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Moravcsik’s theorem on complete sets of polarization observables reexamined
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We reexamine Moravcsik’s theorem on the unique extraction of amplitudes from polarization observables,
which has been originally published in 1985. The proof is (re-)written in a more formal and detailed way and the
theorem is corrected for the special case of an odd number of amplitudes (this case was treated incorrectly
in the original publication). Moravcsik’s theorem, in the modified form, can be applied in principle to the
extraction of an arbitrary number of N helicity amplitudes. The uniqueness theorem is then applied to hadronic
reactions involving particles with spin. The most basic example is pion-nucleon scattering (N = 2), the first
nontrivial example is pseudoscalar meson photoproduction (N = 4), and the most technically involved case
treated here is given by pseudoscalar meson electroproduction (N = 6). The application of Moravcsik’s theorem
to electroproduction yields new results, which for the first time provide insights into the structure and content of
complete sets for this particular process. The uniqueness statements for the various reactions are compared and
an attempt is made to recognize general patterns, which emerge under the application of the theorem.
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I. INTRODUCTION

In the field of hadron spectroscopy, reactions among par-
ticles with spin have long been used as tools to improve our
understanding of QCD. In the case of baryon spectroscopy in
particular [1,2] most experimental activities have taken place
at photon facilities all over the world like the CBELSA/TAPS
experiment at Bonn [3–6], A2 at MAMI (Mainz) [7–16],
CLAS at JLab (Newport News) [17–23], and LEPS at SPring-
8 (Hyōgo Prefecture) [24] in recent years. With these ex-
periments, reactions containing one or multiple pseudoscalar
mesons, as well as vector mesons, in the final state have been
extracted. Recently, an increasing data set for the reaction of
pseudoscalar meson electroproduction has become available
[25,26] and also the new CLAS12 experiment has started
taking data using an electron beam [27]. Furthermore, it has
to be mentioned that the GlueX Collaboration has published
new data on π0, η, and η′ photoproduction recently [28–30].

A generic problem concerning reactions with spin is the
extraction of N so-called spin-amplitudes, which provide a
model-independent parametrization of the T matrix of the
reaction from a set of N2 polarization observables. In the
context of such amplitude-extraction problems, it is natural to
search for complete experiments [31], which denote minimal
subsets of the full set of N2 observables that allow for an
unambiguous extraction of the N amplitudes except for one
unknown overall phase.

Following significant insights into discrete amplitude am-
biguities established by Keaton and Workman [32,33], Chiang
and Tabakin [34] found that in the case of pseudoscalar
meson photoproduction (N = 4), a set of eight carefully
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selected observables can yield a complete experiment. While
a complete proof has been lacking in the original publication
[34], Nakayama [35] has recently given a rigorous algebraic
treatment of all the relevant cases. His phase-fixing procedure
utilizes the regularities in the definitions of the observables
to a maximal extent. All the mathematical treatments of
complete experiments mentioned to this point assume the
academic case of vanishing measurement uncertainty for the
observables. As soon as observables have finite uncertainties,
it is likely that more polarization observables are needed for a
unique amplitude extraction. This fact has been substantiated
in a number of recent works [36–39].

For an arbitrary number of amplitudes N , the results of
Keaton and Workman [32,33] and of Chiang and Tabakin
[34] generalize as follows (cf. in particular footnote 1 in the
Ref. [33]): It is well known that the N amplitudes can only
be determined up to an unknown overall phase. In order to
achieve this, one needs at least 2N − 1 observables. However,
with 2N − 1 observables, there generally still remain so-
called discrete ambiguities [32,34], the resolution of which
requires at least one additional observable. In this way, one
arrives at a minimum number of 2N observables. Additionally,
one has to bear in mind that the 2N observables are required
to be known at each individual point in the kinematical phase
space of the considered reaction. For a 2 → 2-process, this
means at each point in energy and angle [35,40,41]. Since the
amplitude extraction also takes place at each point in phase
space individually, the unknown overall phase can in principle
have an arbitrary dependence on the full reaction kinematics.

While it is possible to find even more compelling heuristic
arguments [42] that the number 2N is indeed true for arbitrary
N , a fully rigorous proof is, as far as we know at the moment,
lacking. Actually, the theorem treated in this work can be
understood as another nod in the direction that 2N may indeed
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be the universally correct number. Nonetheless, this number
has turned out to be true for all the specific reactions we found
treated in the literature so far [32,34,35,43–45].

In 1985, M. J. Moravcsik published a paper with a solution
to the amplitude-extraction problem for an arbitrary number
of amplitudes N [46]. However, instead of starting from the
polarization observables mentioned above, he directly consid-
ered just the bilinear products b∗

i b j of amplitudes. Generally,
polarization observables are invertible linear combinations of
such bilinear products. Although the paper did not receive
much attention at first, we feel that it deserves an explicit re-
consideration, due to a number of features that make Moravc-
sik’s theorem attractive. First, the theorem is formulated in
the language of a “geometrical analog” [46], which leads
to a lucid representation of complete sets in the form of
graphs. Second, the theorem is valid for arbitrary N and can
thus be used as a master approach for the (pre-)selection of
complete sets of observables for, in principle, any reaction.
It is even possible to extract a standard procedure for this
purpose, which can be automated on a computer. To be fair,
Nakayamas phase-fixing procedure [35] can also be used for
any number of amplitudes N . However, for larger N (i.e.,
N > 4), it involves a rapidly growing number of different
cases, which all need a single algebraic treatment. In con-
trast, the application of Moravcsik’s theorem is in principle
only limited by computation time. This makes it particularly
useful for reactions with complicated spin structures like
[43,45,47,48].

The paper is organized as follows: In Sec. II, we describe
the algebraic initial situation for an arbitrary number of am-
plitudes N . Moravcsik’s theorem and its modified form are
stated in Sec. III. A proof of the modified theorem is included
as well, in the Appendix A. Section IV collects applications
of the theorem to the simplest possible cases, which range
from pion-nucleon scattering (N = 2) to pseudoscalar meson
photoproduction (N = 4). With the experience gained in the
treatement of the most basic examples, it becomes clear how
the theorem can be used in order to find complete sets of
observables for the more complicated cases with higher N
in a fully automated procedure. This procedure is outlined in
Sec. V. Then, as a first example for such a more complicated
case, the reaction of pseudoscalar meson electroproduction
(N = 6) is treated in Sec. VI. The application of the modified
form of Moravcsik’s theorem to electroproduction in partic-
ular yields interesting new findings concerning the structure
of the corresponding complete sets. We summarize the appli-
cations to the cases of different N and attempt to recognize
general patterns in Sec. VII.

II. ALGEBRAIC STARTING POINT

Usually, one considers subsets of polarization asymmetries
Oα defined by

Oα = cα

N∑
i, j=1

b∗
i �̃

α
i jb j, for α = 1, . . . , N2. (1)

Here cα are conventional prefactors1 and the �̃α are a com-
plete basis system of orthogonal matrices:

Tr[�̃α�̃β] = Ñδαβ, (2)

with the usual Kronecker symbol δαβ . The normalization
factor Ñ can be equal to the number of amplitudes N , as
is the case for pion-nucleon scattering (Sec. IV A) or for
photoproduction (Sec. IV C), as well as different from it (cf.
electroproduction, Sec. VI). Without loss of generality, we
can assume the N complex amplitudes bi to be transversity
amplitudes.

Moravcsik started at a point which is a bit different, i.e.,
he directly considered subsets of the bilinear products (called
“bicoms” in Ref. [46]) of amplitudes,

b∗
jbi, for i, j = 1, . . . , N. (3)

We remark that due to the bilinear nature of the sets of
quantities (1) and (3), the amplitudes generally can only be
determined up to one unknown overall phase [34,35], which
can depend on all kinematic variables of the problem. This
means that the full information, which can be extracted, lies
in the moduli and relative phases of the N amplitudes.

An important initial assumption by Moravcsik is that all
the N moduli,

|b1|, |b2|, . . . , |bN |, (4)

have already been determined from a suitable subset com-
posed of N observables.2 This is a standard assumption for the
algebraic analysis of complete experiments (cf. Refs. [34,35])
and therefore we shall also adopt it in this work.

A generic bilinear product is a complex number and thus
can be decomposed into real and imaginary parts: b∗

jbi =
Re[b∗

jbi] + i Im[b∗
jbi]. On introducing polar coordinates (i.e.,

modulus and phase) for each amplitude, the real parts of the
bilinear products become

Re[b∗
jbi] = |bi||b j | cos φi j . (5)

The real parts thus fix their corresponding relative phase
φi j := φi − φ j up to the discrete ambiguity [35],

φi j −→ φ±
i j =

{+αi j,

−αi j,
, (6)

with αi j defined uniquely by the quantity Re[b∗
jbi] and on the

interval αi j ∈ [0, π ]. In the following, we refer to a discrete
ambiguity of the form (6) as a “cosine-type” ambiguity.

Similarly, the imaginary part is written as

Im[b∗
jbi] = |bi||b j | sin φi j, (7)

1For processes like pion-nucleon scattering or pseudoscalar me-
son photoproduction, the factors cα are equal for all observables.
However, for the example of pseudoscalar meson electroproduction,
observable-dependent prefactors need to be introduced in order to
make the �̃ matrices satisfy the correct orthogonality relation (cf.
Sec. IV).

2For transversity amplitudes bi, one can assume without loss of
generality that such a subset can indeed always be found.
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and it fixes the corresponding relative phase φi j up to the
discrete phase ambiguity [35],

φi j −→ φ±
i j =

{+αi j,

π − αi j,
(8)

where αi j is defined uniquely by the quantity Im[b∗
jbi] and

on the interval αi j ∈ [−π/2, π/2]. Accordingly, we refer to a
discrete ambiguity of the form (8) as a “sine-type” ambiguity.

Before elaborating on Moravcsik’s result, we outline a
simple technique on how to invert the definition (1) for the
bilinear products. Using the completeness relation for the �̃

matrices, one arrives at the following expression [34,40,41]:

b∗
i b j = 1

Ñ

N2∑
α=1

(
�̃α

i j

)∗(Oα

cα

)
. (9)

Thus, the bilinear products have been extracted from a specific
subset of observables, which follows from the algebra {�̃α}.
Since all bilinear products are now known, so are the moduli
|bi| = √

b∗
i bi. Furthermore, the relative phases φi j are also

known uniquely, since for each such phase, Eq. (9) implies
both cos φi j and sin φi j .3

Therefore, the amplitude arrangement in the complex plane
is fixed uniquely, whatever observables appear on the right-
hand side of (9) for a specific (at best minimal) choice of
bilinear products b∗

i b j . Such a choice of bilinear products
implies a combination of nph. relative phases φi j . For the
unique extraction of the amplitudes using the direct-inversion
technique (9), we thus need 2nph. real trigonometric functions,
i.e., both cosine and sine for each relative phase.

Moravcsik’s theorem, stated in the next section, is basi-
cally a technique on how to obtain unique solutions using
minimally only nph. instead of 2nph. trigonometric functions.
Halving of the real degrees of freedom required will then
naturally also lead to a reduction of the number of necessary
observables.

III. MORAVCSIK’S THEOREM

First, Moravcsik’s theorem shall be cited in its original
formulation, from page 2 of Ref. [46]. The whole theorem
written in the following is a verbatim citation.

Theorem 1 (Original theorem by Moravcsik): The criterion
and its proof will be described in the language of a geometrical
analog, similar to the one used in a previous paper4 discussing
the determination of amplitudes. Let us denote each amplitude
by a point, and each bilinear amplitude product by a line
connecting the points that correspond to the amplitudes that
appear in the product. The line is solid if we have Re[b∗

jbi],
and broken (dashed) for Im[b∗

jbi].
For even just a complete (and not fully complete) deter-

mination of the amplitudes, the set of lines in our diagram
corresponding to a complete set of bilinear combinations

3The complex exponential exp φ jk = cos φ jk + i sin φ jk is uniquely
invertible on the interval φ jk ∈ [0, 2π ). Compare this to the cosine-
and sine-type ambiguities given in Eqs. (6) and (8).

4Here Moravcsik cites Ref. [49].

of amplitudes (“bilinear products”) must touch each ampli-
tude point and must form a connected network. To be fully
complete,5 the network must also satisfy the following two
criteria:

(A) Each amplitude must be included in a closed loop.
(B) At least one closed loop belonging to each amplitude

point must have an odd number of broken lines and an
odd number of solid lines in it.

This ends the verbatim citation of Moravcsik’s theorem.
In this work, we start with a slightly modified requirement,
which represents a special case of the networks considered in
Moravcsik’s theorem and then formulate and prove a modified
version of the theorem.

Theorem 2 (Modified version of Moravcsik’s result): We
consider the situation which Moravcsik calls the “most eco-
nomical” [46] version of a complete set in the geometrical
analog, i.e., a large open chain which contains all amplitude
points and consists of N − 1 lines for a problem with N
amplitudes.

Then, we want to turn this open chain into a fully complete
set by adding one additional connecting line which turns it
into a closed loop of N lines and which has to contain all
amplitude points exactly once. Furthermore, in such a closed
loop every amplitude point is touched by exactly two link lines
(or edges).

Such a closed loop corresponds to a unique solution,
without discrete ambiguities, if it fulfills the following crite-
rion, which is a bit different and seemingly simpler than in
Moravcsik’s case:

(B′) The closed loop has to contain an odd number of
dashed lines nd � 1.

In particular, contrary to criterium (B) of Moravc-
sik, the closed loop has to contain no solid lines at
all, i.e., in case of an odd number of links N , the
closed loop with nd = N is still a fully complete set.
Furthermore, it is completely irrelevant which of the
bilinear products are represented by the dashed lines,
as long as the overall number nd is odd.

In order to illustrate the somewhat abstract requirements
formulated in the theorem, we show three examples for fully
complete closed loops for the reaction of pseudoscalar meson
photoproduction, i.e., N = 4 amplitudes, in Fig. 1. A much
more detailed discussion of this process, as well as others, can
be found in Sec. IV.

A detailed proof of Theorem 2 can be written, using the
knowledge on the discrete ambiguity transformations (6) and
(8) mentioned in Sec. II. Due to its length, the proof has
been relegated to Appendix A. Within the proof, heavy use
is made of consistency relations for the relative phases (cf.
Refs. [34,35]) corresponding to the different bilinear prod-
ucts. The proof is in principle the same as in Moravcsik’s

5Moravcsik distinguishes among fully complete networks, which
are those that yield a unique solution, and complete ones, which still
allow for discrete phase ambiguities but do not allow for continuous
ambiguities.
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FIG. 1. The diagrams show three closed loops which satisfy the criteria posed in order to obtain a unique solution, according to Theorem
2. The exemplary case of pseudoscalar meson photoproduction, i.e., N = 4, was chosen. Green dashed lines represent the imaginary part of a
bilinear product, while the real part is shown as a blue solid line. For more details, see Sec. IV.

paper [46]. However, we make an attempt at proving some
crucial intermediate steps in a more formal way. Furthermore,
the above-mentioned special case of nd = N (for N odd) is
discussed as well. At the end of the proof, we elaborate a
bit more on singular special cases which can theoretically
endanger the validity of the theorem. Such special cases occur
on sets of measure zero in the parameter space composed
of the relative phases. Therefore, at least in a treatment of
complete experiments that assumes the case of vanishing
measurement uncertainty, these special cases can probably
be ignored (Moravcsik gives similar comments on page 2 of
his original work [46]). We remark that Nakayama finds very
similar special conditions for the relative phases in his work
on pseudoscalar meson photoproduction [35].

For the minimal possible case of a closed loop with all
amplitudes appearing exactly once, we have exactly N relative
phases,

φ1i, φi j, φ jr, . . . , φpq, φq1.︸ ︷︷ ︸
exactly N links, or relative phases

(10)

Using binomial coefficients, the possible number of fully
complete combinations according to Theorem 2 can be simply
counted. In case the total number of amplitudes N is odd, the
fully complete combinations amount to

Ncomb. =
(N−1)/2∑

k=0

(
N

2k + 1

)
, (11)

while for N even the correct expression is

Ncomb. =
(N−2)/2∑

k=0

(
N

2k + 1

)
. (12)

These expressions are evaluated for the first few cases of N =
2, . . . , 8 in Table I.

TABLE I. The number of possible complete combinations for a
minimal closed loop (10) is evaluated for N = 2 to 8.

N 2 3 4 5 6 7 8

Ncomb. 2 4 8 16 32 64 128

It is seen that, generally, the number of fully complete
combinations in the minimal closed loop (10) scales with N
as:

Ncomb. = 2(N−1). (13)

Generally, Moravcsik’s theorem in this slightly modified form
always requires 2N real quantities from the bilinear products
(3), i.e., N moduli (4) plus N real or imaginary parts, in order
to uniquely solve for the amplitudes. This already seems to
imply that 2N is also the absolute minimal number of required
quantities from the observables basis (1), which has been
mentioned as an empirical fact in the Introduction. The only
question that remains is whether the quantities b∗

jbi map in a
simple one-to-one way to the observables Oα .

In order to address this last point, among others, we discuss
examples for particular reactions in the next section.

IV. BASIC EXAMPLES

We continue with the consideration of the minimal closed
loops with exactly N links, which have been introduced in the
previous section [see Eq. (10)]. The examples of N = 2, 3,
and 4 transversity amplitudes are treated in this section.

For all these examples, we have to find the full number
of possible topologies for the closed loops, with N points
connected via N links and exactly 2 links connected to each
point. For N = 2, 3, and 4, this task can be completed by hand,
while for all higher N it becomes increasingly cumbersome
(see the results for electroproduction, i.e., N = 6, in Figs. 9 to
11 of Sec. VI).

Therefore, a Mathematica code [50] has been developed
for this work, which can complete this task automatically for
in principle arbitrary numbers6 N .

A. N = 2 (pion-nucleon scattering)

The reaction of pion-nucleon (πN) scattering is de-
scribed model independently by two amplitudes, which are

6Computing times of course set a limit on the numbers N which
can be treated numerically. Within acceptable times, we can obtain
results for a maximal number of N = 8 amplitudes. Above that,
computing times rise exponentially.
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TABLE II. The definitions of the four observables in πN scat-
tering are collected here (cf. Refs. [44,51]). The definition of each
observable as a bilinear form in terms of extended Pauli matrices is
indicated and the observables have been subdivided into two different
classes, which correspond to the shapes of the defining matrices. The
algebra of the matrices is given in Appendix B.

Observable Bil.-form Shape-cl.

O1 = |b1|2 + |b2|2 = σ0 〈b|σ̂ 1|b〉
O4 = |b1|2 − |b2|2 = P̌ 〈b|σ̂ 4|b〉 D
Oa

1 = −2|b1||b2| sin φ12 = −2Im[b∗
2b1] = −Ř 〈b|σ̂ 2|b〉

Oa
2 = 2|b1||b2| cos φ12 = 2Re[b∗

2b1] = Ǎ 〈b|σ̂ 3|b〉 a = AD

accompanied by four observables [44,51–54]. Following the
pioneering work by Hoehler and his group [51], highly signif-
icant contributions to the analysis of πN scattering have been
published by R. A. Arndt and collaborators [52–54]. The latter
contributions have culminated in the GWU/SAID partial-
wave analysis, the results of which are publicly accessible
[55].

All observables can be defined in terms of (extended)
Pauli matrices σ̂ α , as written in Table II. The corresponding
matrices are listed in Appendix B. The observables have
the generic form (1) with cα = 1 for all α and the defining
matrices satisfy the orthogonality relation (2) with Ñ = 2. For
the sake of clarity, it is very useful to divide the matrices into
different classes according to their shape (as it has been done
in Ref. [34] for the case of photoproduction). Here we have
two matrices in a diagonal shape class (D) and two matrices
of antidiagonal shape (AD).

For the considered case of N = 2, there exists only one
possible topology to form a minimal closed loop with this
particular number of points, which is shown in Fig. 2. This
single topology is the starting point in order to derive all the
fully complete loops.

All the closed loops which represent fully complete sets,
according to Theorem 2, are shown in Fig. 3. All the re-
maining closed loops, which correspond to combinations that
still leave some discrete phase ambiguities unresolved, are
collected in Fig. 4.

Looking at the possibilities of fully complete combinations
in Fig. 3, it is seen that, assuming the moduli |b1| were known,

FIG. 2. The diagram shows the only possible topology that exists
for a closed loop formed from two points. As stated in Sec. III,
each point refers to one of the two amplitudes. A solid black
line connecting two points represents in this case either a real or
imaginary part of a particular bilinear product. This topology can
then be used to derive the fully complete sets of observables for
pion-nucleon scattering, using Theorem 2 from Sec. III.

FIG. 3. For N = 2 transversity amplitudes (πN scattering), the
closed loops which yield unique solutions, i.e., the fully complete
loops are shown here. Each point refers to one of the two amplitudes.
A solid blue line connecting two points represents the real part of
a particular bilinear product and a dashed green line represents the
imaginary part of the respective bilinear product. The direction of a
line connecting two points is irrelevant. For instance, a dashed green
line connecting points 1 and 2 can be tantamount to Im[b1b∗

2], i.e.,
sin φ12, or to Im[b2b∗

1], i.e., sin φ21 = − sin φ12, respectively. Thus,
the sequence of indices in a bilinear product leads (in the case of
dashed lines) only to a difference in sign, which is not important for
the discussion of discrete ambiguities.

these combinations would be equivalent to

(cos φ12, sin φ21), or (sin φ12, cos φ21). (14)

Comparing with Table II, we see indeed that the theorem re-
produces the well-known statement which says that for pion-
nucleon scattering, one needs all four observables in order to
obtain a complete set (cf. the introduction of Ref. [44]).

It is clear that for a single relative phase φ12, both sine
and cosine are needed to uniquely fix φ12 ∈ [0, 2π ). For
illustrative purposes, we look at the πN-problem again but
in the language of the modified form of Moravcsik’s theo-
rem. The following derivation is the simplest possible spe-
cial case of the general theorem proven in Appendix A.
The consistency relation for πN scattering looks simple. It
reads:

φ12 + φ21 = 0. (15)

Now take, for instance, the fully complete combination
from example 1.2 in Fig. 3, i.e., (sin φ12, cos φ21). We write
down all the possible cases for the consistency relation (15)
for this set, i.e., [cf. Eqs. (6) and (8)]:

α12 + α21 = 0, (16)

α12 − α21 = 0, (17)

π − α12 + α21 = 0, (18)

π − α12 − α21 = 0. (19)

It is seen that indeed all of these equations are linearly inde-
pendent (cf. Appendix A) and thus all discrete phase ambi-
guities are resolved. We look next at the example number 1.4
from Fig. 4, which is not fully complete, i.e., (sin φ12, sin φ21).

FIG. 4. All the closed loops which still leave discrete phase
ambiguities unresolved are collected here for N = 2 transversity
amplitudes (πN scattering).
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TABLE III. The definitions of observables in the example with
N = 3 amplitudes are collected here. The matrices defining the
bilinear forms are given in Appendix B.

Observable Bilinear form Shape class

O1 = 1
2 (
√

2
3 |b1|2 +

√
2
3 |b2|2 +

√
2
3 |b3|2) 1

2 〈b|λ̃1|b〉
O4 = 1

2 (|b1|2 − |b2|2) 1
2 〈b|λ̃4|b〉 D

O9 = 1
2 ( |b1|2√

3
+ |b2 |2√

3
− 2|b3|2√

3
) 1

2 〈b|λ̃9|b〉
Oa

1 = |b1||b3| sin φ13 = Im[b∗
3b1] 1

2 〈b|λ̃6|b〉
Oa

2 = |b1||b3| cos φ13 = Re[b∗
3b1] 1

2 〈b|λ̃5|b〉 a = AD

Ob
1 = |b2||b3| sin φ23 = Im[b∗

3b2] 1
2 〈b|λ̃8|b〉

Ob
2 = |b2||b3| cos φ23 = Re[b∗

3b2] 1
2 〈b|λ̃7|b〉 b = P1

Oc
1 = |b1||b2| sin φ12 = Im[b∗

2b1] 1
2 〈b|λ̃3|b〉

Oc
2 = |b1||b2| cos φ12 = Re[b∗

2b1] 1
2 〈b|λ̃2|b〉 c = P2

The cases for the consistency relation (15) read

α12 + α21 = 0, (20)

α12 + π − α21 = 0, (21)

π − α12 + α21 = 0, (22)

π − α12 + π − α21 = −α12 − α21 = 0. (23)

In this case, Eqs. (20) and (23), as well as Eqs. (21) and (22),
form linearly dependent pairs. Therefore, there still remain
unresolved discrete phase ambiguities.

In summary, all 2N = 4 observables are required for com-
pleteness in pion-nucleon scattering, which thus exhaust all
the available shape classes.

B. N = 3 (mathematical example, constructed using
the Gell-Mann matrices)

We consider an example with N = 3 transversity ampli-
tudes, which does not seem to have a physical analog7 but can
still be studied for purely academic purposes. In order to ob-
tain a mathematical example with three amplitudes, it makes
sense to define the observables via the Gell-Mann matrices
λ̃α , extended with the identity (for a listing of the Gell-Mann
matrices, see, for instance, Ref. [56]). The definitions of the
full set of nine resulting observables are written in Table III.
The defining matrices are collected in Appendix B.

All observables have the generic form (1) with cα = 1/2
and the extended Gell-Mann matrices, in the normalization
chosen here, satisfy Eq. (2) with Ñ = 2. The shape classes

7In the literature consulted for this work, we did not find a physical
example for a process described by N = 3 amplitudes. The simplest
example for an odd number of amplitudes, at least as far as we
know right now, is nucleon-nucleon (NN) elastic scattering with
N = 5 (see Ref. [57]). The group of F. Lehar at Saclay collected
10 observables for NN elastic scattering, i.e., for the processes of
pp [58] and np scattering [59]. The direct reconstruction analysis
yielded several solutions (up to 4) and χ 2 criteria did not allow to
distinguish a unique solution. More details are given in Ref. [60].

FIG. 5. The only possibility that exists for a closed loop formed
from three points is shown here. This topology can then be used to
derive the fully complete sets of observables for the example with
N = 3 amplitudes, using Theorem 2 from Sec. III.

consist of one class with three diagonal observables (D), as
well as three nondiagonal shape classes with two observables
each. The nondiagonal observables are divided into one class
of antidiagonal shape (AD) and two classes of matrices with
parallelogram-shape (P1 and P2).

For N = 3, as well as for the case of N = 2, there exists
only one possible start topology usable to form minimal
closed loops, which is shown in Fig. 5. The closed circular
loops corresponding, according to Theorem 2, to fully com-
plete sets are shown in Fig. 6. Since N is odd in this case, we
also have a fully complete combination which is composed

FIG. 6. For the example with N = 3 transversity amplitudes, the
closed loops which yield unique solutions, i.e., the fully complete
loops, are shown here.
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TABLE IV. The definitions of the 16 polarization observables in pseudoscalar meson photoproduction (cf. Ref. [34]) are collected here.
The definitions and sign conventions for the observables are consistent with the Ph.D. thesis [41]. The matrices defining the bilinear forms
have been collected in Appendix B.

Observable Bilinear form Shape class

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) 1

2 〈b|�̃1|b〉
−�̌ = 1

2 (|b1|2 + |b2|2 − |b3|2 − |b4|2) 1
2 〈b|�̃4|b〉 S = D

−Ť = 1
2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2) 1

2 〈b|�̃10|b〉
P̌ = 1

2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2) 1
2 〈b|�̃12|b〉

Oa
1+ = |b1||b3| sin φ13 + |b2||b4| sin φ24 = Im[b∗

3b1 + b∗
4b2] = −Ǧ 1

2 〈b|�̃3|b〉
Oa

1− = |b1||b3| sin φ13 − |b2||b4| sin φ24 = Im[b∗
3b1 − b∗

4b2] = F̌ 1
2 〈b|�̃11|b〉 a = BT = PR

Oa
2+ = |b1||b3| cos φ13 + |b2||b4| cos φ24 = Re[b∗

3b1 + b∗
4b2] = −Ě 1

2 〈b|�̃9|b〉
Oa

2− = |b1||b3| cos φ13 − |b2||b4| cos φ24 = Re[b∗
3b1 − b∗

4b2] = Ȟ 1
2 〈b|�̃5|b〉

Ob
1+ = |b1||b4| sin φ14 + |b2||b3| sin φ23 = Im[b∗

4b1 + b∗
3b2] = Ǒz′ 1

2 〈b|�̃7|b〉
Ob

1− = |b1||b4| sin φ14 − |b2||b3| sin φ23 = Im[b∗
4b1 − b∗

3b2] = −Čx′ 1
2 〈b|�̃16|b〉 b = BR = AD

Ob
2+ = |b1||b4| cos φ14 + |b2||b3| cos φ23 = Re[b∗

4b1 + b∗
3b2] = −Čz′ 1

2 〈b|�̃2|b〉
Ob

2− = |b1||b4| cos φ14 − |b2||b3| cos φ23 = Re[b∗
4b1 − b∗

3b2] = −Ǒx′ 1
2 〈b|�̃14|b〉

Oc
1+ = |b1||b2| sin φ12 + |b3||b4| sin φ34 = Im[b∗

2b1 + b∗
4b3] = −Ľx′ 1

2 〈b|�̃8|b〉
Oc

1− = |b1||b2| sin φ12 − |b3||b4| sin φ34 = Im[b∗
2b1 − b∗

4b3] = −Ťz′ 1
2 〈b|�̃13|b〉 c = T R = PL

Oc
2+ = |b1||b2| cos φ12 + |b3||b4| cos φ34 = Re[b∗

2b1 + b∗
4b3] = −Ľz′ 1

2 〈b|�̃15|b〉
Oc

2− = |b1||b2| cos φ12 − |b3||b4| cos φ34 = Re[b∗
2b1 − b∗

4b3] = Ťx′ 1
2 〈b|�̃6|b〉

of dashed lines exclusively (cf. the special case remarked in
the proof in Appendix A). The loops which are not yet fully
complete, i.e., which have an even number of dashed lines
and thus leave unresolved discrete ambiguities, are not shown
explicitly.

We remark that the standard assumption has been made
that the moduli |bi| are already known or, equivalently, that the
three observables (O1,O4,O9) have already been measured.
Then, comparing to the definitions in Table III, it is seen that
the fully complete sets correspond in each case to the three
quantities from shape class D plus one of the following four
possible sets of observables,(

Oa
2,Ob

2,Oc
1

)
,
(
Oa

2,Ob
1,Oc

2

)
,
(
Oa

1,Ob
2,Oc

2

)
,

and
(
Oa

1,Ob
1,Oc

1

)
. (24)

The completeness of these sets follows from the fundamental
consistency relation (cf. the discussion in Sec. IV A and the
general proof in Appendix A),

φ12 + φ23 + φ31 = 0. (25)

We see that 2N = 6 observables can yield a unique solution
for the amplitudes. Therefore, a reduction from the full set
of nine observables has occurred. Again, as was the case for
N = 2, the complete sets have to be selected from all four
available shape classes. The completeness of the sets (24) has
been verified numerically.

C. N = 4 (pseudoscalar meson photoproduction)

In case of pseudoscalar meson photoprodcution, one has
four amplitudes and 16 polarization observables [34,35]. The

latter are defined using the 4 × 4 Dirac matrices �̃α , as written
in Table IV. The Dirac matrices are listed in Appendix B
(Ref. [34] originally pointed out the importance of these
matrices in this particular context).

The observables have the generic form (1) with cα = 1/2
and the Dirac matrices satisfy orthogonality (2) with Ñ =
4. There exist four shape classes of diagonal (D), right-
parallelogram (PR), antidiagonal (AD) and left-parallelogram
(PL) type (cf. Ref. [34]). Every shape class contains four
observables. The diagonal shape class D contains the unpolar-
ized differential cross section and the three single-spin observ-
ables. Each of the three nondiagonal shape classes matches
exactly to one of the three groups of beam-target (BT ), beam-
recoil (BR), and target-recoil (T R) experiments, as indicated
in Table IV. For the observables in the nondiagonal shape
classes, we use the intuitive systematic notation introduced by
Nakayama [35].

For N = 4, there exists a novelty compared to both cases
treated previously. Now there exist three possible topologies
for the minimal closed loops formed from N = 4 points,
which are all shown in Fig. 7. Each of these topologies can
now be used as a starting point to derive fully complete closed
loops.

All the fully complete combinations of real and imaginary
parts of bilinear products can again be found using Theorem
2. For instance, for the closed loops stemming from topology
2 of Fig. 7, all the fully complete combinations are shown in
Fig. 8. We again refrain from showing all the remaining closed
loops, which still leave unresolved discrete phase ambiguities,
explicitly. Examples for fully complete closed loops that do
not derive from the circular type topology 2 can be seen in
Fig. 1 of Sec. III.

034605-7



WUNDERLICH, KROENERT, AFZAL, AND THIEL PHYSICAL REVIEW C 102, 034605 (2020)

FIG. 7. The diagrams show the three distinct possible topologies that exist for closed loops formed using N = 4 points. Each topology can
then be used as a starting point to derive fully complete sets for pseudoscalar meson photoproduction, according to Theorem 2 from Sec. III.

It is worth spending more time and effort on the elaboration
of the differences between the case of photoproduction, i.e.,
N = 4, and the cases of N = 2 and 3, which have been
discussed above.

When considering the definitions collected in Table IV, it
becomes clear that in the case of N = 4, there does not exist a
direct connection between observables and real and imaginary
parts of bilinear products any more. Rather, any nondiagonal
observable On

ν± (for n = a, b, c) mixes two such real and/or
imaginary parts.

The physical reason for this behavior is not fully clear right
now. Mathematically, it is simply true due to the defining
properties of the Dirac �̃ matrices as opposed to Pauli- or
Gell-Mann matrices in the cases treated before.

Thus, the actual observables O in photoproduction do
not isolate real and imaginary parts of bilinear products any
more. To accomplish this task, one has to define modified
observables Õ, according to:8

Õn
1± := 1

2

(
On

1+ ± On
1−
)
, n = a, b, c, (26)

Õn
2± := 1

2

(
On

2+ ± On
2−
)
, n = a, b, c. (27)

Comparing to Table IV, it is seen quickly that indeed each Õ
is exactly equal to the real or imaginary part of a particular
bilinear product. However, the necessity to change observ-
ables as defined in Eqs. (26) and (27) leads to the fact that the
complete sets according to Moravcsik’s theorem do not map
to the complete sets according to Chiang-Tabakin [34,35] in a
simple way any more.

As an example, we consider the fully complete loop from
case 2.1 shown in Fig. 8. According to the rules established
before, this case corresponds to the following set of real and
imaginary parts:

Im[b1b∗
2], Re[b2b∗

3], Re[b3b∗
4], Re[b4b∗

1]. (28)

8This definition does not include the diagonal observables.

This combination is equivalent to the following set of modi-
fied observables Õ:

|b1||b2| sin φ12 ≡ Õc
1+ = 1

2

(
Oc

1+ + Oc
1−
)
, (29)

|b2||b3| cos φ23 ≡ Õb
2− = 1

2

(
Ob

2+ − Ob
2−
)
, (30)

|b3||b4| cos φ34 ≡ Õc
2− = 1

2

(
Oc

2+ − Oc
2−
)
, (31)

|b1||b4| cos φ14 ≡ Õb
2+ = 1

2

(
Ob

2+ + Ob
2−
)
, (32)

where, for comparison, we also write down the corresponding
definitions in terms of actual observables O. Finally, since we
assume the moduli |bi| as already known, our example for a
fully complete closed loop is equivalent to the following set
of sines and cosines:

sin φ12, cos φ23, cos φ34, cos φ14. (33)

One can check quickly that this set is complete according to
Theorem 2 by writing down all the possible discrete phase
ambiguities and enumerating all the cases for the fundamental
consistency relation,

φ12 + φ23 + φ34 + φ41 = 0. (34)

In this way, a set of linearly independent relations will emerge,
as shown in the proof of Theorem 2 (cf. Appendix A).

However, the mismatch to the results of Chiang-Tabakin
becomes apparent, since in order to evaluate the four modified
observables {

Õb
2+, Õb

2−, Õc
1+, Õc

2−
}
, (35)

one needs the following set of six actual observables:{
Ob

2+,Ob
2−,Oc

1+,Oc
1−,Oc

2+,Oc
2−
}
. (36)

Combined with the four group S observables, which have
to be used in order to fix the 4 moduli, it is seen that the
set (36) coming from the modified version of Moravcsik’s
theorem actually amounts to a total of 10 observables and
not 8 as in the case of Chiang-Tabakin [34,35]. This seems to
be generally the case for photoproduction: The minimal fully
complete closed loops according to Moravcsik lead to sets of
polarization observables which are slightly overcomplete (by
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FIG. 8. For the example with N = 4 transversity amplitudes (photoproduction), the closed circular loops which yield unique solutions,
i.e., those coming from topology 2 in Fig. 7, are shown here. These are all the closed loops with an odd number of dashed green lines (i.e.,
imaginary parts).

2 observables, to be exact). Due to this mismatch of results, we
will in the following distinguish “Moravcsik-complete” sets,
which may contain more than 2N observables, and “(abso-
lutely) minimal complete sets” with exactly 2N observables.

Every possible topology from Fig. 7 leads to eight possible
fully complete closed loops and each of these loops can
again, using Table IV, be seen to imply a set of observables,
just as for the loop 2.1 discussed above. In this way, we
can derive 24 Moravcsik-complete sets of observables, from
which, however, only 12 turn out to be nonredundant. For
these 12 complete sets, the nondiagonal observables contained
in them are listed in Table V.

It is only reasonable to assume that the complete sets of
observables derived from the fully complete loops according
to Moravcsik contain the complete experiments according to

TABLE V. The 12 distinct possibilities to form complete sets
according to Moravcsik for photoproduction are shown here. In each
case, six observables are listed which have to be picked in addition
to the four single-spin observables {σ0, �, T, P} (cf. Table IV).

Set-Nr. Observables Set-Nr. Observables

1 Oa
2± Oc

1± Oc
2± 7 Ob

1± Oc
1± Oc

2±
2 Oa

1± Oa
2± Oc

2± 8 Ob
1± Ob

2± Oc
1±

3 Oa
1± Oc

1± Oc
2± 9 Oa

1± Oa
2± Ob

2±
4 Oa

1± Oa
2± Oc

1± 10 Oa
2± Ob

1± Ob
2±

5 Ob
2± Oc

1± Oc
2± 11 Oa

1± Oa
2± Ob

1±
6 Ob

1± Ob
2± Oc

2± 12 Oa
1± Ob

1± Ob
2±

Chiang-Tabakin as subsets. In all cases we considered so far,
this was indeed the case.

In case of the six observables (36) from our example,
i.e., loop 2.1 of Fig. 8, a comparison with the results in
Refs. [34,35] shows that they contain the following absolutely
minimally complete subsets:{

Ob
2+,Ob

2−,Oc
1+,Oc

2+
}
, or (37){

Ob
2+,Ob

2−,Oc
1−,Oc

2−
}
. (38)

In case either (37) or (38) were considered, one would always
have a set of two redundant (or superfluous) observables
within the example (36), i.e., either(

Oc
1−,Oc

2−
)

or
(
Oc

1+,Oc
2+
)
. (39)

Then it should always be possible to use the four observ-
ables in the minimal complete set, i.e., sets like (37) or (38),
in order to determine the redundant ones.

As a proof of concept, we want to demonstrate this proce-
dure here for the example set (37). This means we determine
the superfluous observables (Oc

1−,Oc
2−) from the minimal

complete set (37). In the following, we only sketch the deriva-
tion. All further details can be found in Appendix C.

We begin by employing constraints among the four observ-
ables within the group c (similar to the Fierz identities listed
in Ref. [34]). Considering the definitions in Table IV, as well
as the definitions of the modified observables (26) and (27), it
becomes apparent that the following constraints hold:(

Õc
1+
)2 + (

Õc
2+
)2 = |b1|2|b2|2, (40)(

Õc
1−
)2 + (

Õc
2−
)2 = |b3|2|b4|2. (41)
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Using these two quadratic equations, it is possible to derive
expressions for the observables (Oc

1−,Oc
2−) in terms of the

two quantities (Oc
1+,Oc

2+). However, there remains a fourfold
discrete ambiguity in the result. In Appendix C, we denote
the corresponding solutions as (Oc

2−)I,II and (Oc
1−)(±,{I,II}),

with subscripts “I,” “II,” “+,” and “−” that label the four
ambiguities.

These remaining ambiguities cannot be resolved using
observables from group c alone. Instead, one has to find some
way to transfer information from the group b observables,
which are also contained in the complete set (37), to the
group c observables. This task is accomplished using the
following consistency relation, which represents a unique
relation connecting the relative phases from both groups:

φ12 + φ34︸ ︷︷ ︸
c

= φ14 − φ23︸ ︷︷ ︸
b

. (42)

Taking the cosine and sine of both sides of this relation, the
following constraints can be derived among the observables
of group c and the relative phases belonging to group b:

Õc
2+Õc

2− − Õc
1+Õc

1− = |b1||b2||b3||b4| cos (φ14 − φ23), (43)

Õc
1+Õc

2− + Õc
2+Õc

1− = |b1||b2||b3||b4| sin (φ14 − φ23). (44)

As can be seen from the definitions in Table IV, the two
observables from class b in the set (37) are fully equivalent
to the cosines of the respective relative phases. Therefore, we
obtain the following fourfold discrete phase ambiguity for the
phases of the terms on the right-hand sides of (43) and (44):

φ±
14 − φ±

23. (45)

Appendix C contains more details on how the two additional
constraints (43) and (44), together with the phase information
contained in Eq. (45), can be used in order to resolve the
fourfold discrete ambiguity and thus complete the unique
determination of the two quantities (Oc

1−,Oc
2−). We remark

that all the derivations and mathematical statements made here
and in Appendix C have been checked using Mathematica
[50]. Furthermore, the approach is very similar in spirit to
reductions performed in the work by Arenhövel and Fix [45].
However, the details of both procedures are slightly different.

In summary, the modified form of Moravcsik’s theorem
implies complete sets of 10 observables for pseudoscalar
meson photoproduction (see Table V), which represents a
reduction from the full set of 16 observables. We see that these
observables have to be picked from three of the four available
shape classes. Thus, also with respect to shape classes, a
reduction has occurred, other than in the cases of N = 2 and
3. Starting from a Moravcsik-complete set of 10 observables,
it is possible to reduce further down to an absolutely minimal
subset containing 8 observables.

V. USEFULNESS OF MORAVCSIK’S THEOREM
FOR CASES OF HIGHER N

The real strength of Moravcsik’s theorem lies in the fact
that it is formulated for an arbitrary number of amplitudes
N . Thus, it may become really useful as a simple criterion
for the (pre-) selection of slightly overcomplete experiments

for processes which feature even more than four amplitudes.
Examples of current experimental interest are here certainly
the electroproduction of one pseudoscalar meson (N = 6)
[43], the photoproduction of two pseudoscalar mesons (N =
8) [47], or the photoproduction of vector mesons (N = 12)
[48].

Furthermore, this preselection of complete sets according
to the modified version of Moravcsik’s theorem can be com-
pletely automated on a computer, as has been done in the
Mathematica code [50] written for this work. From the results
obtained in Sec. IV, we can extract the following set of steps
for a generic problem with N amplitudes:

(i) Find all possible topologies for a closed loop with N
points (or vertices) and N links (or edges). Each point
has to attach to exactly 2 link lines. The number of
possible topologies is equal to 1 for N = 2 and N = 3
and equal to (N−1)!

2 for all N � 4.
(ii) Use each topology obtained in step (i) as a start-

ing point to derive Ncomb. complete sets of real and
imaginary parts of bilinear products or, equivalently,
of cosines and sines of relative phases, according to
Theorem 2 (cf. Table I).

(iii) Implement an association which assigns to each real
or imaginary part of a particular bilinear product a
certain set of polarization observables. The particular
association depends on each case of N amplitudes un-
der consideration and can be extracted from the tables
which collect the definitions of the observables (cf.
Tables II–IV from Sec. IV). Apply this association to
the results of step (ii). In this way, the complete sets
according to the modified form of Moravcsik’s theo-
rem are obtained. The number of such sets amounts to
exactly:

[no. of topologies from step (i)] × Ncomb.. (46)

(iv) Investigate the complete sets obtained in step (iii) and
remove possibly redundant combinations, in case they
are present. This yields the final result, i.e., a unique
collection of complete sets of observables according
to the modified version of Moravcsik’s theorem, with
every combination appearing exactly once.

It is possible to write a code which just needs the number
N , as well as the association needed in step (iii), as input.
Then, the complete sets according to the modified form of
Moravcsik’s theorem are obtained automatically as a list.

For all N � 4, step (iv) will probably yield complete sets
which contain more observables than the absolute minimal
number 2N required for a complete experiment. In order to
show that a particular set of 2N observables is complete, one
then has to apply algebraic reductions to a suitable Moravcsik-
complete set obtained from step (iv). An example for such a
reduction has been discussed at the end of Sec. IV C for N = 4
amplitudes. It is very likely that similar tactics work for cases
of higher N , but the complexity of the required calculations
promises to increase rapidly.

In order to illustrate the above-given procedure, the case
of pseudoscalar meson electroproduction is treated as an
example in the next section.
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VI. PSEUDOSCALAR MESON ELECTROPRODUCTION
(N = 6)

The reaction of pseudoscalar meson electroproduction is
described by N = 6 amplitudes, which are accompanied by
36 polarization observables [43]. The expressions for the
observables are collected in Table VI and the 6 × 6 Dirac
matrices �̃α , which define the observables as bilinear forms,
are shown in Appendix B. For the observables in nondi-
agonal shape classes, we again use the systematic notation
introduced by Nakayama [35]. However, in Table VI, we
also give the observables in the usual physical notation,
which is taken from the paper by Tiator and collaborators
[43] and which proceeds as follows: Each observable corre-
sponds to a so-called response function Rβα

i . The superscript
α indicates the target polarization, β describes the recoil
polarization, and the subscript i represents the polarization
of the virtual photon. The latter can take the following con-
figurations: i ∈ {L, T, LT, T T, LT ′, T T ′}, which correspond
to purely longitudinal, purely transverse, or “mixed” (for
instance, longitudinal transverse) interference contributions
to the differential cross section. An additional superscript
“s” or “c” on the left of the response function indicates a
possible sine or cosine dependence of the respective contri-
bution, which depends on the azimuthal angle of the produced
meson.

In the normalization convention chosen here, the Dirac ma-
trices for electroproduction satisfy the orthogonality relation
(2) with Ñ = 4. The matrices (and thus also the observables)
can be grouped into 10 overall shape classes. Two shape
classes contain diagonal observables. One of them, called D1,
contains four observables which correspond to matrices with
nonvanishing entries in the first four diagonal elements. The
second diagonal shape class, called D2, contains two matrices
with nonvanishing entries in the fifth and sixth diagonal
elements.

The remaining 30 observables are divided into eight non-
diagonal shape classes, which comprise four shape classes of
antidiagonal structure (AD1, . . . , AD4), three shape classes
of right-parallelogram type (PR1, . . . , PR3), and one class
of left-parallelogram structure (PL1). All nondiagonal shape
classes contain four observables each, apart from class AD2
which contains just two quantities. The normalization factor
cα is equal to 1/2 for all shape classes except for D2 and AD2.
For the latter two classes, we have cα = 1/

√
2.

For the electroproduction problem with N = 6, the number
of possible topologies that exist for minimal closed loops
made of six points has increased rapidly compared to the case
of photoproduction, i.e., N = 4 (cf. Fig. 7). Here, we obtain 60
topologies from our Mathematica code, which are all collected
in Figs. 9 to 11.

Each of these start topologies can be used in order to derive
32 possible fully complete loops according to Theorem 2
from Sec. III. In Fig. 12, we show some illustrative examples
for fully complete loops deduced from topology 1 of Fig. 9.
Each of the start topologies contained in Figs. 9 to 11 also
implies 32 loops that still leave discrete ambiguities (those
with an even number of dashed lines). These possibilities are
not illustrated here explicitly.

As an example, for the deduction of a Moravcsik-complete
set, we pick the possibility 1.1 shown in Fig. 12. This loop
implies the following combination of cosines and sines (or
equivalently, real and imaginary parts):

sin φ12, cos φ24, cos φ46, cos φ56, cos φ35, cos φ13. (47)

Looking at Table VI, we again observe the problem that the
polarization observables do not isolate the real and imaginary
parts of the bilinear products. Instead, we can again define
modified observables according to Eqs. (26) and (27) used for
photoproduction. These two equations can be used for all non-
diagonal shape classes except for the class AD2, where such
a separation is, however, also not necessary (cf. Table VI).

In this way, we obtain the following set of nondiagonal
observables which corresponds to loop 1.1 from Fig. 12 [this
set is listed with Nr. (A.i.1) in Table X of Appendix D and in
Table VII further below]:

{
Oa

2+,Oa
2−,Oc

1+,Oc
1−,Od

2 ,Oh
2+,Oh

2−
}
. (48)

We see that these seven quantities, in combination with the
6 diagonal observables which are always assumed to be
measured, form a Moravcsik-complete set composed of 13 po-
larization observables. The number 13 is the minimal number
of observables contained in any Moravcsik-complete set we
found for electroproduction, using the topologies from Figs. 9
to 11. Interestingly, this is only one observable above the
2N = 12 quantities which constitute an absolutely minimally
complete set.

Applying the procedure described in Sec. V using Math-
ematica [50], we find overall 776 nonredundant complete
sets according to Moravcsik in the considered case of N =
6. These sets contain 64 complete sets of 13 observables
and furthermore 96 complete sets composed of 14 observ-
ables, which have been collected in Tables X to XVI of
Appendix D. We refrain from showing the remaining 616
Moravcsik-complete sets, which all contain more than 14
observables. We note, however, that the largest number of
observables in a Moravcsik-complete set found in this study
is 18.

We find a mismatch between the number of observables
contained in the Moravcsik-complete sets and the absolutely
minimal complete sets, similarly to the case of photoproduc-
tion (Sec. IV C). As was argued for photoproduction, it is
reasonable to assume that the absolutely minimal complete
sets of 12 can be found as subsets of the Moravcsik-complete
sets. Then, one should in each case be able to do an algebraic
reduction just as demonstrated in Sec. IV C for photoproduc-
tion.

We sketch this reduction for one particular case for elec-
troproduction and it turns out that the Moravcsik-complete
sets of 14 observables are particularly well suited for this
procedure.

As an example, we consider the first set listed in Table XIII,
i.e., the set (B.i.1) (see also Table VIII further below):

{
Oc

1+,Oc
1−,Oc

2+,Oc
2−,Og

2+,Og
2−,Oh

2+,Oh
2−
}
. (49)
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TABLE VI. The definitions of electroproduction observables are collected here for the diagonal observables of types D1 and D2, as well
as for the nondiagonal shape classes {a, b, c, d, e, f , g, h}. The definitions and sign conventions for the observables have been taken over from
Ref. [43]. The matrices �̃α have been collected in Appendix B. For each observable from a nondiagonal shape class, we give the systematic
notation introduced by Nakayama [35]. In addition, we also give the usual physical notation for the observables, which is as follows [43]: Every
observable corresponds to a “response function” Rβα

i . The superscript α indicates the target polarization, β describes the recoil polarization,
and the subscript i represents the polarization of the virtual photon, which can take the following configurations: i ∈ {T, L, T L, T T, T L′, T T ′}
(corresponding to purely longitudinal, purely transverse or “mixed” interference contributions to the differential cross section). An additional
superscript “s” or “c” on the left of the response function indicates a possible sine or cosine dependence of the respective contribution to the
differential cross section (with sine or cosine depending on the azimuthal angle of the produced meson).

Observable Bilinear form Shape class

R00
T = 1

2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) 1
2 〈b|�̃1|b〉

− cR00
T T = 1

2 (|b1|2 + |b2|2 − |b3|2 − |b4|2) 1
2 〈b|�̃4|b〉 D1

−R0y
T = 1

2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2) 1
2 〈b|�̃10|b〉

−Ry′0
T = 1

2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2) 1
2 〈b|�̃12|b〉

Oa
1+ = |b1||b3| sin φ13 + |b2||b4| sin φ24 = Im[b∗

3b1 + b∗
4b2] = − sR0z

T T
1
2 〈b|�̃3|b〉

Oa
1− = |b1||b3| sin φ13 − |b2||b4| sin φ24 = Im[b∗

3b1 − b∗
4b2] = R0x

T T ′
1
2 〈b|�̃11|b〉 a = PR1

Oa
2+ = |b1||b3| cos φ13 + |b2||b4| cos φ24 = Re[b∗

3b1 + b∗
4b2] = R0z

T T ′
1
2 〈b|�̃9|b〉

Oa
2− = |b1||b3| cos φ13 − |b2||b4| cos φ24 = Re[b∗

3b1 − b∗
4b2] = sR0x

T T
1
2 〈b|�̃5|b〉

Ob
1+ = |b1||b4| sin φ14 + |b2||b3| sin φ23 = Im[b∗

4b1 + b∗
3b2] = − sRz′0

T T
1
2 〈b|�̃7|b〉

Ob
1− = |b1||b4| sin φ14 − |b2||b3| sin φ23 = Im[b∗

4b1 − b∗
3b2] = −Rx′0

T T ′
1
2 〈b|�̃16|b〉 b = AD1

Ob
2+ = |b1||b4| cos φ14 + |b2||b3| cos φ23 = Re[b∗

4b1 + b∗
3b2] = Rz′0

T T ′
1
2 〈b|�̃2|b〉

Ob
2− = |b1||b4| cos φ14 − |b2||b3| cos φ23 = Re[b∗

4b1 − b∗
3b2] = − sRx′0

T T
1
2 〈b|�̃14|b〉

Oc
1+ = |b1||b2| sin φ12 + |b3||b4| sin φ34 = Im[b∗

2b1 + b∗
4b3] = −Rx′z

T
1
2 〈b|�̃8|b〉

Oc
1− = |b1||b2| sin φ12 − |b3||b4| sin φ34 = Im[b∗

2b1 − b∗
4b3] = Rz′x

T
1
2 〈b|�̃13|b〉 c = PL1

Oc
2+ = |b1||b2| cos φ12 + |b3||b4| cos φ34 = Re[b∗

2b1 + b∗
4b3] = Rz′z

T
1
2 〈b|�̃15|b〉

Oc
2− = |b1||b2| cos φ12 − |b3||b4| cos φ34 = Re[b∗

2b1 − b∗
4b3] = Rx′x

T
1
2 〈b|�̃6|b〉

R00
L = |b5|2 + |b6|2 1√

2
〈b|�̃17|b〉 D2

R0y
L = |b5|2 − |b6|2 1√

2
〈b|�̃18|b〉

Od
1 = 2|b5||b6| sin φ56 = 2Im[b∗

6b5] = Rz′x
L

1√
2
〈b|�̃20|b〉 d = AD2

Od
2 = 2|b5||b6| cos φ56 = 2Re[b∗

6b5] = −Rx′x
L

1√
2
〈b|�̃19|b〉

Oe
1+ = |b3||b6| sin φ36 + |b4||b5| sin φ45 = Im[b∗

6b3 + b∗
5b4] = − sR00

LT ′
1
2 〈b|�̃31|b〉

Oe
1− = |b3||b6| sin φ36 − |b4||b5| sin φ45 = Im[b∗

6b3 − b∗
5b4] = sR0y

LT ′
1
2 〈b|�̃29|b〉 e = AD3

Oe
2+ = |b3||b6| cos φ36 + |b4||b5| cos φ45 = Re[b∗

6b3 + b∗
5b4] = cR00

LT
1
2 〈b|�̃21|b〉

Oe
2− = |b3||b6| cos φ36 − |b4||b5| cos φ45 = Re[b∗

6b3 − b∗
5b4] = − cR0y

LT
1
2 〈b|�̃23|b〉

O f
1+ = |b1||b6| sin φ16 + |b2||b5| sin φ25 = Im[b∗

6b1 + b∗
5b2] = − sR0z

LT
1
2 〈b|�̃30|b〉

O f
1− = |b1||b6| sin φ16 − |b2||b5| sin φ25 = Im[b∗

6b1 − b∗
5b2] = cR0x

LT ′
1
2 〈b|�̃24|b〉 f = AD4

O f
2+ = |b1||b6| cos φ16 + |b2||b5| cos φ25 = Re[b∗

6b1 + b∗
5b2] = cR0z

LT ′
1
2 〈b|�̃32|b〉

O f
2− = |b1||b6| cos φ16 − |b2||b5| cos φ25 = Re[b∗

6b1 − b∗
5b2] = sR0x

LT
1
2 〈b|�̃22|b〉

Og
1+ = |b1||b5| sin φ15 + |b2||b6| sin φ26 = Im[b∗

5b1 + b∗
6b2] = − sRz′0

LT
1
2 〈b|�̃33|b〉

Og
1− = |b1||b5| sin φ15 − |b2||b6| sin φ26 = Im[b∗

5b1 − b∗
6b2] = − cRx′0

LT ′
1
2 〈b|�̃26|b〉 g = PR2

Og
2+ = |b1||b5| cos φ15 + |b2||b6| cos φ26 = Re[b∗

5b1 + b∗
6b2] = cRz′0

LT ′
1
2 〈b|�̃34|b〉

Og
2− = |b1||b5| cos φ15 − |b2||b6| cos φ26 = Re[b∗

5b1 − b∗
6b2] = − sRx′0

LT
1
2 〈b|�̃25|b〉

Oh
1+ = |b3||b5| sin φ35 + |b4||b6| sin φ46 = Im[b∗

5b3 + b∗
6b4] = sRx′x

LT ′
1
2 〈b|�̃35|b〉

Oh
1− = |b3||b5| sin φ35 − |b4||b6| sin φ46 = Im[b∗

5b3 − b∗
6b4] = − cRz′x

LT
1
2 〈b|�̃28|b〉 h = PR3

Oh
2+ = |b3||b5| cos φ35 + |b4||b6| cos φ46 = Re[b∗

5b3 + b∗
6b4] = − cRx′x

LT
1
2 〈b|�̃36|b〉

Oh
2− = |b3||b5| cos φ35 − |b4||b6| cos φ46 = Re[b∗

5b3 − b∗
6b4] = − sRz′x

LT ′
1
2 〈b|�̃27|b〉
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FIG. 9. The first set of 20 possibilities from an overall number of 60 possible topologies are shown that exist for a minimal closed loop
formed from N = 6 points. Each topology can be used to derive the fully complete sets of observables for electroproduction, according to
Theorem 2.

Using the method of phase-fixing worked out by Nakayama9

[35], as well as a complementary numerical check, we found,

9To be a bit more precise: We extended the case of (2 + 2)
observables, which Nakayama describes in Sec. III of his work on
photoproduction [35], to the corresponding case (2 + 2 + 2) for
electroproduction. This means that all cases are considered where
two observables are selected from three different shape classes. The
generalization is relatively straightforward and yields the set (50).
However, in order to extend Nakayamas full discussion of all cases
from photoproduction to electroproduction, one has to discuss a
number of different cases which grows very rapidly.

for example, the following absolutely minimal complete set as
a subset of (49):{

Oc
1+,Oc

2−,Og
2+,Og

2−,Oh
2+,Oh

2−
}
. (50)

For the reduction from (49) to (50), we can use very similar
steps to those performed in Sec. IV C and Appendix C. First,
we employ the internal constraints of the shape class c, which
are formally exactly the same as the constraints expressed in
Eqs. (40) and (41) for photoproduction (Sec. IV C).

Then we obtain expressions for (Oc
1−,Oc

2+) in terms of
(Oc

1+,Oc
2−) but, again, as in the case of photoproduction, a

fourfold discrete ambiguity remains.
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FIG. 10. Figure 9 is continued here. The second set of 20 from an overall list of 60 possible topologies is shown, which exists for
electroproduction.

In order to resolve this discrete ambiguity, we need infor-
mation from the remaining four observables in set (50), which
stem from the shape classes g and h. A consistency relation
among the relative phases of the shape classes c, g, and h exists
and it reads as follows:

φ12 − φ34︸ ︷︷ ︸
c

= φ15 − φ26︸ ︷︷ ︸
g

−φ35 + φ46︸ ︷︷ ︸
h

. (51)

We follow a similar tactic as in Sec. IV C (as well as
Appendix C) and take the sine and cosine of both sides of this
phase constraint. Then, using addition theorems, we arrive at

the following set of constraints:

Õc
2+Õc

2− + Õc
1+Õc

1−
= |b1||b2||b3||b4| cos (φ15 − φ26 − φ35 + φ46), (52)

Õc
1+Õc

2− − Õc
2+Õc

1−
= |b1||b2||b3||b4| sin (φ15 − φ26 − φ35 + φ46). (53)

Since the observables from classes g and h in the set (50)
are fully equivalent to the cosines of the appearing relative
phases (cf. Table VI), we obtain the following 16-fold discrete
phase ambiguity for the terms on the right-hand sides of (52)
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FIG. 11. Figure 10 is continued here. The third set of 20 from an overall list of 60 possible topologies is shown, which exists for
electroproduction.

and (53):

φ±
15 − φ±

26 − φ±
35 + φ±

46. (54)

These 16 ambiguities stem entirely from discrete ambiguities
of the cosine type (6). Now, inserting the solutions corre-
sponding to the fourfold discrete ambiguity for (Oc

1−,Oc
2+) on

the left-hand sides and the 16 possible phase ambiguities (54)
on the right-hand sides of Eqs. (52) and (53), both equations
will be able to distinguish which is the correct solution for the
observables (Oc

1−,Oc
2+).

Having finished the mathematical discussion, we now ex-
tract the physical content from the results stemming from
our application of the modified form of Moravcsik’s theorem
to electroproduction. In order to do this, we focus on the

Moravcsik-complete sets composed of 13 and 14 observables,
which are collected in Tables X to XVI of Appendix D. In
order to illustrate our discussion, we have extracted illustrative
example sets from the Tables in Appendix D, which are shown
in Tables VII and VIII.

As already mentioned above, we found 64 Moravcsik-
complete sets composed of 13 observables in this work and
96 sets composed of 14 observables. Both the complete sets of
13 and 14 observables have in common that they each divide
into 8 different groups, sorted by the combination of differ-
ent shape classes that occur in the respective complete sets.
The notation chosen for the set numbers in the Tables VII,
VIII, and X to XVI takes this into account. For the com-
plete sets of 13 observables, each group contains 8 different
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FIG. 12. For pseudoscalar meson electroproduction (N = 6),
three examples from 32 possible closed loops which yield unique
solutions are shown here, constructed by starting from topology 1 in
Fig. 9.

sets and for the complete sets of 14, each group contains
12 sets.

All the different combinations of shape classes have in
common, for both the Moravcsik-complete sets of 13 and of
14 observables, that at least one shape class occurs which con-
tains recoil-polarization observables. The nondiagonal shape
classes without recoil polarization are a, e, and f (cf. Ta-
ble VI). The remaining classes of b, c, d , g, and h all contain
recoil-polarization observables and indeed at least one of

TABLE VII. Here we collect eight selected examples for the
Moravcsik-complete sets composed of 13 observables. For each of
the eight possible combinations of shape classes in these complete
sets, one example has been chosen. In every case, the seven observ-
ables given here have to be picked in addition to the six diagonal
observables {R00

T , cR00
T T , R0y

T , Ry′0
T , R00

L , R0y
L }. Every example is given

in the physical notation Rβα

i and also (directly below) in Nakayama’s
systematic notation. Furthermore, the labeling scheme for the sets
is chosen as follows: The letter A denotes the Moravcsik-complete
sets of 13 observables, the roman numerals i, . . ., viii indicate the
different possible combinations of shape classes, and the regular
numbers (1, 2, 3, . . .) at the end count the number of the set from the
respective group of shape-class combinations (cf. Tables X to XII in
Appendix D).

Set-Nr. Observables

A.i.1 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
cRx′x

LT
sRz′x

LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oh

2+ Oh
2−

A.ii.4 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
sR00

LT ′ sR0y
LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oe

1+ Oe
1−

A.iii.8 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

sRx′x
LT ′ cRz′x

LT

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Oh

1+ Oh
1−

A.iv.6 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
sR00

LT ′ sR0y
LT ′

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Oe

1+ Oe
1−

A.v.2 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
cRz′0

LT ′
sRx′0

LT

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.vi.4 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

cR0z
LT ′

sR0x
LT

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 O f

2+ O f
2−

A.vii.2 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
cRz′0

LT ′
sRx′0

LT

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.viii.1 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
cR0z

LT ′
sR0x

LT

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 O f

2+ O f
2−

these latter classes occurs in each Moravcsik-complete set
listed in the Tables X to XVI. In this respect, our results
for the Moravcsik-complete sets in electroproduction are very
similar to the well-known results for absolutely minimal com-
plete sets in photoproduction [32,34,35], in that the recoil-
polarization observables cannot be completely avoided for a
unique amplitude extraction.

It is interesting to further investigate the structure of the
obtained Moravcsik-complete sets in electroproduction. The
complete sets of 13 observables each contain four quantities
from the purely transverse shape classes a, b, and c (cf.
Table VI), one quantity of the purely longitudinal shape
class d , and two observables taken from one of the “mixed”
longitudinal-transverse shape classes e, . . ., h. Therefore, the
amount of measurements with longitudinal polarization of the
virtual photon, which is new to electroproduction as compared
to photoproduction, is relatively small with just 3 such ob-
servables in each case. However, this has the disadvantage
of requiring more observables with recoil polarization. The
minimal amount of observables with recoil polarization in
a complete set of 13 (apart from the diagonal observable
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TABLE VIII. Here we collect eight selected examples for the
Moravcsik-complete sets composed of 14 observables. The layout
and notation used is very similar to Table VII. The only exception is
given by the fact that in the labeling scheme, the letter B denotes
the complete sets of 14 observables (cf. Tables XIII to XVI in
Appendix D).

Set-Nr. Observables

B.i.1 Rx′z
T Rz′x

T Rz′z
T Rx′x

T
cRz′0

LT ′
sRx′0

LT
cRx′x

LT
sRz′x

LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Og
2+ Og

2− Oh
2+ Oh

2−
B.ii.3 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
cRz′0

LT ′
sRx′0

LT

Oc
2+ Oc

2− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
2+ Og

2−
B.iii.10 Rx′z

T Rz′x
T

sR0z
LT

cR0x
LT ′ sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
1+ Oc

1− O f
1+ O f

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.iv.5 Rx′z

T Rz′x
T

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT

Oc
1+ Oc

1− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−
B.v.10 sR0z

T T R0x
T T ′ sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′

Oa
1+ Oa

1− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
1+ Og

1−
B.vi.3 R0z

T T ′
sR0x

T T
cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oa
2+ Oa

2− O f
2+ O f

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vii.2 Rz′0

T T ′
sRx′0

T T
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

cRx′x
LT

sRz′x
LT ′

Ob
2+ Ob

2− Og
1+ Og

1− Og
2+ Og

2− Oh
2+ Oh

2−
B.viii.4 sRz′0

T T Rx′0
T T ′ cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−

Ry′0
T which always has to be measured) is 3. The set (A.ii.4)

shown in Table VII is one particular example. There exist
Moravcsik-complete sets composed of 13 observables with up
to 7 recoil-polarization observables, such as the set (A.iii.8) in
Table VII.

For the complete sets of 14 observables (cf. Table VIII)
the situation is different. In this case, there exist some sets
with just 2 recoil-polarization observables, such as the set
(B.v.10) shown in Table VIII. The maximal amount of recoil-
polarization is again given in cases where the full set consists
of such observables [e.g., the set (B.vii.2) in Table VIII]. Fur-
thermore, every Moravcsik-complete set with 14 observables
contains either 2 or 4 quantities from the purely transverse
shape classes (a, b, and c) and either 6 or 4 observables from
the mixed longitudinal-transverse shape classes (e, . . ., h).
Thus, the amount of measurements which use the longitudi-
nal polarization has increased substantially compared to the
complete sets of 13 observables.

Finally, we remark that our results are consistent with the
statements made in the work on complete sets in electropro-
duction published by Tiator and collaborators [43], in the
sense that the complete sets constructed in Sec. IV of their
paper also cannot fully avoid recoil polarization. However,
the main method of construction used in Ref. [43] is differ-
ent from ours. There, the authors first select complete sets
of 8 fully transverse observables (i.e., complete photopro-
duction sets) and then select in addition a full shape class
of 4 longitudinal-transverse observables, in order to arrive
at 12 quantities. Tiator and collaborators also mention the
approach of first starting with the 6 diagonal observables

{R00
T , cR00

T T , R0y
T , Ry′0

T , R00
L , R0y

L } and the choosing of nondiago-
nal observables in addition, which corresponds in principle to
the approach used in our work. In Ref. [43], the authors state
that within their work, it has not been obvious how to choose
the complete sets, using this latter approach. At this point,
the application of the modified form of Moravcsik’s theorem
performed in this work can yield a significant contribution,
although the number of observables contained in a complete
set is at least 13 and not 12.

In summary, we have found Moravcsik-complete sets with
a minimal number of 13 observables for electroproduction.
This already represents a considerable reduction from the full
set of 36 observables. Furthermore, these complete sets of 13
have to be selected from 6 different shape classes, namely the
2 diagonal classes plus 4 nondiagonal ones (see Tables X to
XII). However, we also found complete sets composed of 14
observables, which have to be selected from only 5 different
shape classes (Tables XIII to XVI). Thus, the reduction from
the full set of 10 shape classes down to 5 is even more
substantial than in the case of photoproduction (Sec. IV C).

VII. CONCLUSIONS AND OUTLOOK

This work treated the theorem by Moravcsik [46] on the
unique extraction of amplitudes, as well as the implications
drawn from it for applications to physical reactions. The
theorem has been restated in a slightly modified form. For this
form, the proof has been worked out in detail, trying to make
it as formally complete and accessible as possible.

While this theorem is valid for an arbitrary number of
amplitudes N , we have applied it to a number of specific
reactions with a rising number of amplitudes, i.e., to pion-
nucleon scattering (N = 2), a purely mathematical example
with N = 3 amplitudes, pseudoscalar meson photoproduction
(N = 4), and electroproduction (N = 6). For the electropro-
duction reaction in particular, the above-mentioned theorem
has been applied for the first time and it has yielded interesting
insights into the structure of the corresponding complete sets.
The results are summarized in Table IX for all the considered
reactions.

It is interesting to try to extract patterns from the results
Moravcsik’s theorem yields, for examples of different reac-
tions with different N , and to compare them to the known
treatments of complete sets of observables with an absolutely
minimal number of 2N [34,35,43]. We observe the following:

(i) For N = 2 and 3, the minimally complete sets ac-
cording to the modified form of Moravcsik’s theorem
are equal in number and content to the absolutely
minimal complete sets of 2N . This is not the case for
the higher N � 4.

(ii) Compared to the full number of available observables
N2, the modified version of Moravcsik’s theorem
implies a reduction for the number of necessary ob-
servables to obtain a unique solution, for all cases but
the simplest one, i.e., N = 2. For ascending numbers
N , the degree of this reduction increases in the sense
that the number of observables from the full set which
are not needed for a minimally complete Moravcsik-
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TABLE IX. The results obtained in this work are summarized for the amplitude-extraction problems with different numbers of amplitudes
N . For each problem, one has nobs. = N2 observables overall. The number of observables nMoravcsik

obs.,min. contained in a minimal complete set
according to the modified form of Moravcsik’s theorem is shown and compared to the absolute minimal number 2N . The minimal number of
different shape classes, from which the observables have to be selected, is also shown and compared to the total number of shape classes in the
problem. The minimal number of classes is always composed of the shape class(es) of the diagonal observables (which are always assumed to
be measured), plus the minimal number of nondiagonal shape classes implied by the modified version of Moravcsik’s theorem.

Process N nobs. = N2 nMoravcsik
obs.,min. N2 − nMoravcsik

obs.,min. nshape-cl.
total nshape-cl.

min.

πN scattering 2 4 4 = 2N 0 2 2
Math. example 3 9 6 = 2N 3 4 4
Photoproduction 4 16 10 = 2N + 2 6 4 3
Electroproduction 6 36 13 = 2N + 1 23 10 5

set rises (cf. numbers given in the fifth column of
Table IX).

(iii) Another feature found in other treatments of complete
experiments [34,43] reemerges: the minimal number
of different shape classes, from which the observables
in the complete sets have to be picked, does not
correspond to the smallest possible one for N > 2.
For instance, from earlier treatments on photopro-
duction [34,35], it is known that one has to combine
observables from at least three different shape classes,
i.e., the diagonal observables plus two different non-
diagonal shape classes. In case one uses the diagonal
observables, plus four additional quantities from one
single nondiagonal shape class, continuous ambigui-
ties remain [35]. This behavior is reproduced by the
modified Moravcsik’s theorem (see Table IX).

In the case of electroproduction, the modified
Moravcsik’s theorem implies that complete sets have
to be selected from at least five different shape classes,
i.e., two diagonal classes plus three nondiagonal
ones. While one could also theoretically select the
corresponding number of observables from just four
different shape classes (i.e., two diagonal plus two
nondiagonal ones), this possibility is ruled out.

Furthermore, as a general feature, the difference
of the total number of shape classes to the minimal
number of classes required for a complete set also
rises with ascending numbers for N (see Table IX).

The applications of the modified form of Moravcsik’s
theorem have already yielded interesting results. Furthermore,
the possibility to extract the complete sets in a fully automated
procedure is attractive. However, the mismatch between the
size of the complete sets according to Moravcsik and the abso-
lute minimum number of 2N observables, which is present for
N � 4, remains a problem. How to obtain all the minimal sets
of 2N observables using (maybe) a modified version of the
approach presented here seems not at all obvious. Therefore,
this mismatch deserves further investigation and it is highly
probable that it can be traced back to general mathematical
properties of the matrix algebras {�̃α} used in the formulation
of the observables as bilinear forms. Still, since a master
approach on how to obtain minimal complete sets of 2N
observables for problems with arbitrary N is the ultimate goal,
this avenue of exploration is important.

Another possible direction of future research lies in the
application of the modified approach according to Moravcsik
as presented here to more complicated reactions, which are of
current practical interest. In this vein, a detailed treatment of
the photoproduction of two pseudoscalar mesons is prepared
at the moment [61].

APPENDIX A: PROOF OF THEOREM 2

Choose b1 as an anchor amplitude for the whole procedure
and demand it to be real: b1 ≡ |b1| > 0. In this way, the
unknown overall phase φb(W, θ ) is fixed. Note that the choice
of b1 as anchor amplitude is just a convention.

Now connect amplitude points in order to form an un-
branched open chain of bilinear products:

b1b∗
i , bib

∗
j, . . . , bpb∗

q, (A1)

where the indices

1, i, j, . . . , p, q ∈ {1, . . . , N}, (A2)

are demanded to be all different. Thus, the open chain has
exactly N − 1 links.

Furthermore, as stated above, we can assume the moduli
(4) to be already determined. Therefore, one can consider the
following set of relative phases corresponding to the open
chain:

φ1i, φi j, . . . , φpq. (A3)

First, let us assume that all links in the chain are provided by
solid lines, i.e., that only the real parts,

Re[b1b∗
i ], Re[bib

∗
j], . . . , Re[bpb∗

q], (A4)

are considered. Then we know from the discussion in the be-
ginning that all these real parts leave a cosine-type ambiguity
[Eq. (6)] for their corresponding relative phase, i.e., one has
the collection of 2N−1 discrete phase ambiguities,

φ±
1i =

{+α1i

−α1i
, φ±

i j =
{+αi j

−αi j
, . . . , φ±

pq =
{+αpq

−αpq
. (A5)

As a means to remove (a large part of) these discrete
ambiguities, we connect the amplitudes (or points) q and 1 by
a solid line in order to close the chain and thus form a closed
loop with N solid link lines. The relative phase φq1 therefore
also has the cosine-type ambiguity (6).
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Then we know that whatever the correct solution is, it has
to satisfy the following consistency relation for the relative
phases, which has to be valid for any arrangement of N
amplitudes in the complex plane:10

φ1i + φi j + · · · + φpq + φq1 = 0. (A6)

When written down for all the possible discrete ambiguities
(A5), the consistency relation reads

φ±
1i + φ±

i j + · · · + φ±
pq + φ±

q1 = 0, (A7)

or, when written in an alternative notation to collect the
different cases (the one which we use in the remainder of the
proof and which Moravcsik also uses in his paper [46]), it
becomes{+α1i

−α1i

}
+
{+αi j

−αi j

}
+ · · · +

{+αpq

−αpq

}
+
{+αq1

−αq1

}
= 0. (A8)

The basic logic is now the following: One of the above-given
2N discrete ambiguities is the correct, i.e., “true,” solution
to the problem. For it to be truly unique, its corresponding
consistency constraint, which is one of the cases (A8), has to
be linearly independent [35] from the consistency constraints
of all the other cases. In case linearly dependent constraints
remain, the solution is not unique.

To illustrate this point, suppose that the true solution to our
problem would be given by the sign combination

α1i − αi j + · · · + αpq − αq1 = 0. (A9)

When we multiply both sides of this equation by (−1), it
becomes

−α1i + αi j − · · · − αpq + αq1 = 0, (A10)

and we see that this constraint is also one of the possible cases
(A8). Therefore, the consistency relations (A9) and (A10)
are linearly dependent and thus a twofold discrete ambiguity
remains. We call the corresponding solutions degenerate (cf.
Ref. [35]).

One can convince oneself that the same statement remains
to be true, no matter which sign combination other than (A9)
we would have assumed to be the true solution. Therefore,
for the case with only solid lines, or real parts of bilinear
products, in the loop, the general consistency relation (A6)
can reduce the 2N -fold discrete ambiguity (A5) to a twofold
discrete phase ambiguity, and the combination with only real
parts is therefore not fully complete.

We note that in general situations, one can find linearly
dependent pairs of consistency relations via the following two
manipulations performed on the whole equation

(a) Multiplication by (−1),
(b) Addition or subtraction of multiples of 2π on both

sides of the equation. (We can do this manipulation
since relations among phases are always valid modulo
addition of multiples of 2π .)

10This consistency relation is also quickly verified by plugging in
the definition φi j = φi − φ j of the relative phases.

Now assume that the link between amplitudes q and 1 were
changed from a solid to a dashed line, i.e., we would exchange
only the real part Re[bqb∗

1] for the imaginary part Im[bqb∗
1].

Then the discrete ambiguity for the relative phase φq1 changes
to a sine-type ambiguity (8) and therefore the relevant cases
for the consistency relation become

{+α1i

−α1i

}
+
{+αi j

−αi j

}
+ · · · +

{+αpq

−αpq

}
+
{ +αq1

π − αq1

}
= 0.

(A11)

Again, assume some (in principle arbitrary) combination to be
the true solution of the problem, for instance,

−α1i + αi j + · · · − αpq + αq1 = 0. (A12)

Multiply the whole equation by (−1) in order to get

+α1i − αi j − · · · + αpq − αq1 = 0. (A13)

Now no further transformation can lead from this equation to
any of the cases contained in Eq. (A11) for which αq1 has a
minus sign, since for any of these cases, there has to be one
additional single summand of π on the left-hand side. This
means that the candidate for a possibly degenerate constraint
would then read

+α1i − αi j − · · · + αpq + π − αq1 = 0, (A14)

but it simply cannot be obtained from Eq. (A13) by use of the
allowed transformations. The same is true in case any other
starting combination other than (A12) were assumed to be the
true solution. This means that no degenerate solutions exist
any more and the summand of π in Eq. (A11) has fully lifted
the degeneracy. This means that the considered closed loop is
fully complete.

The same argument as above holds in case any link other
than the connection between q and 1 (i.e., 1 ↔ i, i ↔ j, . . .)
were assumed to be the single dashed line present in a closed
loop of otherwise only solid lines. Therefore, we see that in
the case of only a single dashed line, the closed loop is always
fully complete.

Therefore, we have learned that the sine-type ambiguities
(8) are very important to lift degeneracies, due to the appear-
ance of additional single “summands of π .”

As a next step, consider the case of multiple dashed lines
(i.e., imaginary parts) present in the closed loop. For instance,
assume the last nd links in the loop to be dashed, i.e., we look
at the following possible cases for the consistency relation:

{+α1i

−α1i

}
+ · · · +

{+α�r

−α�r

}

+
{ +αrs

π − αrs

}
+
{ +αst

π − αst

}
+ · · · +

{ +αq1

π − αq1

}
︸ ︷︷ ︸

nd terms

= 0.

(A15)
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In order to see in which general cases the degeneracies are
resolved, we need some additional lemmas.11 The first lemma
is concerned with the fact that, due to relations among phases
always being valid up to addition of multiples of 2π , at most
a single summand of π can remain in all the cases collected
in Eq. (A15).

Lemma 1 (Sum of phase-variables under sine-type ambi-
guities):

Consider the sum of n phase variables ϕi (n � 2), i.e.,
real variables taking values on the interval [−π/2, π/2]
and which are arguments of functions:

ϕ1 + · · · + ϕn. (A16)

Each of the phase-variables is subject to a twofold dis-
crete ambiguity of the “sine type,” i.e.,

ϕi −→
{
ϕi,

π − ϕi,
for i = 1, · · · , n. (A17)

Then there exist 2n cases for the form of the sum (A16),
and these cases can be summarized as follows:{

ϕ1

π − ϕ1

}
+
{

ϕ2

π − ϕ2

}
+ · · · +

{
ϕn

π − ϕn

}

=
{∑n

k=1 C
( j′′ )
k ϕk

π + ∑n
k=1 C

( j′ )
k ϕk

}
. (A18)

On the right-hand side of this equation, all the C coef-
ficients take values of either (+1) or (−1). The sums
over double-primed coefficients C ( j′′ )

k denote all possible
cases of linear combinations of phases with an even
number of (−1) signs, while the sums over single-primed
coefficients C ( j′ )

k denote all possible cases with an odd
number of (−1) signs. Moravcsik has stated this result
in his paper [46]. A proof of the statement can be found
toward the end of this Appendix.

The second lemma is concerned with the transformation
behavior of the C coefficients under the multiplication by
(−1), since this is the most important transformation in the
search for degenerate consistency relations.

Lemma 2 [Multiplication by (−1)]
Assume that Lemma 1 and Eq. (A18) are valid for a

set of n phase variables ϕi, which are all subject to the
“sine-type” ambiguity (A17).

Suppose that n were an even number. Then the follow-
ing relations among C coefficients are valid:

(−1) × C ( j′ )
k = C ( j̃′ )

k , (A19)

(−1) × C ( j′′ )
k = C ( j̃′′ )

k , (A20)

for suitable indices j̃′, j̃′′. This means that for an even
number of variables, the single-primed coefficients trans-
form into each other under multiplication by (−1) and

11To avoid an unnecessarily cluttered notation in the proofs, we
change the notation for the formulation of the lemmas.

the double-primed coefficients transform into each other
under the same transformation. No mixing of single- and
double-primed coefficients occurs.

If, however, the number n is odd, one has

(−1) × C ( j′ )
k = C ( j̃′′ )

k , (A21)

for suitable indices j̃′′. Thus, for an odd number of
variables, single-primed and double-primed coefficients
are transformed into each other under multiplication by
(−1). A proof of this lemma is given at the end of this
Appendix.

We return now to the cases for the consistency con-
straints collected in Eq. (A15) and rewrite this equation
using Lemma 1:

{+α1i

−α1i

}
+ · · · +

{+α�r

−α�r

}
+
{ +αrs

π − αrs

}
+ · · · +

{ +αq1

π − αq1

}

=
{+α1i

−α1i

}
+ · · · +

{+α�r

−α�r

}
+
{∑

μ,ν C
( j′′ )
μν αμν

π + ∑
μ,ν C

( j′ )
μν αμν

}

= 0. (A22)

The notation with a single summation index “k,” which
has been used in the lemmas above, has been generalized to
multiple summation-indices μ, ν, but this is straightforward.

Now assume that nd is even. Suppose further that the true
solution corresponds to a combination of signs without a
summand of π , i.e.,

α1i − · · · + α�r +
∑
μ,ν

C ( j′′ )
μν αμν = 0. (A23)

Multiplying this equation by (−1), we get

−α1i + · · · − α�r +
∑
μ,ν

[−C ( j′′ )
μν

]
αμν

= −α1i + · · · − α�r +
∑
μ,ν

C ( j̃′′ )
μν αμν = 0, (A24)

where Lemma 2 has been used in order to obtain the final form
of the result. Since according to Lemma 2, the coefficients
C ( j′′ )

μν remain double primed under the multiplication by (−1),
it is clear that a degenerate solution can always be found. The
same is true if any combination other than Eq. (A23), which
could also include a summand of π , would have been assumed
to be the true solution. Therefore, for nd even, there always
remains a twofold discrete phase ambiguity.

Assume now that nd is odd. Furthermore, suppose that
some combination with a summand of π were the true so-
lution, i.e.,

−α1i + · · · + α�r + π +
∑
μ,ν

C ( j′ )
μν αμν = 0. (A25)
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We multiply this equation by (−1) and use Lemma 2 in order
to obtain

+α1i − · · · − α�r − π +
∑
μ,ν

C ( j̃′′ )
μν αμν = 0. (A26)

We add 2π on the left-hand side of this equation and get:

+α1i − · · · − α�r + π +
∑
μ,ν

C ( j̃′′ )
μν αμν = 0. (A27)

Since, according to Lemma 2, the coefficients C ( j′ )
μν have turned

into double-primed coefficients C ( j̃′′ )
μν , the sign combination

in Eq. (A27) corresponds to one of the cases without π in
Eq. (A22). However, the summand of π in Eq. (A27) cannot
be removed by any of the allowed transformations. Therefore,
no degeneracy of solutions exists. The same is true is we
assume any combination other than the one in Eq. (A25) (also
one without summand of π ) as the true solution. Therefore,
for nd odd, the closed loop always represents a fully complete
set.

Note that all statements made above remain true in case one
does not assume the last nd lines in the chain to be dashed, as
was done in Eq. (A15), but indeed any other combination of
nd link lines in the closed loop.

The special case of a closed loop which includes only (i.e.,
exclusively) dashed lines remains to be discussed. This is also
the case which Moravcsik [46] is (seemingly) not treating
correctly.

We again collect all the consistency relations for all pos-
sible cases of discrete ambiguities and employ Lemma 1 in
order to obtain:{ +α1i

π − α1i

}
+ · · · +

{ +αpq

π − αpq

}
+
{ +αq1

π − αq1

}

=
{∑

μ,ν C
( j′′ )
μν αμν

π + ∑
μ,ν C

( j′ )
μν αμν

}
= 0. (A28)

Here the same arguments as above, under repeated use of
Lemma 2, lead to the result that also in this case the number
of dashed lines has to be odd in order to lift all degeneracies
and thus to obtain a fully complete set.

What remains to be discussed are the special, singular
numerical configurations for which the theorem proven here
loses its validity. Consideration of the arguments given above
shows that, also in case nd is odd, the sine-type ambiguities
would lose their power to lift the degeneracies in case only
one linear combination of α’s corresponding to all the nd

dashed lines of the true solution would vanish, for instance
[cf. Eqs. (A15) and (A22)],∑

μ,ν

C ( j′′ )
μν αμν = 0, (A29)

for some particular index j′′.
This could be due to one of the following cases:

(i) All α’s vanish individually, i.e.,: αμν = 0 for all the
terms included in the sum (A29).

(ii) None of the α’s vanish individually, but there exists
a complicated singular submanifold in the space of
relative phases, which is defined by the validity of
Eq. (A29) and on which the considered closed loop
is not a complete set any more.

(iii) A mixture of the two cases before, i.e.,: some α’s
vanish individually αμ̃ν̃ = 0, for a certain collection
of indices μ̃, ν̃. Furthermore, singular submanifolds
exist in the parameter space of the remaining relative
phases (i.e., those with αμν �= 0), defined by the va-
lidity of the constraint

∑
μ �=μ̃,ν �=ν̃

C ( j′′ )
μν αμν = 0. (A30)

We suspect that the probability of such singular parameter-
configurations to occur grows with a larger number N of
transversity amplitudes. However, these cases probably only
become relevant as soon as one introduces measurement
errors into the problem. Even for simulations with pseudodata
of finite numerical precision, such cases can become relevant
for higher N . However, in the academic case of an exactly
solvable complete experiment, such singular cases can proba-
bly be ignored. �

This concludes our derivation of the core result of this
work. For the sake of completeness, in the following we pro-
vide proofs for the more technical Lemmas 1 and 2 introduced
above.

Proof of Lemma 1:
We construct a proof via complete induction and start with

the lowest nontrivial case of n = 2 phase variables.

(i) n = 2
Consider the possible cases

{
ϕ1

π − ϕ1

}
+
{

ϕ2

π − ϕ2

}
. (A31)

Remembering that relations among phases are al-
ways valid up to addition of multiples of 2π , we see
that the total set of possible cases becomes

{
ϕ1

π − ϕ1

}
+
{

ϕ2

π − ϕ2

}

=

⎧⎪⎨
⎪⎩

+ϕ1 + ϕ2,

π − ϕ1 + ϕ2,

ϕ1 + π − ϕ2,

π − ϕ1 + π − ϕ2.

=

⎧⎪⎨
⎪⎩

+ϕ1 + ϕ2,

π − ϕ1 + ϕ2,

π + ϕ1 − ϕ2,

−ϕ1 − ϕ2.

(A32)

(ii) n −→ n + 1
Assume now that Eq. (A18) is valid for a set of n

phase variables ϕi. Add a further variable ϕn+1, which
is also subject to the sine-type ambiguity (A17). Then,
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we have:{
ϕ1

π − ϕ1

}
+ · · · +

{
ϕn

π − ϕn

}
+
{

ϕn+1

π − ϕn+1

}

=
{∑n

k=1 C
( j′′ )
k ϕk

π + ∑n
k=1 C

( j′ )
k ϕk

}
+
{

ϕn+1

π − ϕn+1

}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n
k=1 C

( j′′ )
k ϕk + ϕn+1∑n

k=1 C
( j′′ )
k ϕk + π − ϕn+1

π + ∑n
k=1 C

( j′ )
k ϕk + ϕn+1

π + ∑n
k=1 C

( j′ )
k ϕk + π − ϕn+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n
k=1 C

( j′′ )
k ϕk + ϕn+1,

π + ∑n
k=1 C

( j′′ )
k ϕk − ϕn+1,

π + ∑n
k=1 C

( j′ )
k ϕk + ϕn+1,∑n

k=1 C
( j′ )
k ϕk − ϕn+1.

(A33)

One can see that the number of (−1) signs in the
first and fourth combinations in the end result of (A33)
is even and that the number of (−1) signs in the second
and third combinations is odd. �

Proof of Lemma 2:
First, we treat the even numbers n. We prove again via

induction:

(i) n = 2
We have (cf. the above){

ϕ1

π − ϕ1

}
+
{

ϕ2

π − ϕ2

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+ϕ1 + ϕ2,

π − ϕ1 + ϕ2,

ϕ1 + π − ϕ2,

−ϕ1 − ϕ2.

=:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C (1′′ )
1 ϕ1 + C (1′′ )

2 ϕ2,

π + C (1′ )
1 ϕ1 + C (1′ )

2 ϕ2,

π + C (2′ )
1 ϕ1 + C (2′ )

2 ϕ2,

C (2′′ )
1 ϕ1 + C (2′′ )

2 ϕ2.

(A34)

We can read off the following relations:

(−1) × C (1′ )
1 = C (2′ )

1 , (A35)

(−1) × C (1′ )
2 = C (2′ )

2 , (A36)

(−1) × C (1′′ )
1 = C (2′′ )

1 , (A37)

(−1) × C (1′′ )
2 = C (2′′ )

2 , (A38)

and see a special case of Lemma 2 fulfilled.

(ii) n −→ n + 2
We use Lemma 1 in order to decompose as follows:

{
ϕ1

π − ϕ1

}
+ · · · +

{
ϕn

π − ϕn

}

+
{

ϕn+1

π − ϕn+1

}
+
{

ϕn+2

π − ϕn+2

}

=
{∑n

k=1 C
( j′′ )
k ϕk

π + ∑n
k=1 C

( j′ )
k ϕk

}

+
{

ϕn+1

π − ϕn+1

}
+
{

ϕn+2

π − ϕn+2

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
k=1 C

( j′′ )
k ϕk + ϕn+1 + ϕn+2∑n

k=1 C
( j′′ )
k ϕk + π − ϕn+1 + ϕn+2∑n

k=1 C
( j′′ )
k ϕk + ϕn+1 + π − ϕn+2∑n

k=1 C
( j′′ )
k ϕk − ϕn+1 − ϕn+2

π + ∑n
k=1 C

( j′ )
k ϕk + ϕn+1 + ϕn+2∑n

k=1 C
( j′ )
k ϕk − ϕn+1 + ϕn+2∑n

k=1 C
( j′ )
k ϕk + ϕn+1 − ϕn+2

π + ∑n
k=1 C

( j′ )
k ϕk − ϕn+1 − ϕn+2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A39)

We see that the relations (A19) and (A20) remain
intact, also for the case of n + 2, since they already
have been assumed to be valid among all coefficients
with k � n.

For instance, multiply the last case in the result
(A39) (minus π ) by (−1) to obtain:

(−1)

[
n∑

k=1

C ( j′ )
k ϕk − ϕn+1 − ϕn+2

]

=
n∑

k=1

[−C ( j′ )
k

]
ϕk + ϕn+1 + ϕn+2

=
n∑

k=1

C ( j̃′ )
k ϕk + ϕn+1 + ϕn+2. (A40)

The last expression (with π added again) resembles
the one which is written in the fifth case of Eq. (A39)
and which also is of single-primed type, since a sum-
mand of π appears in it.

Next we treat the case of an odd number n. Again, we
proceed via induction:

(iii) n = 3
We have

{
ϕ1

π − ϕ1

}
+
{

ϕ2

π − ϕ2

}
+
{

ϕ3

π − ϕ3

}
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ϕ1 + ϕ2 + ϕ3,

π − ϕ1 + ϕ2 + ϕ3,

+ϕ1 + π − ϕ2 + ϕ3,

+ϕ1 + ϕ2 + π − ϕ3,

π − ϕ1 + π − ϕ2 + ϕ3,

π − ϕ1 + ϕ2 + π − ϕ3,

+ϕ1 + π − ϕ2 + π − ϕ3,

π − ϕ1 + π − ϕ2 + π − ϕ3.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ϕ1 + ϕ2 + ϕ3,

π − ϕ1 + ϕ2 + ϕ3,

π + ϕ1 − ϕ2 + ϕ3,

π + ϕ1 + ϕ2 − ϕ3,

−ϕ1 − ϕ2 + ϕ3,

−ϕ1 + ϕ2 − ϕ3,

+ϕ1 − ϕ2 − ϕ3,

π − ϕ1 − ϕ2 − ϕ3.

=:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C (1′′ )
1 ϕ1 + C (1′′ )

2 ϕ2 + C (1′′ )
3 ϕ3,

π + C (1′ )
1 ϕ1 + C (1′ )

2 ϕ2 + C (1′ )
3 ϕ3,

π + C (2′ )
1 ϕ1 + C (2′ )

2 ϕ2 + C (2′ )
3 ϕ3,

π + C (3′ )
1 ϕ1 + C (3′ )

2 ϕ2 + C (3′ )
3 ϕ3,

C (2′′ )
1 ϕ1 + C (2′′ )

2 ϕ2 + C (2′′ )
3 ϕ3,

C (3′′ )
1 ϕ1 + C (3′′ )

2 ϕ2 + C (3′′ )
3 ϕ3,

C (4′′ )
1 ϕ1 + C (4′′ )

2 ϕ2 + C (4′′ )
3 ϕ3,

π + C (4′ )
1 ϕ1 + C (4′ )

2 ϕ2 + C (4′ )
3 ϕ3.

(A41)

We read off the following relations:

(−1) × C (4′ )
k = C (1′′ )

k , for all k = 1, . . . , 3, (A42)

(−1) × C (3′ )
k = C (2′′ )

k , for all k = 1, . . . , 3, (A43)

(−1) × C (2′ )
k = C (3′′ )

k , for all k = 1, . . . , 3, (A44)

(−1) × C (1′ )
k = C (4′′ )

k , for all k = 1, . . . , 3, (A45)

and see that primed and unprimed coefficients trans-
form into each other under a multiplication by (−1).

(iv) n −→ n + 2
Also for the case of n odd, we use

Lemma 1 in order to decompose as

follows:{
ϕ1

π − ϕ1

}
+ · · · +

{
ϕn

π − ϕn

}

+
{

ϕn+1

π − ϕn+1

}
+
{

ϕn+2

π − ϕn+2

}

=
{∑n

k=1 C
( j′′ )
k ϕk

π + ∑n
k=1 C

( j′ )
k ϕk

}

+
{

ϕn+1

π − ϕn+1

}
+
{

ϕn+2

π − ϕn+2

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
k=1 C

( j′′ )
k ϕk + ϕn+1 + ϕn+2∑n

k=1 C
( j′′ )
k ϕk + π − ϕn+1 + ϕn+2∑n

k=1 C
( j′′ )
k ϕk + ϕn+1 + π − ϕn+2∑n

k=1 C
( j′′ )
k ϕk − ϕn+1 − ϕn+2

π + ∑n
k=1 C

( j′ )
k ϕk + ϕn+1 + ϕn+2∑n

k=1 C
( j′ )
k ϕk − ϕn+1 + ϕn+2∑n

k=1 C
( j′ )
k ϕk + ϕn+1 − ϕn+2

π + ∑n
k=1 C

( j′ )
k ϕk − ϕn+1 − ϕn+2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A46)

We see that the relation (A21) remains intact, also for
the case of n + 2.

For instance, multiply the last case in the result
(A46) (minus π ) by (−1) to obtain:

(−1)

[
n∑

k=1

C ( j′ )
k ϕk − ϕn+1 − ϕn+2

]

=
n∑

k=1

[−C ( j′ )
k

]
ϕk + ϕn+1 + ϕn+2

=
n∑

k=1

C ( j̃′′ )
k ϕk + ϕn+1 + ϕn+2. (A47)

The last expression resembles the one which is written
in the first case of Eq. (A46), which is however of
double-primed type, since no summand of π appears
in it. �

APPENDIX B: MATRIX-ALGEBRAS FOR DIFFERENT SPIN-REACTIONS

In this Appendix, we list the complete and orthogonal basis systems of matrices for all the processes discussed in
Secs. IV and VI.

(i) Pion-nucleon scattering (N = 2; cf. Sec. IV A)

σ̂D =
[

â 0
0 b̂

]
,

â b̂
σ0 σ̂ 1 +1 +1
P̌ σ̂ 4 +1 −1

, (B1)

σ̂AD =
[

0 â
b̂ 0

]
,

â b̂
Oa

1 = −Ř σ̂ 2 −i i
Oa

2 = Ǎ σ̂ 3 +1 +1
. (B2)
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(ii) Mathematical example for N = 3 (cf. Sec. IV B)

λ̃D =
⎡
⎣â 0 0

0 b̂ 0
0 0 ĉ

⎤
⎦,

â b̂ ĉ
O1 λ̃1 +√

2/3 +√
2/3 +√

2/3
O4 λ̃4 +1 −1 0
O9 λ̃9 +1/

√
3 +1/

√
3 −2/

√
3

, (B3)

λ̃AD =
⎡
⎣0 0 â

0 0 0
b̂ 0 0

⎤
⎦,

â b̂
Oa

1 λ̃6 +i −i
Oa

2 λ̃5 +1 +1
, (B4)

λ̃P1 =
⎡
⎣0 0 0

0 0 â
0 b̂ 0

⎤
⎦,

â b̂
Ob

1 λ̃8 +i −i
Ob

2 λ̃7 +1 +1
, (B5)

λ̃P2 =
⎡
⎣0 â 0

b̂ 0 0
0 0 0

⎤
⎦,

â b̂
Oc

1 λ̃3 +i −i
Oc

2 λ̃2 +1 +1
. (B6)

(iii) Photoproduction (N = 4; cf. Sec. IV C)

�̃D =

⎡
⎢⎢⎣

â 0 0 0
0 b̂ 0 0
0 0 ĉ 0
0 0 0 d̂

⎤
⎥⎥⎦ ,

â b̂ ĉ d̂
σ0 �̃1 +1 +1 +1 +1
−�̌ �̃4 +1 +1 −1 −1
−Ť �̃10 −1 +1 +1 −1
P̌ �̃12 −1 +1 −1 +1

, (B7)

�̃PR =

⎡
⎢⎢⎣

0 0 â 0
0 0 0 b̂
ĉ 0 0 0
0 d̂ 0 0

⎤
⎥⎥⎦ ,

â b̂ ĉ d̂
Oa

1+ �̃3 +i +i −i −i
Oa

2− �̃5 +1 −1 +1 −1
Oa

2+ �̃9 +1 +1 +1 +1
Oa

1− �̃11 +i −i −i +i

, (B8)

�̃AD =

⎡
⎢⎢⎣

0 0 0 â
0 0 b̂ 0
0 ĉ 0 0
d̂ 0 0 0

⎤
⎥⎥⎦ ,

â b̂ ĉ d̂
Ob

2− �̃14 +1 −1 −1 +1
Ob

1+ �̃7 +i +i −i −i
Ob

1− �̃16 +i −i +i −i
Ob

2+ �̃2 +1 +1 +1 +1

, (B9)

�̃PL =

⎡
⎢⎢⎣

0 â 0 0
b̂ 0 0 0
0 0 0 ĉ
0 0 d̂ 0

⎤
⎥⎥⎦ ,

â b̂ ĉ d̂
Oc

2− �̃6 +1 +1 −1 −1
Oc

1− �̃13 +i −i −i +i
Oc

1+ �̃8 +i −i +i −i
Oc

2+ �̃15 +1 +1 +1 +1

. (B10)

(iv) Electroproduction (N = 6; cf. Sec. VI)

�̃D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

â 0 0 0 0 0
0 b̂ 0 0 0 0
0 0 ĉ 0 0 0
0 0 0 d̂ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
R00

T �̃1 +1 +1 +1 +1
− cR00

T T �̃4 +1 +1 −1 −1
−R0y

T �̃10 −1 +1 +1 −1
−Ry′0

T �̃12 −1 +1 −1 +1

, (B11)

�̃PR1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 â 0 0 0
0 0 0 b̂ 0 0
ĉ 0 0 0 0 0
0 d̂ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Oa

1+ �̃3 +i +i −i −i
Oa

2− �̃5 +1 −1 +1 −1
Oa

2+ �̃9 +1 +1 +1 +1
Oa

1− �̃11 +i −i −i +i

, (B12)
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�̃AD1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 â 0 0
0 0 b̂ 0 0 0
0 ĉ 0 0 0 0
d̂ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Ob

2− �̃14 +1 −1 −1 +1
Ob

1+ �̃7 +i +i −i −i
Ob

1− �̃16 +i −i +i −i
Ob

2+ �̃2 +1 +1 +1 +1

, (B13)

�̃PL1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 â 0 0 0 0
b̂ 0 0 0 0 0
0 0 0 ĉ 0 0
0 0 d̂ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Oc

2− �̃6 +1 +1 −1 −1
Oc

1− �̃13 +i −i −i +i
Oc

1+ �̃8 +i −i +i −i
Oc

2+ �̃15 +1 +1 +1 +1

, (B14)

�̃D2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 â 0
0 0 0 0 0 b̂

⎤
⎥⎥⎥⎥⎥⎦,

â b̂
R00

L �̃17 +√
2 +√

2
R0y

L �̃18 +√
2 −√

2
, (B15)

�̃AD2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 â
0 0 0 0 b̂ 0

⎤
⎥⎥⎥⎥⎥⎦,

â b̂
Od

2 �̃19
√

2
√

2
Od

1 �̃20 +i
√

2 −i
√

2
, (B16)

�̃AD3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 â
0 0 0 0 b̂ 0
0 0 0 ĉ 0 0
0 0 d̂ 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Oe

2+ �̃21 +1 +1 +1 +1
Oe

2− �̃23 +1 −1 −1 +1
Oe

1− �̃29 +i −i +i −i
Oe

1+ �̃31 +i +i −i −i

, (B17)

�̃AD4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 â
0 0 0 0 b̂ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ĉ 0 0 0 0
d̂ 0 0 0 0 0

,

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
O f

2− �̃22 +1 −1 −1 +1
O f

1− �̃24 +i −i +i −i
O f

1+ �̃30 +i +i −i −i
O f

2+ �̃32 +1 +1 +1 +1

, (B18)

�̃PR2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 â 0
0 0 0 0 0 b̂
0 0 0 0 0 0
0 0 0 0 0 0
ĉ 0 0 0 0 0
0 d̂ 0 0 0 0

,

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Og

2− �̃25 +1 −1 +1 −1
Og

1− �̃26 +i −i −i +i
Og

1+ �̃33 +i +i −i −i
Og

2+ �̃34 +1 +1 +1 +1

, (B19)

�̃PR3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 â 0
0 0 0 0 0 b̂
0 0 ĉ 0 0 0
0 0 0 d̂ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

â b̂ ĉ d̂
Oh

2− �̃27 +1 −1 +1 −1
Oh

1− �̃28 +i −i −i +i
Oh

1+ �̃35 +i +i −i −i
Oh

2+ �̃36 +1 +1 +1 +1

. (B20)

APPENDIX C: DETERMINATION OF THE SUPERFLUOUS OBSERVABLES (Oc
1−,Oc

2−)
FROM THE MINIMAL COMPLETE SET (37)

For the following derivations, we can treat the right-hand sides of Eqs. (40) and (41) as constants, since it is assumed that
the moduli |bi| have already been determined. Inserting the definitions of the modified observables (26) and (27), the quadratic
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constraints become(
Oc

1+ + Oc
1−
)2 + (

Oc
2+ + Oc

2−
)2 = (

Oc
1+
)2 + 2Oc

1+Oc
1− + (

Oc
1−
)2 + (

Oc
2+
)2 + 2Oc

2+Oc
2− + (

Oc
2−
)2 = 4|b1|2|b2|2, (C1)(

Oc
1+ − Oc

1−
)2 + (

Oc
2+ − Oc

2−
)2 = (

Oc
1+
)2 − 2Oc

1+Oc
1− + (

Oc
1−
)2 + (

Oc
2+
)2 − 2Oc

2+Oc
2− + (

Oc
2−
)2 = 4|b3|2|b4|2. (C2)

We can add both of these equations in order to isolate the purely quadratic terms, or subtract both equations in order to isolate
the cross terms. Doing both, we get the following equivalent set of equations:

2κ1 := 2(|b1|2|b2|2 + |b3|2|b4|2) = {(
Oc

1+
)2 + (

Oc
1−
)2 + (

Oc
2+
)2 + (

Oc
2−
)2}

, (C3)

κ2 := |b1|2|b2|2 − |b3|2|b4|2 = {
Oc

1+Oc
1− + Oc

2+Oc
2−
}
, (C4)

where two new constants, κ1 and κ2, have been introduced as well.
The purely quadratic Eq. (C3) can be quickly solved for either of the two redundant observables. Solving for Oc

1−, we get

Oc
1− = η

∣∣Oc
1−
∣∣ = η

√
2κ1 − (

Oc
1+
)2 − (

Oc
2+
)2 − (

Oc
2−
)2

,

(C5)

where the variable η can take both values η = ±1 and it keeps track of the fact that the sign of Oc
1− is as of yet undetermined.

Next, we rewrite the constraint among the cross terms, Eq. (C4), as

Oc
1+Oc

1− = κ2 − Oc
2+Oc

2−. (C6)

The strategy is now to introduce the result (C5) for Oc
1− into this equation and then solve for Oc

2−. However, in Eq. (C5), the
observable Oc

2− appears under the square-root. Therefore, it is advisable to introduce the result (C5) into (C6) and then square
the whole equation. This results in the following:(

Oc
1+
)2{

2κ1 − (
Oc

1+
)2 − (

Oc
2+
)2 − (

Oc
2−
)2} = κ2

2 − 2κ2Oc
2+Oc

2− + (
Oc

2+
)2(Oc

2−
)2

. (C7)

Dividing this equation by (Oc
1+)2 and doing some more algebra, we arrive at the following quadratic equation for Oc

2−:

(
Oc

2−
)2 − 2κ2Oc

2+(
Oc

1+
)2 + (

Oc
2+
)2 O

c
2− +

[(
Oc

1+
)2 + κ2

2(
Oc

1+
)2 + (

Oc
2+
)2 − 2

κ1
(
Oc

1+
)2(

Oc
1+
)2 + (

Oc
2+
)2

]
= 0. (C8)

This equation generally has two solutions, which read

(
Oc

2−
)

I,II = κ2Oc
2+(

Oc
1+
)2 + (

Oc
2+
)2 ±

√√√√ κ2
2

(
Oc

2+
)2[(

Oc
1+
)2 + (

Oc
2+
)2]2 − (

Oc
1+
)2 − κ2

2(
Oc

1+
)2 + (

Oc
2+
)2 + 2

κ1
(
Oc

1+
)2(

Oc
1+
)2 + (

Oc
2+
)2

=
κ2Oc

2+ ±
√

2κ1
(
Oc

1+
)2((Oc

1+
)2 + (

Oc
2+
)2) − κ2

2

(
Oc

1+
)2 − (

Oc
1+
)2[(Oc

1+
)2 + (

Oc
2+
)2]2

(
Oc

1+
)2 + (

Oc
2+
)2 . (C9)

Thus, the observable Oc
2− is determined up to a twofold

discrete ambiguity. Inserting the result (C9) into the Eq. (C5)
obtained above, we get the following possible solutions for
Oc

1−:(
Oc

1−
)

(±,{I,II})

= ±
√

2κ1 − (
Oc

1+
)2 − (

Oc
2+
)2 − [(

Oc
2−
)

I,II

]2
. (C10)

We see that Oc
1− is determined up to a fourfold discrete

ambiguity, which also makes the overall ambiguity for the
determination of the two superfluous observables (Oc

1−,Oc
2−)

from just the group c alone, a fourfold one.
In order to resolve the ambiguities contained in the results

(C9) and (C10), one has to include the additional information
provided by the two observables from group b, which are

contained in the minimal complete set (37). As a preparatory
step, we note that the fundamental consistency relation (34)
can be rewritten as follows, in order to connect observables
from the groups c and b:

φ12 + φ34︸ ︷︷ ︸
c

= φ14 − φ23︸ ︷︷ ︸
b

. (C11)

Furthermore, we note the following two important addition-
theorems for the cosine and sine, evaluated on the relative
phases corresponding to the group c

cos (φ12 + φ34) = cos φ12 cos φ34 − sin φ12 sin φ34, (C12)

sin (φ12 + φ34) = sin φ12 cos φ34 + cos φ12 sin φ34. (C13)
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Combining the consistency relation (C11) with the cosine-
theorem (C12) and the definitions of the modified observables
Õ, we get the following result:

cos (φ14 − φ23)

≡ cos (φ12 + φ34)

= Õc
2+

|b1||b2|
Õc

2−
|b3||b4| − Õc

1+
|b1||b2|

Õc
1−

|b3||b4| , (C14)

which is equivalent to

Õc
2+Õc

2− − Õc
1+Õc

1− = |b1||b2||b3||b4| cos (φ14 − φ23).
(C15)

Similarly, when starting from the sine theorem (C13), one
obtains

Õc
1+Õc

2− + Õc
2+Õc

1− = |b1||b2||b3||b4| sin (φ14 − φ23).
(C16)

Thus, we managed to establish a connection between cross
terms of group-c observables on the left-hand side, and rela-
tive phases from group b on the right-hand side.

Next, we have to determine what the two group-b observ-
ables (Ob

2+,Ob
2−), which are both contained in the minimal

complete set (37), can tell us about said relative phases. In this
case, the actual observables (Ob

2+,Ob
2−) are fully equivalent

to the modified observables (Õb
2+, Õb

2−), and therefore also to
the cosines (cos φ14, cos φ23). Therefore, both relative phases
are known up to the discrete cosine-type ambiguities

φ±
14 =

{+α14,

−α14,
and φ±

23 =
{+α23,

−α23.
(C17)

These ambiguities furthermore imply the following possible
set of discrete values for the right-hand side of the consistency
relation (C11):

φ+
14 − φ+

23 = α14 − α23, (C18)

φ+
14 − φ−

23 = α14 + α23, (C19)

φ−
14 − φ+

23 = −α14 − α23, (C20)

φ−
14 − φ−

23 = −α14 + α23. (C21)

It is now time to turn to our cosine constraint (C15). How-
ever, due to the symmetry of the cosine function [cos(x) =
cos(−x)], the right-hand side of this constraint can only take
two possible different values under the four possible cases
given in Eqs. (C18) to (C21). We denote these two possibili-
ties by introducing two new variables, γ1 and γ2:

|b1||b2||b3||b4| cos (±α14 ∓ α23) =: 1
4γ1,2. (C22)

Inserting the definitions of the modified observables Õ, the
constraint (C15) therefore becomes(

Oc
2+ + Oc

2−
)(
Oc

2+ − Oc
2−
)

− (
Oc

1+ + Oc
1−
)(
Oc

1+ − Oc
1−
) = γ1,2. (C23)

Multiplying out all the brackets, we see that only the purely
quadratic terms remain(

Oc
2+
)2 − (

Oc
2−
)2 − (

Oc
1+
)2 + (

Oc
1−
)2 = γ1,2. (C24)

Inserting the solutions (C9) and (C10) into this equation, we
obtain

−2
[(
Oc

2−
)

I,II

]2 − 2
(
Oc

1+
)2 + 2κ1 = γ1,2. (C25)

We suppose that this equation can be used, at least numeri-
cally, to decide which of the two solutions (Oc

2−)I,II, as well
as which of the two possible γ ’s, is the correct one. This
probably works up to highly singular numerical special cases,
where multiple possibilities survive the check with Eq. (C25).

Suppose Eq. (C25) can resolve all of the ambiguities as
mentioned above. Then, since we also know which γ is the
correct one, the four cases given in Eqs. (C18) to (C21) reduce
to two possibilities, which are only distinct by an overall sign.
Denote the modulus of both those possibilities as α̃. Then, the
right-hand side of the sine constraint (C16) can also only take
two possible values:

|b1||b2||b3||b4| sin (±α̃) =: 1
4ξ1,2. (C26)

Here two new variables ξ1 and ξ2 have been defined. Intro-
ducing the definitions of the modified observables Õ, the sine
constraint becomes

(
Oc

1+ + Oc
1−
)(
Oc

2+ − Oc
2−
)

+ (
Oc

2+ + Oc
2−
)(
Oc

1+ − Oc
1−
) = ξ1,2. (C27)

Multiplying out all the brackets, only the following cross
terms remain:

Oc
1+Oc

2+ − Oc
1−Oc

2− = 1
2ξ1,2. (C28)

While the ambiguity for the observable Oc
2− has been re-

solved, there remains the overall sign ambiguity for Oc
1−.

Thus, we have to consider the cases

Oc
1+Oc

2+ ∓ ∣∣Oc
1−
∣∣Oc

2− = 1
2ξ1,2. (C29)

Equation (C29) is capable of determining the correct sign of
Oc

1−, as well as which of the ξ ’s is the correct one. This is
probably possible except for some singular numerical cases.

Therefore, we managed to determine the redundant observ-
ables (Oc

1−,Oc
2−) in terms of all the observables contained in

the minimal complete set (37).

APPENDIX D: MORAVCSIK-COMPLETE SETS FOR
PSEUDOSCALAR MESON ELECTROPRODUCTION

The Moravcsik-complete sets implied for the case of elec-
troproduction are listed here (see Sec. VI). We list only the
cases with the minimal number of seven nondiagonal observ-
ables in Tables X to XII, as well as the next-to-minimal cases
with a number of eight nondiagonal observables in Tables XIII
to XVI.
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TABLE X. The first subset of 16 from a total of 64 distinct
possibilities to form Moravcsik-complete sets for electroproduction
with a minimal number of observables is listed here (cf. Sec. VI).
In each case, 7 observables are listed which have to be picked in
addition to the 6 diagonal observables {R00

T , cR00
T T , R0y

T , Ry′0
T , R00

L , R0y
L }

for electroproduction (cf. Table VI). This implies 13 observables
in total for each case. Observe that each case contains exactly one
observable from the shape class d . The labeling-scheme for the sets
is chosen as follows: the letter A denotes the Moravcsik-complete
sets of 13 observables, the roman numerals i, . . ., viii indicate the
different possible combinations of shape classes and the regular
number (1, 2, 3, . . .) at the end counts the number of the set from
the respective group of shape class combinations. Furthermore, we
list each set in the physical notation Rβα

i [43] (cf. Table VI) and also,
directly below, in Nakayama’s systematic mathematical notation
On

ν±.

Set-Nr. Observables

A.i.1 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
cRx′x

LT
sRz′x

LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oh

2+ Oh
2−

A.i.2 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
cRx′x

LT
sRz′x

LT ′

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Oh

2+ Oh
2−

A.i.3 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

cRx′x
LT

sRz′x
LT ′

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 Oh

2+ Oh
2−

A.i.4 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
sRx′x

LT ′ cRz′x
LT

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oh

1+ Oh
1−

A.i.5 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

cRx′x
LT

sRz′x
LT ′

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Oh

2+ Oh
2−

A.i.6 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
sRx′x

LT ′ cRz′x
LT

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Oh

1+ Oh
1−

A.i.7 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

sRx′x
LT ′ cRz′x

LT

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 Oh

1+ Oh
1−

A.i.8 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

sRx′x
LT ′ cRz′x

LT

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Oh

1+ Oh
1−

A.ii.1 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
cR00

LT
cR0y

LT

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oe

2+ Oe
2−

A.ii.2 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
cR00

LT
cR0y

LT

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Oe

2+ Oe
2−

A.ii.3 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

cR00
LT

cR0y
LT

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 Oe

2+ Oe
2−

A.ii.4 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
sR00

LT ′ sR0y
LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Oe

1+ Oe
1−

A.ii.5 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

cR00
LT

cR0y
LT

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Oe

2+ Oe
2−

A.ii.6 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
sR00

LT ′ sR0y
LT ′

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Oe

1+ Oe
1−

A.ii.7 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

sR00
LT ′ sR0y

LT ′
Oa

1+ Oa
1− Oc

1+ Oc
1− Od

2 Oe
1+ Oe

1−
A.ii.8 sR0z

T T R0x
T T ′ Rz′z

T Rx′x
T Rz′x

L
sR00

LT ′ sR0y
LT ′

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Oe

1+ Oe
1−

TABLE XI. Table X is continued here. The second subset of 24
from a total of 64 distinct possibilities is shown. The labeling scheme
for the sets is explained in Table X.

Set-Nr. Observables

A.iii.1 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
cRx′x

LT
sRz′x

LT ′
Ob

2+ Ob
2− Oc

1+ Oc
1− Od

2 Oh
2+ Oh

2−
A.iii.2 Rz′0

T T ′
sRx′0

T T Rz′z
T Rx′x

T Rz′x
L

cRx′x
LT

sRz′x
LT ′

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Oh

2+ Oh
2−

A.iii.3 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 Oh

2+ Oh
2−

A.iii.4 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
sRx′x

LT ′ cRz′x
LT

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 Oh

1+ Oh
1−

A.iii.5 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Oh

2+ Oh
2−

A.iii.6 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
sRx′x

LT ′ cRz′x
LT

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Oh

1+ Oh
1−

A.iii.7 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

sRx′x
LT ′ cRz′x

LT

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 Oh

1+ Oh
1−

A.iii.8 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

sRx′x
LT ′ cRz′x

LT

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Oh

1+ Oh
1−

A.iv.1 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
cR00

LT
cR0y

LT

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 Oe

2+ Oe
2−

A.iv.2 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
cR00

LT
cR0y

LT

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Oe

2+ Oe
2−

A.iv.3 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

cR00
LT

cR0y
LT

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 Oe

2+ Oe
2−

A.iv.4 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
sR00

LT ′ sR0y
LT ′

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 Oe

1+ Oe
1−

A.iv.5 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

cR00
LT

cR0y
LT

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Oe

2+ Oe
2−

A.iv.6 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
sR00

LT ′ sR0y
LT ′

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Oe

1+ Oe
1−

A.iv.7 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

sR00
LT ′ sR0y

LT ′
Ob

1+ Ob
1− Oc

1+ Oc
1− Od

2 Oe
1+ Oe

1−
A.iv.8 sRz′0

T T Rx′0
T T ′ Rz′z

T Rx′x
T Rz′x

L
sR00

LT ′ sR0y
LT ′

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Oe

1+ Oe
1−

A.v.1 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
cRz′0

LT ′
sRx′0

LT

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Og

2+ Og
2−

A.v.2 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
cRz′0

LT ′
sRx′0

LT

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.v.3 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 Og

2+ Og
2−

A.v.4 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.v.5 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
sRz′0

LT
cRx′0

LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 Og

1+ Og
1−

A.v.6 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
sRz′0

LT
cRx′0

LT ′

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 Og

1+ Og
1−

A.v.7 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

sRz′0
LT

cRx′0
LT ′

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 Og

1+ Og
1−

A.v.8 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

sRz′0
LT

cRx′0
LT ′

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 Og

1+ Og
1−
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TABLE XII. Table XI is continued here. The third subset of 24
from a total of 64 distinct possibilities is shown. The labeling scheme
for the sets is explained in Table X.

Set-Nr. Observables

A.vi.1 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
cR0z

LT ′
sR0x

LT

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 O f

2+ O f
2−

A.vi.2 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
cR0z

LT ′
sR0x

LT

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 O f

2+ O f
2−

A.vi.3 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

cR0z
LT ′

sR0x
LT

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 O f

2+ O f
2−

A.vi.4 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

cR0z
LT ′

sR0x
LT

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 O f

2+ O f
2−

A.vi.5 R0z
T T ′

sR0x
T T Rx′z

T Rz′x
T Rx′x

L
sR0z

LT
cR0x

LT ′

Oa
2+ Oa

2− Oc
1+ Oc

1− Od
2 O f

1+ O f
1−

A.vi.6 R0z
T T ′

sR0x
T T Rz′z

T Rx′x
T Rz′x

L
sR0z

LT
cR0x

LT ′

Oa
2+ Oa

2− Oc
2+ Oc

2− Od
1 O f

1+ O f
1−

A.vi.7 sR0z
T T R0x

T T ′ Rx′z
T Rz′x

T Rx′x
L

sR0z
LT

cR0x
LT ′

Oa
1+ Oa

1− Oc
1+ Oc

1− Od
2 O f

1+ O f
1−

A.vi.8 sR0z
T T R0x

T T ′ Rz′z
T Rx′x

T Rz′x
L

sR0z
LT

cR0x
LT ′

Oa
1+ Oa

1− Oc
2+ Oc

2− Od
1 O f

1+ O f
1−

A.vii.1 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
cRz′0

LT ′
sRx′0

LT

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 Og

2+ Og
2−

A.vii.2 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
cRz′0

LT ′
sRx′0

LT

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.vii.3 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

cRz′0
LT ′

sRx′0
LT

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 Og

2+ Og
2−

A.vii.4 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

cRz′0
LT ′

sRx′0
LT

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Og

2+ Og
2−

A.vii.5 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
sRz′0

LT
cRx′0

LT ′

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 Og

1+ Og
1−

A.vii.6 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
sRz′0

LT
cRx′0

LT ′

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 Og

1+ Og
1−

A.vii.7 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

sRz′0
LT

cRx′0
LT ′

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 Og

1+ Og
1−

A.vii.8 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

sRz′0
LT

cRx′0
LT ′

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 Og

1+ Og
1−

A.viii.1 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
cR0z

LT ′
sR0x

LT

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 O f

2+ O f
2−

A.viii.2 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
cR0z

LT ′
sR0x

LT

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 O f

2+ O f
2−

A.viii.3 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 O f

2+ O f
2−

A.viii.4 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 O f

2+ O f
2−

A.viii.5 Rz′0
T T ′

sRx′0
T T Rx′z

T Rz′x
T Rx′x

L
sR0z

LT
cR0x

LT ′

Ob
2+ Ob

2− Oc
1+ Oc

1− Od
2 O f

1+ O f
1−

A.viii.6 Rz′0
T T ′

sRx′0
T T Rz′z

T Rx′x
T Rz′x

L
sR0z

LT
cR0x

LT ′

Ob
2+ Ob

2− Oc
2+ Oc

2− Od
1 O f

1+ O f
1−

A.viii.7 sRz′0
T T Rx′0

T T ′ Rx′z
T Rz′x

T Rx′x
L

sR0z
LT

cR0x
LT ′

Ob
1+ Ob

1− Oc
1+ Oc

1− Od
2 O f

1+ O f
1−

A.viii.8 sRz′0
T T Rx′0

T T ′ Rz′z
T Rx′x

T Rz′x
L

sR0z
LT

cR0x
LT ′

Ob
1+ Ob

1− Oc
2+ Oc

2− Od
1 O f

1+ O f
1−

TABLE XIII. The first 24 cases from a total of 96 distinct possi-
bilities to form Moravcsik-complete sets composed of 14 observables
for electroproduction (set-numbers starting with a “B”), are listed
here (cf. Sec. VI). In each case, the 8 given observables have to
be combined with the 6 diagonal observables for electroproduction
(cf. Table VI). Rβα

i is the physical notation and On
ν± the systematic

mathematical notation.

Set-Nr. Observables

B.i.1 Rx′z
T Rz′x

T Rz′z
T Rx′x

T
cRz′0

LT ′
sRx′0

LT
cRx′x

LT
sRz′x

LT ′
Oc

1+ Oc
1− Oc

2+ Oc
2− Og

2+ Og
2− Oh

2+ Oh
2−

B.i.2 Rz′z
T Rx′x

T
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

cRx′x
LT

sRz′x
LT ′

Oc
2+ Oc

2− Og
1+ Og

1− Og
2+ Og

2− Oh
2+ Oh

2−
B.i.3 Rz′z

T Rx′x
T

cRz′0
LT ′

sRx′0
LT

sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′
Oc

2+ Oc
2− Og

2+ Og
2− Oh

1+ Oh
1− Oh

2+ Oh
2−

B.i.4 Rx′z
T Rz′x

T Rz′z
T Rx′x

T
sRz′0

LT
cRx′0

LT ′ cRx′x
LT

sRz′x
LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Og
1+ Og

1− Oh
2+ Oh

2−
B.i.5 Rx′z

T Rz′x
T

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT
cRx′x

LT
sRz′x

LT ′
Oc

1+ Oc
1− Og

1+ Og
1− Og

2+ Og
2− Oh

2+ Oh
2−

B.i.6 Rx′z
T Rz′x

T
cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
1+ Oc

1− Og
2+ Og

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.i.7 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cRz′0
LT ′

sRx′0
LT

sRx′x
LT ′ cRz′x

LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Og
2+ Og

2− Oh
1+ Oh

1−
B.i.8 Rz′z

T Rx′x
T

sRz′0
LT

cRx′0
LT ′ sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
2+ Oc

2− Og
1+ Og

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.i.9 Rz′z

T Rx′x
T

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

Oc
2+ Oc

2− Og
1+ Og

1− Og
2+ Og

2− Oh
1+ Oh

1−
B.i.10 Rx′z

T Rz′x
T

sRz′0
LT

cRx′0
LT ′ sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
1+ Oc

1− Og
1+ Og

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.i.11 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sRz′0
LT

cRx′0
LT ′ sRx′x

LT ′ cRz′x
LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Og
1+ Og

1− Oh
1+ Oh

1−
B.i.12 Rx′z

T Rz′x
T

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

Oc
1+ Oc

1− Og
1+ Og

1− Og
2+ Og

2− Oh
1+ Oh

1−
B.ii.1 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

cRz′0
LT ′

sRx′0
LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
2+ Oe

2− Og
2+ Og

2−
B.ii.2 Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT

Oc
2+ Oc

2− Oe
2+ Oe

2− Og
1+ Og

1− Og
2+ Og

2−
B.ii.3 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
cRz′0

LT ′
sRx′0

LT

Oc
2+ Oc

2− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
2+ Og

2−
B.ii.4 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
2+ Oe

2− Og
1+ Og

1−
B.ii.5 Rx′z

T Rz′x
T

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT

Oc
1+ Oc

1− Oe
2+ Oe

2− Og
1+ Og

1− Og
2+ Og

2−
B.ii.6 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
cRz′0

LT ′
sRx′0

LT

Oc
1+ Oc

1− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
2+ Og

2−
B.ii.7 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cRz′0

LT ′
sRx′0

LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
1+ Oe

1− Og
2+ Og

2−
B.ii.8 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
sRz′0

LT
cRx′0

LT ′
Oc

2+ Oc
2− Oe

1+ Oe
1− Oe

2+ Oe
2− Og

1+ Og
1−

B.ii.9 Rz′z
T Rx′x

T
sR00

LT ′ sR0y
LT ′

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT

Oc
2+ Oc

2− Oe
1+ Oe

1− Og
1+ Og

1− Og
2+ Og

2−
B.ii.10 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
sRz′0

LT
cRx′0

LT ′
Oc

1+ Oc
1− Oe

1+ Oe
1− Oe

2+ Oe
2− Og

1+ Og
1−

B.ii.11 Rx′z
T Rz′x

T Rz′z
T Rx′x

T
sR00

LT ′ sR0y
LT ′

sRz′0
LT

cRx′0
LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
1+ Oe

1− Og
1+ Og

1−
B.ii.12 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

Oc
1+ Oc

1− Oe
1+ Oe

1− Og
1+ Og

1− Og
2+ Og

2−
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TABLE XIV. Table XIII is continued here. The second set of 24
cases from a total of 96 possibilities is listed.

Set-Nr. Observables

B.iii.1 Rx′z
T Rz′x

T Rz′z
T Rx′x

T
cR0z

LT ′
sR0x

LT
cRx′x

LT
sRz′x

LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− O f
2+ O f

2− Oh
2+ Oh

2−
B.iii.2 Rz′z

T Rx′x
T

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT
cRx′x

LT
sRz′x

LT ′

Oc
2+ Oc

2− O f
1+ O f

1− O f
2+ O f

2− Oh
2+ Oh

2−
B.iii.3 Rz′z

T Rx′x
T

cR0z
LT ′

sR0x
LT

sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′

Oc
2+ Oc

2− O f
2+ O f

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.iii.4 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sR0z
LT

cR0x
LT ′ cRx′x

LT
sRz′x

LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− O f
1+ O f

1− Oh
2+ Oh

2−
B.iii.5 Rx′z

T Rz′x
T

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT
cRx′x

LT
sRz′x

LT ′

Oc
1+ Oc

1− O f
1+ O f

1− O f
2+ O f

2− Oh
2+ Oh

2−
B.iii.6 Rx′z

T Rz′x
T

cR0z
LT ′

sR0x
LT

sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′

Oc
1+ Oc

1− O f
2+ O f

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.iii.7 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cR0z
LT ′

sR0x
LT

sRx′x
LT ′ cRz′x

LT

Oc
1+ Oc

1− Oc
2+ Oc

2− O f
2+ O f

2− Oh
1+ Oh

1−
B.iii.8 Rz′z

T Rx′x
T

sR0z
LT

cR0x
LT ′ sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
2+ Oc

2− O f
1+ O f

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.iii.9 Rz′z

T Rx′x
T

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

Oc
2+ Oc

2− O f
1+ O f

1− O f
2+ O f

2− Oh
1+ Oh

1−
B.iii.10 Rx′z

T Rz′x
T

sR0z
LT

cR0x
LT ′ sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oc
1+ Oc

1− O f
1+ O f

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.iii.11 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sR0z
LT

cR0x
LT ′ sRx′x

LT ′ cRz′x
LT

Oc
1+ Oc

1− Oc
2+ Oc

2− O f
1+ O f

1− Oh
1+ Oh

1−
B.iii.12 Rx′z

T Rz′x
T

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

Oc
1+ Oc

1− O f
1+ O f

1− O f
2+ O f

2− Oh
1+ Oh

1−
B.iv.1 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

cR0z
LT ′

sR0x
LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
2+ Oe

2− O f
2+ O f

2−
B.iv.2 Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT

Oc
2+ Oc

2− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−
B.iv.3 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
cR0z

LT ′
sR0x

LT

Oc
2+ Oc

2− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
2+ O f

2−
B.iv.4 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
2+ Oe

2− O f
1+ O f

1−
B.iv.5 Rx′z

T Rz′x
T

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT

Oc
1+ Oc

1− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−
B.iv.6 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
cR0z

LT ′
sR0x

LT

Oc
1+ Oc

1− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
2+ O f

2−
B.iv.7 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR0z

LT ′
sR0x

LT

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
1+ Oe

1− O f
2+ O f

2−
B.iv.8 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′

Oc
2+ Oc

2− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
1+ O f

1−
B.iv.9 Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

Oc
2+ Oc

2− Oe
1+ Oe

1− O f
1+ O f

1− O f
2+ O f

2−
B.iv.10 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′

Oc
1+ Oc

1− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
1+ O f

1−
B.iv.11 Rx′z

T Rz′x
T Rz′z

T Rx′x
T

sR00
LT ′ sR0y

LT ′
sR0z

LT
cR0x

LT ′

Oc
1+ Oc

1− Oc
2+ Oc

2− Oe
1+ Oe

1− O f
1+ O f

1−
B.iv.12 Rx′z

T Rz′x
T

sR00
LT ′ sR0y

LT ′
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

Oc
1+ Oc

1− Oe
1+ Oe

1− O f
1+ O f

1− O f
2+ O f

2−

TABLE XV. Table XIV is continued here. The third set of 24
cases from a total of 96 possibilities is listed.

Set-Nr. Observables

B.v.1 sR0z
T T R0x

T T ′ R0z
T T ′

sR0x
T T

cR00
LT

cR0y
LT

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oa
2+ Oa

2− Oe
2+ Oe

2− Og
2+ Og

2−
B.v.2 R0z

T T ′
sR0x

T T
cR00

LT
cR0y

LT
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

Oa
2+ Oa

2− Oe
2+ Oe

2− Og
1+ Og

1− Og
2+ Og

2−
B.v.3 R0z

T T ′
sR0x

T T
sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

cRz′0
LT ′

sRx′0
LT

Oa
2+ Oa

2− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
2+ Og

2−
B.v.4 sR0z

T T R0x
T T ′ cR00

LT
cR0y

LT
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oe
2+ Oe

2− Og
1+ Og

1− Og
2+ Og

2−
B.v.5 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
cR00

LT
cR0y

LT
sRz′0

LT
cRx′0

LT ′

Oa
1+ Oa

1− Oa
2+ Oa

2− Oe
2+ Oe

2− Og
1+ Og

1−
B.v.6 sR0z

T T R0x
T T ′ sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
2+ Og

2−
B.v.7 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
sR00

LT ′ sR0y
LT ′

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

1− Oa
2+ Oa

2− Oe
1+ Oe

1− Og
2+ Og

2−
B.v.8 R0z

T T ′
sR0x

T T
sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′

Oa
2+ Oa

2− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
1+ Og

1−
B.v.9 R0z

T T ′
sR0x

T T
sR00

LT ′ sR0y
LT ′

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT

Oa
2+ Oa

2− Oe
1+ Oe

1− Og
1+ Og

1− Og
2+ Og

2−
B.v.10 sR0z

T T R0x
T T ′ sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

sRz′0
LT

cRx′0
LT ′

Oa
1+ Oa

1− Oe
1+ Oe

1− Oe
2+ Oe

2− Og
1+ Og

1−
B.v.11 sR0z

T T R0x
T T ′ sR00

LT ′ sR0y
LT ′

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT

Oa
1+ Oa

1− Oe
1+ Oe

1− Og
1+ Og

1− Og
2+ Og

2−
B.v.12 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
sR00

LT ′ sR0y
LT ′

sRz′0
LT

cRx′0
LT ′

Oa
1+ Oa

1− Oa
2+ Oa

2− Oe
1+ Oe

1− Og
1+ Og

1−
B.vi.1 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
cR0z

LT ′
sR0x

LT
cRx′x

LT
sRz′x

LT ′

Oa
1+ Oa

1− Oa
2+ Oa

2− O f
2+ O f

2− Oh
2+ Oh

2−
B.vi.2 R0z

T T ′
sR0x

T T
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

cRx′x
LT

sRz′x
LT ′

Oa
2+ Oa

2− O f
1+ O f

1− O f
2+ O f

2− Oh
2+ Oh

2−
B.vi.3 R0z

T T ′
sR0x

T T
cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oa
2+ Oa

2− O f
2+ O f

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vi.4 sR0z

T T R0x
T T ′ sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

cRx′x
LT

sRz′x
LT ′

Oa
1+ Oa

1− O f
1+ O f

1− O f
2+ O f

2− Oh
2+ Oh

2−
B.vi.5 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
sR0z

LT
cR0x

LT ′ cRx′x
LT

sRz′x
LT ′

Oa
1+ Oa

1− Oa
2+ Oa

2− O f
1+ O f

1− Oh
2+ Oh

2−
B.vi.6 sR0z

T T R0x
T T ′ cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Oa
1+ Oa

1− O f
2+ O f

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vi.7 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
cR0z

LT ′
sR0x

LT
sRx′x

LT ′ cRz′x
LT

Oa
1+ Oa

1− Oa
2+ Oa

2− O f
2+ O f

2− Oh
1+ Oh

1−
B.vi.8 R0z

T T ′
sR0x

T T
sR0z

LT
cR0x

LT ′ sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′

Oa
2+ Oa

2− O f
1+ O f

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vi.9 R0z

T T ′
sR0x

T T
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

sRx′x
LT ′ cRz′x

LT

Oa
2+ Oa

2− O f
1+ O f

1− O f
2+ O f

2− Oh
1+ Oh

1−
B.vi.10 sR0z

T T R0x
T T ′ sR0z

LT
cR0x

LT ′ sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′

Oa
1+ Oa

1− O f
1+ O f

1− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vi.11 sR0z

T T R0x
T T ′ sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

sRx′x
LT ′ cRz′x

LT

Oa
1+ Oa

1− O f
1+ O f

1− O f
2+ O f

2− Oh
1+ Oh

1−
B.vi.12 sR0z

T T R0x
T T ′ R0z

T T ′
sR0x

T T
sR0z

LT
cR0x

LT ′ sRx′x
LT ′ cRz′x

LT

Oa
1+ Oa

1− Oa
2+ Oa

2− O f
1+ O f

1− Oh
1+ Oh

1−
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TABLE XVI. Table XV is continued here. The fourth set of 24
cases from a total of 96 possibilities is listed.

Set-Nr. Observables

B.vii.1 sRz′0
T T Rx′0

T T ′ Rz′0
T T ′

sRx′0
T T

cRz′0
LT ′

sRx′0
LT

cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Ob
2+ Ob

2− Og
2+ Og

2− Oh
2+ Oh

2−
B.vii.2 Rz′0

T T ′
sRx′0

T T
sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

cRx′x
LT

sRz′x
LT ′

Ob
2+ Ob

2− Og
1+ Og

1− Og
2+ Og

2− Oh
2+ Oh

2−
B.vii.3 Rz′0

T T ′
sRx′0

T T
cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Ob
2+ Ob

2− Og
2+ Og

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vii.4 sRz′0

T T Rx′0
T T ′ sRz′0

LT
cRx′0

LT ′ cRz′0
LT ′

sRx′0
LT

cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Og
1+ Og

1− Og
2+ Og

2− Oh
2+ Oh

2−
B.vii.5 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
sRz′0

LT
cRx′0

LT ′ cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Ob
2+ Ob

2− Og
1+ Og

1− Oh
2+ Oh

2−
B.vii.6 sRz′0

T T Rx′0
T T ′ cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

cRx′x
LT

sRz′x
LT ′

Ob
1+ Ob

1− Og
2+ Og

2− Oh
1+ Oh

1− Oh
2+ Oh

2−
B.vii.7 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

Ob
1+ Ob

1− Ob
2+ Ob

2− Og
2+ Og

2− Oh
1+ Oh

1−
B.vii.8 Rz′0

T T ′
sRx′0

T T
sRz′0

LT
cRx′0

LT ′ sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′
Ob

2+ Ob
2− Og

1+ Og
1− Oh

1+ Oh
1− Oh

2+ Oh
2−

B.vii.9 Rz′0
T T ′

sRx′0
T T

sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

Ob
2+ Ob

2− Og
1+ Og

1− Og
2+ Og

2− Oh
1+ Oh

1−
B.vii.10 sRz′0

T T Rx′0
T T ′ sRz′0

LT
cRx′0

LT ′ sRx′x
LT ′ cRz′x

LT
cRx′x

LT
sRz′x

LT ′
Ob

1+ Ob
1− Og

1+ Og
1− Oh

1+ Oh
1− Oh

2+ Oh
2−

B.vii.11 sRz′0
T T Rx′0

T T ′ sRz′0
LT

cRx′0
LT ′ cRz′0

LT ′
sRx′0

LT
sRx′x

LT ′ cRz′x
LT

Ob
1+ Ob

1− Og
1+ Og

1− Og
2+ Og

2− Oh
1+ Oh

1−
B.vii.12 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
sRz′0

LT
cRx′0

LT ′ sRx′x
LT ′ cRz′x

LT

Ob
1+ Ob

1− Ob
2+ Ob

2− Og
1+ Og

1− Oh
1+ Oh

1−

TABLE XVI. (Continued.)

Set-Nr. Observables

B.viii.1 sRz′0
T T Rx′0

T T ′ Rz′0
T T ′

sRx′0
T T

cR00
LT

cR0y
LT

cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Ob
2+ Ob

2− Oe
2+ Oe

2− O f
2+ O f

2−
B.viii.2 Rz′0

T T ′
sRx′0

T T
cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

Ob
2+ Ob

2− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−
B.viii.3 Rz′0

T T ′
sRx′0

T T
sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

cR0z
LT ′

sR0x
LT

Ob
2+ Ob

2− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
2+ O f

2−
B.viii.4 sRz′0

T T Rx′0
T T ′ cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′ cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Oe
2+ Oe

2− O f
1+ O f

1− O f
2+ O f

2−
B.viii.5 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
cR00

LT
cR0y

LT
sR0z

LT
cR0x

LT ′

Ob
1+ Ob

1− Ob
2+ Ob

2− Oe
2+ Oe

2− O f
1+ O f

1−
B.viii.6 sRz′0

T T Rx′0
T T ′ sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
2+ O f

2−
B.viii.7 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
sR00

LT ′ sR0y
LT ′

cR0z
LT ′

sR0x
LT

Ob
1+ Ob

1− Ob
2+ Ob

2− Oe
1+ Oe

1− O f
2+ O f

2−
B.viii.8 Rz′0

T T ′
sRx′0

T T
sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′

Ob
2+ Ob

2− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
1+ O f

1−
B.viii.9 Rz′0

T T ′
sRx′0

T T
sR00

LT ′ sR0y
LT ′

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT

Ob
2+ Ob

2− Oe
1+ Oe

1− O f
1+ O f

1− O f
2+ O f

2−
B.viii.10 sRz′0

T T Rx′0
T T ′ sR00

LT ′ sR0y
LT ′

cR00
LT

cR0y
LT

sR0z
LT

cR0x
LT ′

Ob
1+ Ob

1− Oe
1+ Oe

1− Oe
2+ Oe

2− O f
1+ O f

1−
B.viii.11 sRz′0

T T Rx′0
T T ′ sR00

LT ′ sR0y
LT ′

sR0z
LT

cR0x
LT ′ cR0z

LT ′
sR0x

LT

Ob
1+ Ob

1− Oe
1+ Oe

1− O f
1+ O f

1− O f
2+ O f

2−
B.viii.12 sRz′0

T T Rx′0
T T ′ Rz′0

T T ′
sRx′0

T T
sR00

LT ′ sR0y
LT ′

sR0z
LT

cR0x
LT ′

Ob
1+ Ob

1− Ob
2+ Ob

2− Oe
1+ Oe

1− O f
1+ O f

1−
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