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Investigation of neutron emission through the local odd-even effect as a function
of the fission product kinetic energy
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A recent experimental campaign was completed at the LOHENGRIN spectrometer. It was dedicated to the
determination of the local odd-even effect as a function of the fission product kinetic energy for a given mass.
We discuss here the mass A = 139 produced from the thermal neutron induced fission of 241Pu. A comparison
with the Monte Carlo code FIFRELIN allows one to interpret these data in regards to the neutron emission process.
The long term goal is to test and validate the phenomenological temperature ratio law used in FIFRELIN to split
the total excitation energy between both fission fragments.
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I. INTRODUCTION

Studies of new and current nuclear reactors rely increas-
ingly on numerical tools. Because of the increase in com-
putational power and the improvement of neutron transport
codes, limits on precision are now shifting towards inputs
derived from evaluated nuclear data. These evaluated data
are a combination of experimental and theoretical knowledge.
One way to improve such evaluated data is to perform more
accurate measurements and develop more physical models. In
this framework, the nuclear fission process [1,2] continues
to challenge physicists despite being discovered 80 years
ago. Plenty of models are available with different funda-
mental hypotheses to explain nuclear fission [3–10]. Several
experimental fission observables have been studied such as
mass and isotopic yields. Among these fission observables, an
investigation of the local proton odd-even effect (after neutron
emission) δZ (A) can be performed:

δZ (A) =
∑

e Y (A, Ze) − ∑
o Y (A, Zo)

Y (A)
(1)

where indices e and o correspond to even and odd parities
respectively. The mass and isotopic yields (after neutron
emission) are referred as Y (A) and Y (A, Z ) respectively.

Moreover the dependence of δZ (A) on fission product
kinetic energy could be used to deduce the total excitation
energy sharing at scission between both fission fragments.
Determination of the excitation energy repartition is essential
in the calculation of the prompt neutron and gamma spectra.
This observable is complementary to the isomeric ratio mea-
surements as a function of the fission product kinetic energy
[11].
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In the past, the global proton odd-even effect δZ was
investigated as a function of the fission product kinetic en-
ergy [12–14]. It showed that δZ increases with the fission
product kinetic energy for the three reactions investigated
[232U (nth, f ), 233U (nth, f ), 229Th (nth, f )].

In this article, we first introduce a new methodology for
data taking and analysis of isotopic yield measurements with
the LOHENGRIN spectrometer. It will be illustrated with the
mass A = 139. Then, we report the measurement of the local
odd-even effect as a function of the fission product kinetic
energy for the mass A = 139 in the thermal neutron induced
fission of 241Pu.

II. EXPERIMENTAL SETUP

The δZ (A) measurement was carried out using the LO-
HENGRIN recoil separator for fission products [15] located
at the high-flux reactor of Institut Laue-Langevin (ILL) in
Grenoble, France. The fission target was placed in a beam tube
under a neutron flux of about 5 × 1014 n cm−2s−1. In order
to reduce the target self-sputtering and improve its burn-up
behavior control [16], the target is covered by a thin nickel
foil (≈0.25 μm).

The emerging ionized fission products are first deflected by
an horizontal magnetic field and then by a vertical electrostatic
field. Note that the spectrometer operates under secondary
vacuum (≈10−6 mbar). Fission products with the same mass
over ionic charge A

q and kinetic energy over ionic charge Ek
q

ratios have the same trajectory. Finally, the last part of the
LOHENGRIN spectrometer is a focusing magnet [17] that
can be switched on or (switched) off. It allows us to reach
two experimental positions to disentangle the selected triplets
(A, q, Ek). The “straight” position enables one to measure the
mass yields by using a double anode Frisch grid ionization
chamber (IC) as a detector. The “curved” position takes
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advantage of the second magnetic field to increase particle
density at the focal plane position. In other words, it refocuses
ions with different kinetic energies and deflects them towards
an array of detectors. In this case, fission products end up
on a movable tape (inside a vacuum chamber) surrounded by
two clovers. Each clover contains four high purity germanium
(HPGe) detectors. It is designed to calculate the isotopic
yields by measuring the characteristic γ -ray energy for each
isotope decay. Shown results mainly come from the “curved”
position setup. Note that all quantities used in the following
(kinetic energy, mass, etc.) correspond to post neutron emis-
sion quantities unless otherwise specified.

III. DATA TAKING AND ANALYSIS

The local odd-even effect depends directly on the isotopic
and mass yields. In this section, descriptions of mass and
isotopic yield measurements are shown. More details can be
found in Refs. [18–21].

A. Mass yield

As previously explained, the LOHENGRIN spectrometer
selects triplets (A, Ek, q). To detect the mass of the incoming
ions, an IC is used at the “straight” position to measure the
kinetic energy and therefore the associated mass. The number
of counts N (A, q, Ek ± �Ek

2 ,�tm, t ) extracted from the IC de-
pends on the mass A, the ionic charge q, the kinetic energy Ek ,
the LOHENGRIN energy resolution �Ek , the measurement
time �tm, and the time t since the beginning of the experiment.
Indeed since the target is under harsh conditions [16], the
fissile material significantly evolves with time. Measurements
of the ionic charge distribution and kinetic energy distribution
of the same mass (A = 136) are regularly done throughout the
whole experimental period in order to take into account this
effect. This observable is called burn-up (BU). Finally, the
relative mass yield N (A) is written

N (A) =
∑
Ek

∑
q

N (A, q, Ek,�tm, t )

BU(t ) × �tm × Ek
, (2)

where the division by Ek accounts for the energy acceptance
�Ek which is proportional to Ek . Because of the limited beam
time, it is impossible to thoroughly measure all Ek and q.
Moreover, it has been shown that a correlation exists between
Ek and q [18–20,22,23]. To take into account this effect, at
least three measurements of the kinetic energy distribution
are done at three different ionic charges qi=1,...,3. Then, two
linear fits are performed: one of the mean kinetic energy Ek

as a function of the ionic charge and one of the standard
deviation σEk as a function of the ionic charge. Therefore,
three estimations of the relative mass yield N (A, qi ) are com-
puted. An additional ionic charge distribution measurement is
performed, for a fixed kinetic energy E×

k . This measurement
allows one to weight each kinetic energy distribution by the
probability of production of the given ionic charge P(qi ). Note
that this distribution is corrected from the correlation between

Ek and q as explained previously. Finally, Eq. (2) becomes

N (A, qi ) = 1

P(qi )

∑
Ek

N (A, qi, Ek,�tm, t )

BU(t ) × �tm × Ek
,

P(q) ∝ N (A, q, E×
k ,�tm, t ) exp

(
− (Ek (q) − E×

k )2

2σ 2
Ek

(q)

)
,

∑
q

P(q) = 1. (3)

These relative mass yields are then combined to have one final
estimation of the mass yield N (A) by taking into account
the covariance matrix Ci j = Cov(N (A, qi ),N (A, q j )). The
dependences between the N (A, qi ) are held by P(q) and
BU(t ). Therefore, P(q) and BU(t ) are used to build this
covariance matrix as detailed in Refs [20,21]. N (A) is written

N (A) =
⎛
⎝∑

i, j

C−1
i j

⎞
⎠

−1⎛
⎝∑

i, j

C−1
i j N (

A, q j
)⎞⎠. (4)

Then a χ2 test is performed with a confidence level of 90%. If
it is unsuccessful, then an additional independent uncertainty
is added to the diagonal elements of the covariance matrix
C [20]. This additional uncertainty reflects the dispersion of
the measurements and the limits of the procedure explained
above. At the end, the absolute mass yield is

Y (A) = 2 × N (A)∑
A N (A)

. (5)

However, it is difficult to measure all masses on the LO-
HENGRIN facility. Nevertheless, the collaboration aim is
to provide absolute mass yields independently from nuclear
databases. Therefore, at least 99.5% of a mass yield peak
(heavy or light) is measured. The induced bias is taken into
account in the final uncertainty for all measured masses. It
should be noted that several campaigns are required to obtain
enough experimental data. At least ten masses are common
between each campaign. A cross normalization between each
campaign is performed using these masses.

Here is a synthesis of how measurements and associated
analysis of the mass yields are performed on the LOHEN-
GRIN recoil spectrometer:

(1) Measurements of at least three kinetic energy distribu-
tions for different ionic charges qi and one ionic charge
distribution at E×

k with the IC.
(2) Computation of the correlation between Ek and q

through linear fits of Ek (q) and σEk (q).
(3) Computation of the relative mass yield for each kinetic

energy distribution N (A, qi ) using Eq. (3).
(4) Computation of the average relative mass yield N (A)

using Eq. (4).
(5) Computation of the absolute mass yield using Eq. (5).

B. Isotopic yield

Assessment of nuclear charge of fission products is per-
formed through the measurement of the associated β− delayed
γ emission. To detect these γ rays, two clovers are used at
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FIG. 1. Scheme of the isotopic evolution N (t ) over time. The full
lines correspond to the deposited isotopes on the tape and on the
vacuum chamber. When the tape is moved and the LOHENGRIN
setting is changed, a background can be detected and must be
subtracted. This background is coming from ions implanted into
the window support grid and ions scattered to the vacuum chamber
edges.

the “curved” position. Each clover is made of four HPGe
detectors and surrounds a vacuum chamber with a movable
tape inside. The beam associated to a specific triplet selec-
tion (A, q, Ek ) is implanted on the movable tape. During the
implantation (beam ON), the associated γ rays are recorded
during a time range �tm = 20–30 minutes. Then, the tape is
moved to remove the remaining radioactivity (beam OFF). A
new measurement (beam OFF) of �tm = 20–30 minutes is
started in order to estimate the background coming from the
vacuum chamber. Indeed the beam is not perfectly collimated.
Therefore, certain amount of ions are implanted on the vac-
uum chamber instead of the movable tape. After measuring
the background, the LOHENGRIN setting is changed to a
new triplet selection (A′, q′, E ′

k ) and a new collection is started
(beam ON). Figure 1 sums up the method.

For a given mass, only the ionic charge distribution is
measured with the γ detectors at a given kinetic energy E×

k ,
because of the limited beam time. The number of decays Nd

of an isotope is written

Ndγ
(A, Z, q, E×

k ,�tm, t ) = Nγ (A, Z, q, E×
k ,�tm, t )

εγ Iγ fγ
. (6)

The number of counts Nγ of a given γ transition is extracted
using program TV [24]. The efficiency εγ is extracted from
a Monte Carlo simulation of the experimental setup. Then,
it is validated using experimental data from point sources
(60Co, 133Ba, 207Bi) and online beam isotopes (96Y, 134Te),
both covering the range 100 keV – 2.3 MeV. The intensity
Iγ has been taken from a nuclear database [25]. Iγ is the
product of a relative factor I rel

γ and a normalization factor
Iγ
norm: Iγ = I rel

γ Iγ
norm. Finally, the sum effect correction factor

fγ is calculated with the TRUECOINC software [26]. This
factor reflects the misestimation of the detected γ transition.
Sometimes two successive γ rays (Eγ1 , Eγ2 ) of the same
cascade can be detected simultaneously as one γ transition

(Eγ = Eγ1 + Eγ2 ). At this step, the different γ rays are used to
estimate an average number of decays, Nd :

Nd (A, Z, q, E×
k ,�tm, t )

=
⎛
⎝∑

i, j

C−1
i j

⎞
⎠

−1⎛
⎝∑

i, j

C−1
i j Ndγ j

(A, Z, q, E×
k ,�tm, t )

⎞
⎠

(7)

with Ci j = Cov(Ndγi
, Ndγ j

). Details on the building of this
matrix can be found in Ref. [20]. Similarly to the mass
yield case, if the χ2 test with a confidence level of 90% is
unsuccessful, an additional uncertainty is taken into account.
Only contributions coming from fission (and not from the
deposited background) are of interest. Assessment of the num-
ber of decays coming from the contamination of the vacuum
chamber Ndcont is detailed in the last section of Appendix A.
Therefore the corrected number of decays coming from the
nuclear fission process Nd f is written

Nd f (A, Z, q, E×
k ,�tm, t )

= Nd (A, Z, q, E×
k ,�tm, t )

− Ndcont (A, Z, q, E×
k ,�tm, t ). (8)

The next step is to compute the fission rate τ by resolving the
matrix form of the Bateman equations:

τ(A, q, E×
k , t ) = BNd f (A, q, E×

k ,�tm, t ) (9)

with τ(A, q, E×
k , t ) the vector of τ (A, Z, q, E×

k , t ) and
Nd f (A, q, E×

k ,�tm, t ) the vector of Nd f (A, Z, q, E×
k ,�tm, t ).

B [from Eq. (A11)] values depend on the branching ratios
(from one isotope to another), the decay probability λ of each
isotope of the isobaric chain, and the acquisition time �tm. See
Appendix for more details on corrections involving Bateman
equations.

Then, the fission rate is corrected by the probability of
production of the given kinetic energy P(E×

k ) to assess the
relative isotopic yield N (A, Z ). However, this probability
also depends on the ionic charge as previously explained.
Therefore, this probability is expressed as

P(E×
k ) =

∫ E×
k + �E×

k
2

E×
k − �E×

k
2

ρ(Ek ) dEk,

ρ(Ek ) = 1√
2πσEk (q)

exp

(
− [Ek − Ek (q)]2

2σEk (q)2

)
. (10)

Quantities Ek (q) and σEk (q) are derived from the measure-
ments of the (at least) three different kinetic energy distribu-
tions obtained with the IC. A linear evolution is expected for
both quantities. This approach implies two approximations.
First a Gaussian form of the kinetic energy distribution is
supposed. Second, the probability P(Ek ) is supposed to be
independent of the isotope. Indeed, the kinetic energy dis-
tribution measured with the IC is related to the mass (here
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A = 139) and not the isotope. N (A, Z ) is then written

N (A, Z ) =
∑

q

τ (A, Z, q, E×
k , t )

BU(t ) × P(E×
k )

. (11)

The absolute normalization is achieved in two steps. First, the
isobaric chain A = 139 is considered as a reference. Indeed,
four isotopes, 139I, 139Xe, 139Cs, and 139Ba, are detected
for this chain. The independent yield sum of these four
isotopes corresponds approximately to 99.5% of the mass
yield according to the nuclear data libraries [27,28]. The bias
from the nonobserved 0.5% is taken into account in the final
uncertainty similarly to the mass yield absolute normalization.
This latter is negligible by comparison with the other sources
of uncertainties. Then it can be written

Y (A = 139) = k139

∑
Z

N (A = 139, Z ). (12)

Finally, the absolute isotopic yields can be written for all
masses and isotopes:

Y (A, Z ) = k139 × N (A, Z ). (13)

However, this solution is not optimal since the absolute iso-
topic yields of all the measured masses are dependent on the
ones from mass 139. Unfortunately, this is the only solution
to get absolute isotopic yields since not all nuclei for a given
mass are detected (except for A = 139).

Below is a synthesis of how measurements and associated
analysis of the isotopic yields are performed on the LOHEN-
GRIN recoil spectrometer:

(1) Carrying out the same procedure as for the mass yield
case.

(2) Measurement of the ionic charge distribution with
HPGe clovers by implanting ions on a movable tape.
Between each ionic charge measurement, a back-
ground measurement is performed (see Fig. 1).

(3) Extraction of the number of counts for each detected
γ -rays using program TV.

(4) Computation of the number of decays for each γ ray
using Eq. (6).

(5) Computation of the average number of decays using
Eq. (7).

(6) Correction of the background coming from the vac-
uum chamber using Eq. (8).

(7) Resolution of the Bateman equations to assess the
fission rate τ using Eq. (9).

(8) Correction of the correlation between Ek and q using
Eq. (10).

(9) Computation of the relative isotopic yield using
Eq. (11).

(10) Computation of the absolute isotopic yield using
Eqs. (12) and (13).

Figure 2 shows the absolute isotopic yields for the mass
A = 139 with the associated covariance matrix for two cases.
On the left is shown the case using the actual uncertainties of
Iγ and on the right is shown the case using the uncertainty
of the normalization intensity Iγ

norm = 0. In the latter, the
total uncertainty is reduced by a factor of 4. The covariance

FIG. 2. Absolute isotopic yields for the mass A = 139 with all
the uncertainties propagated (left) and for the case where �Iγ

norm = 0
(right). A comparison with the JEFF-3.3 library is also displayed.
Correlation matrices in both cases are also displayed (bottom).

matrix is also modified. In other words, the uncertainties are
mainly coming from nuclear decay data. By improving these
data, more accurate isotopic yields can be extracted. Finally,
a comparison with the JEFF-3.3 database is also displayed
and shows an overall good agreement. The experimental
data were recorded in May 2013 [29] using a 7 × 0.5 cm2

target of 282 μg cm−2 of 241Pu covered by a thin nickel
foil (≈0.25 μm). This campaign was designed to measure
isotopic yields for 8 masses. The derived local odd-even effect
is δZ (A = 139) = 0.36 ± 0.32 in comparison with JEFF-3.3,
δJEFF-3.3

Z (A = 139) = 0.27 ± 0.12.

IV. FROM LOCAL ODD-EVEN EFFECT TO NEUTRON
EMISSION USING FIFRELIN

In this work, the local odd-even effect δZ (A) as a function
of the fission product kinetic energy for the mass A = 139 is
computed. An experimental campaign in July 2016 [30] was
carried out with a thinner target (208 μg cm−2 of 241Pu on
7 × 0.5 cm2) still covered by a thin nickel foil (≈0.25 μm).
Here, all the steps described before are not necessary to extract
the isotopic yields. For instance, it is counterproductive to
correct P(Ek ), since an evolution of the fission product kinetic
energy is investigated. The absolute normalization is also not
necessary.

To interpret these results, a comparison with the Monte
Carlo code FIFRELIN is performed. The aim is to test FIFRELIN

assumptions. If an agreement is reached between the exper-
imental data and FIFRELIN calculations, we can get feedback
from the models used by FIFRELIN (the temperature ratio law
for instance). However, energy loss corrections are needed to
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go from the calculations (which directly reflect the fission pro-
cess) to the experimental data. In the following part, details on
the input data and the models used by FIFRELIN are presented.
The energy loss correction process is also described. Finally,
a sensitivity study on the main ingredients of the simulation
will be shown.

A. FIFRELIN

FIssion Fragment Evaporation Leading to an Investigation
of Nuclear data (FIFRELIN) [31–33] is a Monte Carlo code de-
veloped at CEA Cadarache since 2010. Initially, the aim was
to describe the deexcitation of fission fragments from their
formation (after being fully accelerated) until they reach their
ground state or a metastable state which then decay through
β decay. Nowadays, the code can theoretically describe the
deexcitation of any nucleus starting from a given nuclear
level. FIFRELIN relies on preneutron nuclear data and models
to compute the most accurate deexcitation path. The code can
be split into two parts.

First, the fission process creates two fission fragments
with a given mass, nuclear charge, kinetic energy, excitation
energy, spin, and parity. Note that no complete set of exper-
imental data exists for the reaction 241Pu (nth, f ). Therefore,
the preneutron isotopic yields Y (A, Z ) and total kinetic energy
(TKE) yields Y (TKE, A) are coming from the GEF code
[34]. FIFRELIN samples the light fission fragment mass and
nuclear charge using the Y (A, Z ) distribution. The total kinetic
energy is then sampled using the Y (TKE, A) distribution. The
conservation laws allow one to assess the complementary
heavy fragment characteristics (A, Z ) and the associated ki-
netic energies (of both fragments). The repartition of the total
excitation energy is mainly driven by a phenomenological
temperature ratio law RT(A) with two free parameters RTmin

and RTmax. By definition, there are three anchor points in the
(A, RT) space:

RT(ACN/2) = 1, RT(ACN − 78) = RTmin, RT(132) = RTmax

with CN the compound nucleus. A linear interpolation is then
made between each point. Finally the spin of each fission
fragment is sampled from

P(J ) ∝ (2J + 1) exp

(
− (J + 1/2)2

2σ 2

)
(14)

with σ 2 a free parameter for each fission fragment mass
region (light and heavy). Those four free parameters are set
using a target observable. Here, the target observable is the
total average prompt neutron multiplicity ν = 2.92 [28]. The
four parameters which reproduce this value are RTmin = 0.5,
RTmax = 1.2, σL = 7.2h̄, and σH = 8.6h̄.

Second, both fission fragments will emit prompt
(n, γ , e−) particles until they reach a β decaying state.
To do so, FIFRELIN completes the experimental nuclear
level schemes coming from RIPL-3 database [35,36] by
using nuclear level density (here the composite Gilbert and
Cameron model [37]) and spin models (here the back-shifted
Fermi gas model [35,36]). Once the nuclear nuclear level
scheme is complete, the probability to go from a nuclear
level i to a nuclear level j by emitting either n, γ , or e− is

calculated within the notion of nuclear realization [33,38].
In this framework, different nuclear level schemes (for a
given isotope) can be sampled, and for each sampled nuclear
level scheme different deexcitation paths can be computed.
For each emitted particle, different ingredients are used.
The probabilities associated to the prompt neutron emission
are calculated thanks to neutron transmission coefficients
derived from an optical model (here the Koning-Delaroche
model [39]). This optical model is used through the ECIS

code [40]. The probabilities associated with the prompt γ

emission are derived from the γ strength function (here,
the enhanced generalized Lorentzian [41] model) and
experimental information. The probabilities associated to the
prompt e− emission are calculated with the BRICC code [42]
or come from experimental data.

FIFRELIN can compute the isotopic yields as a function of
the fission product kinetic energy through an event-by-event
analysis. However, the kinetic energy (after prompt neutron
emission) computed by FIFRELIN needs to be corrected for the
energy loss of fission products inside the target and its cover.
To take it into account, FIFRELIN kinetic energy distributions
are convoluted by a Landau distribution [43] which models
the energy loss of ions through a thin layer [20,44]. Two free
parameters are adjusted in order to reproduce the experimental
kinetic energy distributions. Here, the energy loss is consid-
ered to be identical for each isotope of a given mass. Also,
the parameters are adjusted for each BU point since the target
and cover thickness may evolve over time (self-sputtering,
oxidation of Ni foil, diffusion into backing [16]), Therefore,
the mass A = 136 is used to fix the free parameters (see top
plot in Fig. 3). Then, these fixed parameters are used to correct
the kinetic energy distributions for A = 139 (see bottom plot
in Fig. 3).

The comparison of experimental data and FIFRELIN of the
local odd-even effect is shown in Fig. 4. The experimental
point from the May 2013 campaign was added in order to
show the reproducibility of the local odd-even effect using
the LOHENGRIN spectrometer. In the following, only ex-
perimental data from July 2016 will be presented. Although
FIFRELIN seems to overestimate the local odd-even effect,
the same trend as in the experimental data can be observed.
Finally, it is difficult to conclude on the agreement between
FIFRELIN and the experimental data due to the large experi-
mental uncertainties.

Therefore, a more precise and discriminant observable is
needed to better estimate the difference between FIFRELIN

calculations and the experimental data. The relative isotopic
cumulative yields Nc integrated over a period of time of
�tm = 30 minutes fit these specifications:

Nc(A, Z, E×
k ,�tm) =

∑
q

Nd (A, q, E×
k ,�tm, t )

BU(t )
,

Pc(A, Z, E×
k ,�tm) = Nc(A, Z, E×

k ,�tm)∑
Z Nc(A, Z, E×

k ,�tm)
, (15)

with Pc the relative isotopic cumulative yield probability. To
compare simulations with Pc, the Bateman equation resolu-
tion B−1 is applied to simulated data. Figure 5 shows the
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FIG. 3. Comparison between experimental kinetic energy dis-
tribution (black circle) and FIFRELIN calculation (red points). An
agreement is reached by convoluting FIFRELIN with the Landau
distribution. Parameters were fixed thanks to the mass A = 136 (top)
and applied to mass A = 139 (bottom). The lines are to guide the eye.
The experimental kinetic energy refers to the LOHENGRIN selected
energy, i.e., after the cover foil.

FIG. 4. Comparison between experimental data from the July
2016 campaign (black points) and from the May 2013 campaign
(green point) and FIFRELIN calculations with (blue curve) and without
(red curve) energy loss corrections. The experimental kinetic energy
refers to the LOHENGRIN selected energy, i.e., after the cover foil.

FIG. 5. Relative cumulated isotopic yield probability for experi-
mental data (black points) and FIFRELIN calculations after energy loss
corrections (red points). The experimental kinetic energy refers to the
LOHENGRIN selected energy, i.e., after the cover foil.

results of such a comparison. The agreement between the
experimental data and FIFRELIN is satisfactory even if a slight
overestimation of FIFRELIN for Xe is observed. Indeed, all
the experimental data (except the 54 MeV point for I) are
compatible with FIFRELIN with a confidence level of 90%. In
other words, FIFRELIN is validated in regards to the kinetic
energy dependence of the mass A = 139.

B. Test of the model assumption

The next step is to look at the local odd-even effect as a
function of the fission product kinetic energy computed by
FIFRELIN without any energy loss correction. Figure 6 shows
δZ (A) as a function of the fission product kinetic energy (top)
and the excitation energy (before neutron emission) (bottom).
The different color points represent the δZ (A) for fission
events with different emitted neutrons. The results show that
the structure of the δZ (A) depends on the number of emitted
neutrons.

It must be reminded that the adjusted parameters of FIFRE-
LIN were fixed according to the average total prompt neutron
emission ν and not by using the relative cumulative yields
of the mass A = 139. Therefore, the predictive power of
FIFRELIN can be tested with these new experimental data.
The good agreement between FIFRELIN and the experimental
data indicates that the underlying hypotheses used in FIFRELIN

are satisfactory. According to Fig. 6, δZ (A) is driven by the
neutron emission process. The neutron emission probability
as a function of the excitation energy shows a steplike func-
tion, which can be interpreted as the average neutron energy
separation to emit 1, 2, . . . neutrons. In FIFRELIN, this process
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FIG. 6. Top: Local odd-even effect as a function of the fission
product kinetic energy for different numbers of emitted neutrons: 0,
1, 2, 3, and �4 (displayed in colors). Bottom: Local odd-even effect
as a function of the excitation energy before neutron emission (y axis
on the left). Local odd-even effect as a function of the number of
emitted neutrons (y axis on the right). The associated probabilities
are displayed in colors (z axis on the top). No energy loss correction
is taken into account.

is mainly due to the temperature ratio law and the neutron
transmission coefficients.

A sensitivity analysis can be applied to two main ingre-
dients of this analysis. The first one is the total excitation
energy, which can be assessed through the temperature ratio
law. To test the influence of the excitation energy on the local
odd-even effect, a shift of ±0.1 on the parameter RTmin (which
corresponds to a shift of ±2 MeV in excitation energy) is
performed. Figure 7 shows the impact of such a shift on the
local odd-even effect and on the relative cumulative isotopic
yield probability. Relative quantities (to the reference FIFRE-
LIN calculation) are plotted. It shows that the temperature ratio
law modification changes the parity at higher kinetic energy
only. Nevertheless, the measurements are not accurate enough
to provide a new constraint on this temperature ratio law. It

FIG. 7. Top: Local odd-even effect compared with the refer-
ence FIFRELIN calculation after a 0.1 shift on the parameter RTmin

(with RTref
min = 0.5). A slight difference can be seen at higher ki-

netic energy. Bottom: Relative cumulated isotopic yield probability
compared with the reference FIFRELIN calculation. No significant
difference is observed (bottom). All calculations are corrected from
the energy loss through the target and the cover foil.

can be explained by the impact of the energy loss through the
target. With a thinner target, it should be possible to enhance
the differences between the previous cases. Nonetheless, these
results give confidence in the models and the processes used
by FIFRELIN.

The second important ingredient is the preneutron isotopic
yields. The aim is to test the reliability of these yields coming
from GEF. To do so, the mean nuclear charge is shifted by ± 1
unit. In these cases, simulations are not in agreement with the
experimental data anymore, as shown in Fig. 8. Therefore, the
experimental data can also be used to validate the preneutron
isotopic yields.

In conclusion, the experimental data can be seen as a local
test for the mean neutron emission and the associated neutron
probabilities within a restricted preneutron mass region (here
A = 139–143).
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FIG. 8. Impact of one unit shift of the preneutron mean nuclear
charge for all masses. A large impact is observed. The experimental
kinetic energy refers to the LOHENGRIN selected energy, i.e., after
the cover foil and the calculations are corrected from the energy loss
through the target and the cover foil.

V. CONCLUSION AND OUTLOOK

The complete data analysis was presented and illustrated
for the specific case of isobaric chain A = 139. Then, the
local odd-even effect δZ (A) as a function of the fission
product kinetic energy was assessed through measurements
using the LOHENGRIN recoil spectrometer. Comparisons
with the Monte Carlo code FIFRELIN were performed in order
to interpret these experimental data in regards to the neutron
emission process. The good match between the experimental
results and the calculations coming from FIFRELIN indicates
that the underlying models used are well chosen in the case
of a fission event involving the mass A = 139. A sensitivity
analysis shows these measurements are a probe to the local
prompt neutron emission through all the deexcitation path
assumptions used in FIFRELIN. However, the experimental data
are not discriminant enough to highlight the impact of the
initial excitation energy because of the energy loss inside the
target. New measurements on a specific mass region (around
A = 132) may give more constraints on the initial excitation
energy and the temperature ratio law. These studies are com-
plementary to the studies of the isomeric ratios evolution as
a function of the fission product kinetic energy [11] or the
studies of the correlation between the prompt γ cascade in
coincidence with fission fragment and neutron observables
[45–47].
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APPENDIX A: RESOLUTION OF BATEMAN EQUATIONS

In this Appendix, we detail the way to go from the number
of decays Nd of an isotope to the fission rate τ .

1. With a source term τ

The activities of a decay chain are ruled by the Bateman
equation:

dN0(t )

dt
= −λ0N0(t ) + τ0,

dN1(t )

dt
= −λ1N1(t ) + τ1 + BR0→1λ0N0(t ),

...

dNn(t )

dt
= −λnNn(t ) + τn +

n−1∑
i=0

BRi→nλiNi(t ), (A1)

with Ni=0,n the population of the ith nucleus, λi=0,n its de-
cay probability, τi=0,n the associated fission source term and
BRi→ j the probability of decaying from the nucleus i to the
nucleus j. This equation can be written in a matrix form:

dN(t )

dt
= BLN(t ) + T = AN(t ) + T (A2)

with

N =

⎡
⎢⎣

N0
...

Nn

⎤
⎥⎦, T =

⎡
⎢⎣

τ0
...
τn

⎤
⎥⎦, L =

⎡
⎢⎣

λ0 0
. . .

0 λn

⎤
⎥⎦,

B =

⎡
⎢⎣

−1 0
. . .

BRi→ j −1

⎤
⎥⎦.

For each isotope i of the decay chain, the detected γ

transition Nγ
i , during the measuring time �tm is written

∀i, Nγ
i (�tm) = Iγ εγ fγ

∫ �tm

0
λiNi(t )dt

⇔ Nγ

i

Iγ εγ fγ
=

∫ �tm

0
λiNi(t )dt = Ndi (�tm) (A3)

with Iγ , εγ , and fγ the intensity, the detection efficiency and
the sum effect correction factor respectively. If we define

∀i, Xi(�tm) =
∫ �tm

0
Ni(t )dt, (A4)

then

Nd (t ) = LX (t ) (A5)

Since the functions used are C1 class, we can integrate and
switch the derivative and the integration of Eq. (A2):

dX (t )

dt
= AX (t ) + tT . (A6)
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To make Nd (t ) appear, we need to multiply Eq. (A6) by L and
define S = LAL−1:

dNd (t )

dt
= SNd (t ) + tLT . (A7)

Here S is an inferior triangle matrix; we can then diagonal-
ize it: S = RDR−1. If we define Y (t ) = R−1Nd (t ) and C =
R−1LT and multiply Eq. (A7) by R−1, it reads

dY (t )

dt
= DY (t ) + tC. (A8)

Since D is diagonal, we have n equations:

∀i,
dYi(t )

dt
= DiiYi(t ) + tCi. (A9)

This is simply a first-order differential equation with time
dependent tCi second member. With the bounding condition
Yi(t = 0) = 0 (which means that there was no nucleus at time
0), Ci is written

∀i, Ci = D2
ii

eDiit − 1 − Diit
Yi(t ) = Eii(t )Yi(t ). (A10)

Finally,

T = BNd (t ) with B = L−1RE(t )R−1

and the diagonal matrix E(t ) = D2

eDt − 1 − Dt
. (A11)

2. Without a source term

Moreover, in the case of the background correction, the
Bateman equation to resolve is

dN(t )

dt
= AN(t ) (A12)

When integrating within a time t , we have

dX (t )

dt
= AX (t ) + M ⇔ dNd (t )

dt
= SNd (t ) + LM (A13)

with M the unknown which is related to the initial number of
the nucleus. At the end, we have

M = BNd (t ) with B = L−1RE(t )R−1

and the diagonal matrix E(t ) = D
eDt − 1

. (A14)

3. Analysis method and background correction

For the background correction, an additional step must
be performed in order to assess the parameter Ndcont which
reflects the contribution of vacuum residual background on
a new measurement. Figure 1 shows the origin of the back-
ground. In the time interval t = [t0, t1] the background coming
from the vacuum chamber is recorded, Ndbkg (t1), and it allows
one to determine M. We suppose that there is no initial
background [Nd (t = t0) = 0], then Ndbkg (t = t0) = 0:

Ndbkg (t1) = Nγ
i (t1)

Iγ εγ fγ
. (A15)

The contribution from the background during the measure-
ment in the time interval t = [t2, t3] is

Ndcont =
∫ t3

t2

LN(t )dt = Nd (t3) − Nd (t2). (A16)

From Eqs. (A5) and (A14), Eq. (A16) is written

Ndcont = [B−1(t3) − B−1(t2)]M,

Ndcont = [B−1(t3) − B−1(t2)]B(t1)Ndbkg (t1),

Ndcont = R[E−1(t3) − E−1(t2)]E(t1)R−1Ndbkg (t1)

⇔ Ndcont = R
(

eDt3 − eDt2

eDt1 − 1

)
R−1Ndbkg (t1). (A17)

APPENDIX B: GLOSSARY

This section summarizes all the notations used in the
analysis part of the article.

A: mass of the nucleus A
ZX

Z: nuclear charge of the nucleus A
Z X

δZ (A): local odd-even effect
q: ionic charge
qi: ionic charge for which kinetic energy distributions are
performed
Ek: kinetic energy
�Ek: kinetic energy resolution
E×

k : kinetic energy for which ionic charge distributions
are performed
Ek: mean kinetic energy extracted from the kinetic en-
ergy distribution
σEk : standard deviation extracted from the kinetic energy
distribution
t : time when the measurement is made since the begin-
ning of the experimental campaign
�tm: measuring time
BU(t ) (burn-up): constructed observable in order to fol-
low the loss of fissile material from the target as a
function of time
N (A, q, Ek,�tm, t ): number of counts extracted from the
ionization chamber
N (A, qi ): relative mass yield calculated from the kinetic
energy distribution measured with the ionic charge qi

P(q): ionic charge probability derived from the ionic
charge distribution
Cov(N (A, qi ),N (A, q j )): element of the covariance ma-
trix between the relative mass yield calculated from the
kinetic energy distributions measured at qi and q j

N (A): average relative mass yield
Y (A): absolute mass yield
εγ : detection efficiency for a given γ transition
Iγ : absolute intensity for a given γ transition
I rel
γ : relative intensity for a given γ transition

Iγ
norm: normalization factor for γ intensity
fγ : sum effect correction factor for a given γ transition
Nγ (A, Z, q, E×

k ,�tm, t ): number of counts extracted
from the γ detectors for a given γ transition
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Ndγ
(A, Z, q, E×

k ,�tm, t ): number of decays derived from
a given γ transition
Nd (A, Z, q, E×

k ,�tm, t ): average number of decays
Cov(Ndγi

, Ndγ j
): element of the covariance matrix be-

tween the number of decays derived from the γ transition
γi and the gamma transition γ j

Ndbkg (A, Z, q, E×
k ,�tm, t ): average number of decays

measured during the background measurement
Ndcont (A, Z, q, E×

k ,�tm, t ): average number of decays
contaminating the current measurement
Nd f (A, Z, q, E×

k ,�tm, t ): average corrected number of
decays

B: matrix related to the Bateman equation resolution
τ (A, Z, q, E×

k , t ): fission rate
P(E×

k ): probability to have the fission product at the
selected kinetic energy E×

kN (A, Z ): relative independent isotopic yield
Nc(A, Z, E×

k ,�tm): relative cumulative isotopic yield for
a given kinetic energy
Pc(A, Z, E×

k ,�tm): relative cumulative isotopic yield
probability for a given kinetic energy
k139: normalization factor linking relative to absolute
isotopic yield using the mass A = 139
Y (A, Z ): absolute isotopic yield
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