, nqlq : Kl |n′l ′, nl : Kl〉d=1RnKlK (K)Rnqlq (q)Y∗lKlq
Kl kl

(q̂, K̂)〈AλJ||(a†
n′l ′ j′ ãnl j )

(K )||AλJ〉e 1
4A b2q2

. (A7)
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The term e
1

4A b2q2
in this equation arises from the removal of the

center-of-mass motion of the nucleus that follows the same
procedure as in [35]. The center-of-mass wave function is
entirely in the 0s ground state of the nucleus. We obtained
the same factor as in the scalar density.

It is important to notice that the first summation can be used
to introduce a specific representation of the nonlocal momenta
q and K by using the definition of the independent vector n̂
from Eq. (8). By choosing the vector q in the z direction and K
in the x-z plane, the direction of n̂ is in the negative y direction.
Then using the spherical harmonics representation of the
vector [n̂α = |n̂|√4π/3Y 1

α (n̂)], and taking into consideration
the spatial configuration of n̂, the expression of Sn(q,K) can
be further simplified as given in Eq. (13).

APPENDIX B: FRAME TRANSFORMATION AND
PROJECTION

The transformations and projections between the different
frames within the elastic scattering problem are a complicated
detail to accurately manage. Therefore, we present here in
detail the derivation of the angle β given in Sec. II.

We need to distinguish between three different frames: the
nucleon-nucleus NA, the nucleon-nucleon NN , and the target
A frame. The scattering problem is determined by two vectors,
the momentum transfer q and the average momentum K,
leading to three variables: the magnitude of the momentum
transfer, |q|, the magnitude of the average momentum, |K|,
and the angle in between them θqK. The two vectors form
the scattering plane from which the unit vector n̂ = K×q

|K×q| is
defined. The NA frame and the NN frame have each their
own scattering plane with the angle between scattering planes
being defined as β. This geometry is shown in Fig. 13.

Without loss of generality we can choose the vector q to
be parallel to the z axis. We also note that q is invariant
under frame transformations. Furthermore, we can choose the
location of a specific scattering plane in the x-z plane. Our
choice here is the scattering plane in the A frame, which in
turn forces the n̂ unit vector in the A frame to be along the
negative y axis.

The explicit definitions of the momentum transfer and
average momentum in the A frame are repeated here for
convenience:

q = p′ − p,

K = 1

2
(p′ + p), (B1)

n̂ = p × p′

|p × p′| = K × q
|K × q| ,

where p (p′) are the the initial (final) momentum of the
nucleon within the nucleus. The functional form of the cor-
responding vector in the other frame is the same.

The relations between coordinates of the NA frame and
those of the A are

qNA = A

A − 1
(p′ − p),

KNA = A

A + 1

[
(k′ + k) + 1

2
(p′ + p)

]
, (B2)

FIG. 13. The geometry of the scattering planes of the A frame
and the NN frame. The vectors shown are the momentum transfer q,
the average momentum in the A frame K, the average momentum
in the NN frame KNN , the normal vector n̂ in the A frame, and
the normal vector n̂NN in the NN frame together with the angle β

between the two.

where k (k′) is the initial (final) momentum of the projectile
in the NA frame.

Lastly, the coordinates used in the NN frame involve the
projectile and struck nucleon,

qNN = (k′
NN − kNN ),

KNN = 1

2
(k′

NN + kNN ) = 1

2

(
A + 1

A
KNA − K

)
, (B3)

n̂NN = kNN × k′
NN

|kNN × k′
NN | = KNN × qNN

|KNN × qNN | ,

where kNN (k′
NN ) is the initial (final) momentum of the pro-

jectile in the NN frame which differs from the momentum
in the NA frame. Using these definitions, the transformations
between frames and the projections of one frame onto another
can be evaluated; see also [29].

From Fig. 13, one recognizes that in order to determine the
angle β, the orientation of each scattering plane in terms of its
azimuthal φ coordinate must be known. Thus, we define

cos(β ) = cos(φNN − φ). (B4)

Since φ is a known quantity being integrated over, only φNN

needs to be determined in order to obtain cos(β ).
The average momentum of the NN frame can be deter-

mined from the average momenta of the A and NA frames
as

KNN = 1

2

(
A + 1

A
KNA − K

)
. (B5)

Using this definition, we can write KNN in terms of its
Cartesian coordinates and thus obtain the angle φNN from the
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individual components,

KNN = 1

2

⎡⎣A + 1

A

⎛⎝KNA sin(θNA)
0

KNA cos(θNA)

⎞⎠ −
⎛⎝K sin(θ ) cos(φ)
K sin(θ ) sin(φ)

K cos(θ )

⎞⎠⎤⎦

= 1

2

⎛⎝A+1
A KNA sin(θNA) − K sin(θ ) cos(φ)

−K sin(θ ) sin(φ)
A+1

A KNA cos(θNA) − K cos(θ )

⎞⎠. (B6)

Using the definition tan(φNN ) = yNN

xNN
we obtain φNN as

φNN = tan−1

(
−K sin(θ ) sin(φ)

A+1
A KNA sin(θNA) − K sin(θ ) cos(φ)

)
. (B7)

As long as the momentum vectors in the NA and A frames
are known, one can calculate φNN . Thus Eq. (B7) defines φNN

which enters Eq. (B4).
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