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Isotopically resolved neutron total cross sections at intermediate energies
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The neutron total cross sections σtot of 16,18O, 58,64Ni, 103Rh, and 112,124Sn have been measured at the Los
Alamos Neutron Science Center from low to intermediate energies (3 � Elab � 450 MeV) by leveraging
wave-form-digitizer technology. The σtot relative differences between isotopes are presented, revealing additional
information about the isovector components needed for an accurate optical-model description away from
stability. Digitizer-enabled σtot-measurement techniques are discussed and a series of uncertainty-quantified
dispersive optical model (DOM) analyses using these new data is presented, validating the use of the DOM for
modeling light systems (16,18O) and systems with open neutron shells (58,64Ni and 112,124Sn). The valence-nucleon
spectroscopic factors extracted for each isotope reaffirm the usefulness of high-energy proton reaction cross
sections for characterizing depletion from the mean-field expectation.
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I. INTRODUCTION

Neutron scattering is a direct, Coulomb-insensitive tool
for probing the nuclear environment. The simplest neutron-
nucleus interaction quantity is the neutron total cross section,
σtot, which provides information about nuclear size and the
ratio of elastic to inelastic components of nucleon scattering.
Additionally, σtot data are thought to be tightly correlated
with a variety of structural nuclear properties of great interest
including the neutron skin of neutron-rich nuclei [1] and thus
the density dependence of the symmetry energy L, an essential
equation-of-state input for neutron-star structure calculations
[2–4].

In the crude “strongly absorbing sphere” (SAS) approx-
imation, where a target nucleus absorbs incident neutrons
passing within a nuclear radius, σtot depends solely on the
target nucleus size and the energy of the incident neutron:

σtot (E ) = 2π (R + λ̄)2, (1)

where R = r0A
1
3 and λ̄ is the reduced wavelength of the

incident neutron with energy E in the center of mass [5,6].
While on average, experimental σtot data comport with this
naive model, the most prominent feature of experimental σtot

data is the oscillatory behavior centered about the average
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of Eq. (1), visible in Fig. 1. Peterson [7] interpreted these
oscillations as the result of a phase shift between neutron
partial waves passing around the nucleus (thus undergoing no
phase shift) and waves passing through the nuclear potential,
where they are refracted and exhibit a retardation of phase (an
illustration is available in [6]). This explanation was termed
the “nuclear Ramsauer effect” by Carpenter and Wilson [13]
based on the analogous effect seen in electron scattering on
noble gases.

Following Angeli and Csikai [14], this explanation can
be incorporated by imbuing the strongly absorbing sphere
relations with a sinusoidal term:

σtot = 2π (R + λ̄)2[1 − ρ cos(δ)], (2)

where ρ = e− Im(�) and δ = Re(�), � being the phase dif-
ference between a partial wave traveling around and traveling
through the nucleus. The large amplitude of the oscillations
suggests that elastic scattering accounts for a significant frac-
tion of the total cross section, in turn implying a larger mean-
free path for neutrons through the nucleus than might other-
wise be expected in the absence of Pauli blocking [15,16]. If
we approximate the nucleus with a real spherical potential of
radius R and depth U , the total phase shift δ is

δ = C
([

E+U
E

] 1
2 − 1

)
λ̄

, (3)

where C = 4
3 R is the average chord length through the sphere

[14]. Rearranging Eq. (3) in terms of A and E and discarding
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FIG. 1. Experimental σtot data are shown from 2–500 MeV for
nuclides from A = 12 to A = 208 [8–12]. Predictions for σtot given
by the “strongly absorbing sphere” (SAS) model [Eq. (1)] are shown
as thin dashed lines for each nucleus. Regular oscillations about the
SAS model are visible as is the trend for the oscillation maxima and
minima to shift to higher energies as A is increased.

leading constants yields

δ ∝ A
1
3 × (

√
E + U −

√
E ). (4)

This form reveals an important relation: as A is increased, to
maintain constant phase δ, E must also increase [6,7]. This
is contrary to a typical resonance condition where an integer
number of wavelengths are fitted inside a potential; in that
case, to maintain constant phase as A is increased, E must be
decreased. Thus these σtot oscillations have been referred to as
“antiresonances” or “echoes” [6,17]. Other authors [18] have
exposed weaknesses in Angeli and Csikai’s interpretation of
Eq. (2) and have provided a more general semiempirical
equation for σtot. However, Eq. (2) is a valuable starting point
for connecting σtot with the depth and shape of the nuclear
potential as experienced by neutrons.

By including additional surface, spin-orbit, and other
terms, optical models (OMs) have been used to successfully
reproduce the general features of all manner of single-nucleon
scattering data across the chart of nuclides up to several
hundred MeV [19–21]. However, despite the excellent agree-
ment with experiment, OMs involve the interaction of many
partial waves with many sometimes-opaque terms in the po-
tential, complicating intuitive understanding of the underlying
physics at play. In particular, the isovector components of
optical potentials are quite difficult to constrain as they depend
on both proton and neutron scattering data, one or both of
which are often unavailable. For example, when Dietrich
et al. conducted an analysis of neutron total cross section
differences between W isotopes, including standard isovector
terms in their optical potential worsened the reproduction of
experimental relative differences, an illustration of how poorly
these isovector components are known [22].

With these considerations in mind, our present goal is
twofold: first, to provide new isotopically resolved σtot data
useful for identifying the dependence of optical potential
terms on nuclear asymmetry; and second, to conduct a dis-
persive optical model (DOM) analysis of these new σtot

data along with a large corpus of scattering and bound-state
data to extract veiled structural quantities (e.g., neutron skin
thicknesses and spectroscopic factors, or SFs) for several
cornerstone, closed-proton-shell nuclei. Key findings of this
DOM analysis are presented in the companion Letter [23].

II. EXPERIMENTAL CONSIDERATIONS

By scattering secondary radioactive beams off of hydrogen
targets in inverse kinematics, proton-scattering experiments
are possible even on highly unstable nuclides. Because neu-
trons themselves must be generated as a secondary radioactive
beam, neutron-scattering experiments are restricted to nor-
mal kinematics and σtot measurements are possible only for
relatively stable nuclides that can be formed into a target.
At present, σtot measurements above the resonance region
on nuclides with short half-lives (shorter than the timescale
of days) are technically infeasible for this reason, though a
handful have been carried out on samples with half-lives in
the tens to thousands of years [10,24,25].

Traditionally, σtot measurements have relied on analog-
electronics techniques for recording events, techniques that
suffer from a large per-event dead time of up to several
μs. For a typical analog intermediate-energy σtot measure-
ment with dozens or hundreds of energy bins, achieving
statistical uncertainty at the level of 1% requires a thick
sample to attenuate a sizable fraction of the incident neu-
tron flux. If cross sections are in the 1–10 barn range,
this means sample masses of tens of grams [8,12]. Pro-
ducing an isotopically enriched sample of this size is often
prohibitively expensive. As a result, there is a dearth of
σtot data on isotopically resolved targets from 1–300 MeV,
even for closed-shell isotopes of special importance such as
3,4He, 18O, 64Ni, 112,124Sn, and 204,206Pb (see Fig. 1.3 in [26]).

Recent developments in wave-form-digitizer technology
have made it possible to reduce the per-event dead time by
an order of magnitude or more, enabling a corresponding
reduction in the necessary sample size. In 2008, we embarked
on a campaign of σtot measurements on isotopically enriched
samples using these new technical capabilities, starting with
40,48Ca from 15 � Elab � 300 MeV [27]. The data from that
measurement were incorporated into several DOM analyses
[28–30] that yielded proton and neutron SFs, charge radii,
and initial estimates of the neutron skins [1] for these nuclei.
Here we significantly expand on that effort by providing σtot

results for the important closed-shell nuclides 16,18O, 58,64Ni,
and 112,124Sn. We also present a measurement on a very thin
sample of the naturally monoisotopic 103Rh to demonstrate
that σtot experiments over a broad energy range using only a
few grams of material are feasible.

III. EXPERIMENTAL DETAILS

All σtot measurements were carried out at the 15R beamline
at the Weapons Neutron Research (WNR) facility of the Los
Alamos Neutron Science Center during the 2016 and 2017
run cycles. Our experiment was modeled on previous σtot

measurements at WNR [8,12,27]. At WNR, broad-spectrum
neutrons up to ≈700 MeV are generated by impinging
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FIG. 2. Experimental configuration at WNR facility. Samples are
cycled into and out of the beam using a linear actuator with a period
of 150 seconds. Times of flight (TOFs) are determined by the TOF
detector and used to calculate neutron energies.

proton pulses onto a water-cooled, 7.5-cm-long tungsten tar-
get (Fig. 2). Before the beam enters the experimental area, a
permanent magnet deflects all charged particles generated by
the proton pulses, allowing only neutrons and γ rays to reach
the experimental area. At the entrance to the experimental
area, the beam was collimated to 0.200 inches using steel
donuts with a total thickness of 24 inches. In addition, the
γ -ray content of the beam was suppressed using a plug of
Hevimet (90% W, 6% Ni, 4% Cu by weight) at the upstream
entrance of the collimation stack. After collimation, the beam
passed successively through a flux monitor, the sample of
interest, a veto detector, and finally the time-of-flight (TOF)
detector approximately 25 meters from the neutron source.
All detectors consisted of BC-400 fast scintillating plastic
mated with photomultiplier tubes (PMTs) and encased in
either a plastic or an aluminum housing. The flux monitor and
veto detector each had scintillator thicknesses of 0.25 inches
and the TOF detector had a scintillator thickness of 1 inch.
Signals from all detectors and the target changer were relayed
to a 500-MHz CAEN DT-5730 wave-form digitizer running
custom software. To increase light collection and thus lower
employable thresholds and also to improve time resolution,
the TOF detector used two PMTs (one left, one right) mated

FIG. 3. Neutron-beam structure at WNR facility. “Macropulses”
of protons (d) are delivered to WNR’s tungsten Target 4, where
they generate neutrons by spallation. Each macropulse consists of
≈350 proton “micropulses” (c). Neutrons from each micropulse
(b) disperse in time as they travel along the flight path so that γ

rays and high-energy neutrons catch up to low-energy ones from the
previous pulse (a).

to the same plastic scintillator and the PMTs’ signals were
summed before digitization.

The particular neutron beam structure at WNR dictates
the energy range achievable for σtot measurements (Fig. 3).
Proton pulse trains, called “macropulses,” are delivered to the
tungsten target at 120 Hz. Each macropulse consists of ≈350
individual proton pulses, called “micropulses,” spaced 1.8 μs
apart. Each micropulse consists of a single proton packet that
generates γ rays and neutrons within a tight temporal-spatial
range. As neutrons from this micropulse travel along the
beam path, high-energy neutrons separate in time from lower-
energy neutrons so that neutron energy can be determined by
standard TOF techniques (see [31] for details). Because the
γ rays and high-energy neutrons from later micropulses can
overtake slower neutrons from an earlier micropulse, the dis-
tance of the TOF detector from the neutron source determines
both the minimum neutron energy that can be unambiguously
resolved and the maximum instantaneous neutron flux, critical
to correcting for per-event dead time.

A programmable sample changer with six positions was
used to cycle each sample into the beam at a regular interval
of 150 seconds per sample. Once per macropulse, an analog
signal from the sample changer was recorded to indicate
its current position. The flux monitor was used to correct
for variations in beam flux between macropulses. The veto
detector suppressed events from charged-particle production
in the samples and in air along the flight path.

Custom digitizer software was used to run the digitizer
in two complementary modes, referred to as “DPP mode”
and “wave-form mode.” In DPP mode, triggers were initiated
by the digitizer’s onboard peak-sensing firmware. For each
trigger, several quantities were recorded: the trigger time
stamp, two charge integrals over the detected peak with dif-
ferent integration ranges (32 ns for the short integral, 100 ns
for the long integral), and a 96-ns portion of the raw digitized
wave form, referred to as a “wavelet.” DPP mode was used for
the vast majority of the experiment and accounts for ≈99%
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TABLE I. Physical characteristics of samples used for neutron
σtot measurements. The relevant “sample thickness” for cross-section
calculations is the areal density of nuclei ρA, equal to the volumetric
number density times the length of the sample. For liquid samples
H2

natO, D2
natO, and H2

18O, the length and diameter given are for
the interior of the vessels used to hold the samples and the masses
listed are calculated based on literature values for the density of
each sample at 25 ◦C. Isotopic natural abundances (NA) and the
abundances in our enriched samples (SA) are provided for reference.

Isotope Length Diameter Mass ρA NA SA
(mm) (mm) (g) (mol/cm2) (%) (%)

natC 13.66(2) 8.260(5) 1.2363 0.1921(1)
natC 27.29(2) 8.260(5) 2.4680 0.3835(2)
H2O 20.00(1) 8.92(1) 1.2461 0.1107(3)
D2O 20.00(1) 8.92(1) 1.3852 0.1107(3) 0.02 99.9

H2
18O 20.00(1) 8.92(1) 1.3844 0.1107(3) 0.20 99.9

58Ni 7.97(3) 8.18(2) 3.6438 0.1197(3) 68.1 99.6
natNi 8.00(3) 8.20(2) 3.6898 0.1192(3)
64Ni 7.96(2) 8.20(4) 3.9942 0.1192(6) 0.93 92.2
103Rh 2.03(1) 10.20(2) 2.8359 0.02426(4) 100 99.9
112Sn 13.65(3) 8.245(5) 4.9720 0.08332(5) 0.97 99.9
natSn 13.68(3) 8.245(5) 5.3263 0.08414(5)
124Sn 13.73(3) 8.245(5) 5.5492 0.08399(5) 5.79 99.9
natPb 10.07(2) 8.27(1) 6.130 0.05508(6)

of the total data volume. In wave-form mode, the digitizer
performs no peak sensing and was externally triggered. Upon
triggering, the trigger time stamp and a very long wavelet
(60 μs) were recorded. While wave-form mode data account
for only ≈1% of the total data, the instantaneous data rate
is much higher than in DPP mode because hundreds of μs
of consecutive wave-form samples are stored. Roughly once
every three seconds, the digitizer was switched to wave-form
mode for one macropulse, then switched back to DPP mode
as quickly as possible (10–40 ms, depending on run configu-
ration).

Except for the O and Rh samples, all samples were pre-
pared as right cylinders 8.25 mm in diameter and ranging from
10–27 mm in length (see Table I for sample characteristics).
For each element studied, a natural-abundance sample was
also prepared as were two natural C samples and a natural
Pb sample, useful for benchmarking against literature data.
The samples were inserted into styrofoam sleeves and seated
in the cradles of the sample changer. This design minimizes
the amount of nontarget mass proximate to the neutron beam
path. Our samples were generally much smaller than those
used in previous measurements; for example, the Ni and Sn
samples used in [8,12] had areal densities of 1.515 and 0.5475
mol/cm2, respectively, 12.7 and 6.5 times larger than for our
Ni and Sn samples.

The O isotopes were prepared as water samples to increase
the areal density of atoms and for ease of handling. Each
water sample was contained by a cylindrical brass vessel with
thin brass end caps (0.002 inches), and an empty brass vessel
served as the blank. 16,18O cross sections were calculated by
subtracting the well-known H cross section from the raw H2O
results. We used H σtot data sets from Clement et al. [32] and

FIG. 4. The effects of timing corrections on the γ -ray peak of a
typical run are shown. The uncorrected spectrum is shown in black,
the spectrum after correction with our software CFD is shown in
blue, and the spectrum after correction with both our software CFD
and γ averaging is shown in magenta. For this run, the final γ -ray
peak FWHM after both corrections is 0.866 ns, comparable to the
precision we achieved in our Ca study [27], which also employed γ

averaging.

Abfalterer et al. [12], which together cover the range 0.5 �
En � 500 MeV and are in excellent agreement where their
energy ranges overlap. In light of the additional uncertainty
inherent to this subtractive σtot determination, we prepared
a deuterated water sample, from which the literature σtot for
D2 could be subtracted, to serve as an additional cross-check.
Due to the poor machining properties of Rh, the 103Rh sample
was prepared by purchasing and stacking a series of thin disks
rather than by manufacturing a fused cylinder. These disks
were held in place by a cylindrical plastic case with open ends.

IV. EXPERIMENTAL ANALYSIS

The quantity of interest, σtot, is related to the flux loss
through a sample by

It = I0e−	ρAσtot (5)

or, equivalently,

σtot = − 1

	ρA
ln

(
It

I0

)
, (6)

where I0 is the neutron flux entering the sample, It is the
neutron flux transmitted through the sample without interac-
tion, ρA is the number density of nuclei in the sample, and
	 is the sample length. For thin or low-density samples, flux
attenuation through the sample will be small (e.g., 13% for our
Ni samples at 100 MeV) and a large number of counts will be
required to determine the cross section to high precision.

Two postprocessing steps were used to improve TOF-
detector timing resolution (see Fig. 4). First, the wave form
for each TOF-detector event was passed through a software
constant-fraction discriminator (CFD) logic, improving preci-
sion by a factor of two. Second, a γ -ray-averaging procedure
(cf. [27]) was used to improve the precision of each mi-
cropulse start time. The final corrected TOF resolution (taken
as the FWHM of the γ -ray peak in the TOF spectra) ranged
from 0.60–0.90 ns over the series of σtot measurements. This is
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comparable to the resolution from our digitizer-mediated σtot

measurement on Ca isotopes in 2008 [27]. For context, for a
100-MeV neutron and a TOF detector distance of 25 meters, a
TOF uncertainty of 0.80 ns translates to an energy resolution
of ≈900 keV. For neutrons below ≈20 MeV, the TOF time
resolution worsens because the traversal time through the
1-inch thickness of the TOF detector becomes non-negligible.
However, because the TOF of these neutrons is already very
long (several hundred ns or longer) the relative energy resolu-
tion (�E

E ) is superior at low energies. As an example from one
of our runs, a 5-MeV neutron with a 0.82-ns detector-traversal
time and an inherent TOF resolution of 0.80 ns has an energy
uncertainty of 13 keV. These energy uncertainties have been
propagated through subsequent analysis into our σtot results
below.

Calculating the neutron energy requires knowledge of the
flight-path distance to high precision. We determined this dis-
tance by calculating putative σtot data for natC from 3–15 MeV
from our measurement and comparing the resonance peaks in
this region with high-precision literature data sets. From this
study, the mean TOF distance was determined as 2709 ± 1 cm
for the Ni and Rh run configuration and 2554 ± 1 cm for the
Sn and O run configuration.

Before cross sections could be tabulated, the per-event
dead time had to be modeled and corrected for. Because events
are not processed instantaneously, there is a brief period after
each trigger during which the digitizer is busy processing
that trigger. Any newly arriving events in this period will be
ignored, privileging events arriving earlier and thus distorting
TOF spectra and resulting cross sections. This busy period
is referred to as the “analytic” or “per-event” dead time and
can be corrected for according to standard techniques [31].
An additional complication is the possibility of flux variation
between micropulses. If there is no variation, the fraction of
time that the digitizer is dead for a given time bin i can be
calculated [31]:

Fi =
N−1∑
j=0

R(i− j) mod N × Pj, (7)

where N is the number of time bins in the micropulse, Rx is
the rate of detected events per micropulse in bin x, and Pj is
the probability that the digitizer is still busy from a trigger j
bins ago. If the variation in beam flux is significant, a more
advanced formula can be used; however, an examination of
our flux-per-micropulse data showed very little flux variance
across macropulses, except during the first 10% of the mi-
cropulses within each macropulse. In the final analysis we
discarded these first 10% and used the simpler Eq. (7) to
calculate the dead-time fraction.

To model the experimentally observed probability-dead,
Pj , we fitted a logistic function to the observed spectrum for
time differences between consecutive events (Fig. 5). For a
given bin i, the fraction of time that the digitizer is dead,
Fi, is a discrete convolution of the measured TOF spectrum
with Pj . Note that except for the first and last micropulses in
a macropulse, all micropulses are consecutive, so dead-time
effects can “wrap around” from the end of one micropulse to
the next. For these wrap-around contributions (that is, j > i),

FIG. 5. The time difference between adjacent TOF-detector
events for a single run is plotted (black histogram). Below a certain
minimum time difference (the “dead time”), no events are recorded.
A logistic fit (red line) models the detector’s dead-time response and
is used to generate a dead-time correction. The underlying linearly
decreasing count rate (gray dashed line) is incorporated into the
logistic model. From the fit, a mean dead time of 228.1 ns was
extracted for the Sn and O run configurations (a similar procedure
was used to recover a dead time of 159.7 ns for the Ni and Rh run
configurations).

the (mod N) term ensures that the bin referred to by i − j is
non-negative.

Because trigger processing is done in firmware onboard the
digitizer, the per-event dead-times affecting our measurement
were reduced to between 150–230 ns. After we calculated the
average probability-dead for each time bin, the total number of
events detected in that bin, Nd [i], could be corrected to recover
the true number of events that would have been detected in the
absence of a per-event dead time:

Nt [i] = − ln

[
1 −

Nd [i]
M

(1 − Fi )

]
× M, (8)

where M is the total number of micropulse periods. At large
TOFs (low energies) the correction is as low as a few percent,
but at small TOFs (high energies), the digitizer is often still
dead from the γ -ray flash and high-energy neutrons. In this
regime the correction can be quite large (≈20% for our Ni/Rh
runs, and ≈40% for our Sn/O runs). Still, the corrections
needed for our measurement are far smaller than the typical
analytic dead-time corrections required with the dead-time
mitigation scheme of previous analog measurements [8,12].

In addition to analytic dead time, there is an additional
dead-time effect associated with digitizer readout to the data
acquisition computer (DAQ). During data collection, each
pair of digitizer channels shares a common buffer for storing
events. After several seconds of acquisition, the digitizer
begins readout at which time the acquisition is paused and
buffer contents are read out to the DAQ. However, because
each buffer is independently read out to the DAQ, it is possible
that buffers could be emptied and readied for new acquisition
at slightly different times (10–40 ms apart), and a mismatch
could develop between the number of macropulses seen on

034601-5



C. D. PRUITT et al. PHYSICAL REVIEW C 102, 034601 (2020)

FIG. 6. TOF spectra after the analytic dead-time correction and
the veto and integrated charge gating for the blank sample (in red)
and the natC sample (in blue), from the Ni/Rh experiment. The γ -ray
peak is visible as a sharp spike at 90 ns, followed by the highest-
energy neutrons at 130 ns.

different channels. Such run-time interactions between the
firmware and USB traffic of the DAQ were difficult to charac-
terize, but we estimate that they might cause a systematic error
of a few tenths of one percent in the number of macropulses
seen by different channels, depending on the user-defined
threshold and the buffer size. This effect could contribute to
the discrepancy at the highest energies (>100 MeV) between
our results and past analog-enabled measurements.

During analysis, it was noted that occasionally (1 in 400
macropulses), one or two adjacent macropulses would have
an abnormally small number of events. The frequency of these
“data dropouts” was similar to the rate of switching between
DPP and wave-form modes; we suspect it is related to edge
case behavior right before or after a mode switch. To mitigate
this issue, we threw out any macropulse that had less than 50%
of the average event rate in either the flux monitor or TOF
detector channel.

After applying these corrections, the veto and integrated
charge gates were applied to all events and surviving events
were populated into TOF spectra (Fig. 6). Next, room back-
ground was subtracted (responsible for 0.1% to 1% of event
rate, depending on energy) and spectra were mapped to the
energy domain.

From these energy spectra, the raw cross sections were
calculated, binwise, as follows:

σtot = − 1

	ρA
ln

(
I0

Is
× Ms

M0

)
, (9)

where I0/Is is the ratio of counts in the energy spectra between
the blank and sample, and Ms/M0 is the ratio of counts in
the monitor detector between the sample and blank (for flux
normalization).

Finally, two isotope-dependent corrections were applied
to the raw cross sections. First, because the blank sample
contains air and not vacuum, the cross section of air must
be added to each sample’s cross section. Second, the cross
section for 64Ni was corrected for the isotopic enrichment of
our sample (92.2%) using our measured natNi cross section.

FIG. 7. (a) A comparison of literature data (taken with analog
techniques) and our results (signals processed with a digitizer, or
“DSP”) for natural C, Ni, Sn, and Pb. The absolute cross sections
are shown from 3–500 MeV. (b) Relative differences between the
literature data and our data are shown in percent. From 3–100 MeV,
our data are fully consistent with the literature but above 100 MeV, a
difference arises, peaking at ≈5% at 300 MeV.

All other isotopes were sufficiently pure such that the impurity
correction was negligible.

To validate our analysis, we first benchmarked our σtot

measurements of natural samples (natC, natNi, natSn, and natPb)
against the high-precision data sets on natural samples from
[8,12] (Fig. 7). Our natural sample results are in excellent
agreement with these previous results from 3–100 MeV
and show slight deviation above 100 MeV (a relative differ-
ence of up to 5% at 300 MeV), suggesting a small system-
atic error at high energies in one or both approaches when
the instantaneous neutron flux is highest. As an additional
diagnostic, we compared σtot results from our long and short
natural carbon targets and found excellent agreement, within
1% throughout the measured energy domain.

Extracting the 16,18O σtot required subtraction of the well-
measured σtot for H. To better characterize the additional
systematic uncertainty associated with this subtractive anal-
ysis, we subtracted our measured values for 16O neutron
σtot from our raw D2O and H2O data and calculated the
D-to-H relative difference. A comparison of our D-to-H rela-
tive difference with that of [33] is shown in Fig. 8. Our results
differ systematically from the previous (analog) measurement
by 2%–3% throughout the energy range, comparable to the
2% systematic difference between our final 16O neutron σtot

results and those of [12]. The size and uniformity of these
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FIG. 8. The σtot relative difference between deuterium and hy-
drogen, as calculated by subtraction of our O σtot results from D2O
and H2O. Data from our measurement are shown as red squares;
the data of Abfalterer et al. [33], which were generated using CH2,
C8H18, and D2O targets, are shown as black circles.

systematic differences is consistent with a combination of
slight (≈1%) normalization errors in some or all of the H, D,
O, and C neutron σtot results from our measurement or in the
literature data.

V. EXPERIMENTAL RESULTS

Our absolute σtot results for O, Ni, and Sn isotopic targets
are shown in Fig. 9. Results for Rh are shown in Fig. 10. Liter-
ature isotopic σtot measurements (where they exist) are shown
alongside our results for comparison. Residuals between our
data and any existing literature data are also shown. In each
figure, the literature data sets have been rebinned to match the

bin structure of our data to facilitate comparison. In regions
with a low density of states where individual resonances are
visible (e.g., natC below 10 MeV), this rebinning washes out
the fine structure of the cross sections.

Except for the already well-measured 16O, our new data
significantly extend knowledge of the neutron σtot for each
sample. In the cases of 18O, 58Ni, 103Rh, and 124Sn, almost
no previous data were available above 20 MeV. Our new data
are in good agreement with the previous measurements where
available. In the cases of the rare isotopes 64Ni and 112Sn, data
were available at only one energy, 14.1 MeV, from a study
from more than 50 years ago [34] and our measurement is in
excellent agreement, within 2%–3%.

Our results for relative differences between isotopic pairs
16,18O, 58,64Ni, and 112,124Sn are shown in Fig. 11. For 16,18O
[Fig. 11(a)], the purely isoscalar SAS model [Eq. (1)] grossly
reproduces the relative difference below 100 MeV, but fails
completely above 100 MeV. Near 200 MeV, the 18O σtot

crosses over that of 16O resulting in a negative relative dif-
ference, in keeping with the Ramsauer-logic expectation of
Eq. (2) that σtot oscillation minima shift to higher energies
as A is increased. In the relative-difference subfigures for
58,64Ni and 112,124Sn [Figs. 11(b) and 11(c)], the average σtot

values are below the SAS model trend (r ∝ A
1
3 ), shown by the

dashed lines. The well-known r ∝ A
1
6 trend in Sn isotope-shift

data [35] is also shown for reference and underpredicts the
relative differences. In the DOM analyses presented below,
we fitted only absolute σtot data and did not directly fit these
relative differences. Still, the relative differences between our
individual DOM fits for 58,64Ni and 112,124Sn (black dashed-
dotted lines) show overall agreement with the experimental

FIG. 9. Neutron σtot for 16,18O, 58,64Ni, and 112,124Sn: Our results and literature data. In the upper three panels, our digitizer-measured
isotopic results are shown in red and corresponding analog-measured literature data [8,34,36–42] are shown in blue. The data for 18O have
been shifted up by 1 barn for visibility. The lower three panels show residuals between our data and the literature data shown in the upper
panels.
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FIG. 10. Neutron σtot for 103Rh: Our results and literature data.
In panel (a), our digitizer-measured results are shown in red and
corresponding analog-measured literature data [10] are shown in
blue. Panel (b) shows the residuals between our data and the literature
data, where they exist.

relative differences, especially for the Sn relative difference.
For the 16,18O relative difference, there is an obvious phase
mismatch between the oscillations of DOM calculation and
the experimental data. This mismatch is symptomatic of a
slight DOM overestimation of the 16O radius (0.02 fm), which
nudges the DOM-calculated 16O σtot rightward so that the
18O crossover occurs at too low an energy. As was noted
by Dietrich et al. in their study of σtot relative differences
in W isotopes, a simultaneous OM analysis along the entire
isotopic chain, as in [28], may be required to realize the full
isovector-constraining power latent in the relative differences.

VI. DOM ANALYSIS

The DOM is a phenomenological Green’s function frame-
work enabling a simultaneous and self-consistent analysis of
nuclear structure and reaction data. An essential feature of
the DOM is the enforcement of a dispersion relation between
the complex components of the self-energy across the entire
energy domain, allowing structural data from below the Fermi
energy (e.g., charge densities, bound levels) to help constrain
the potential above, and data from above the Fermi energy
(e.g., elastic, reaction, and total cross sections) to help con-
strain the potential below. Using our new σtot data for 16,18O,
58,64Ni, and 112,124Sn, we performed a simultaneous fit on each
isotopic pair and also revisited 40,48Ca and 208Pb. Compared to
previous DOM analyses [1,28,29,43], we employ an updated
version of the DOM that has been generalized for use with
any combination of near-spherical even-even nuclei. Partial
occupation of neutron open shells, as for the neutron d5/2

valence shell in 18O, is accommodated using the level’s energy
E and the pairing parameter �:

�(N, Z ) ≡ 1
4 [B(N − 2, Z ) − 3B(N − 1, Z )

+ 3B(N, Z ) − B(N + 1, Z )], (10)

where B(N, Z ) is the binding energy of the nucleus with N
neutrons and Z protons. Occupation for the level is split into
upper (n+) and lower (n−) components:

n± = 1

2

(
1 ± χ

s

)
, (11)

where χ ≡ E − εF , s ≡ (χ2 + �2)
1
2 . Only the lower (occu-

pied) component is included in calculations of bound-state
quantities (e.g., total particle number, binding energy).

In the appendices, we provide the functional forms used to
define the potential (Appendix A), optimized parameter val-
ues with uncertainties (Appendix B), and figures showing the
quality of the DOM reproduction to each experimental data set
(Appendix C). The other major methodological difference is
the use of Markov chain Monte Carlo (MCMC) for parameter
optimization, discussed below.

For additional details on the underlying DOM formalism,
see [44,45]. To calculate cross sections from the self-energy,
the standard R-matrix approach was used [46]. Except where
indicated, experimental data used for fitting are the same
as in [26]. To situate the reader, we describe the corpus of
experimental data and DOM results for 16,18O in full detail.
The experimental data used and fit quality for 40,48Ca, 58,64Ni,
112,124Sn, and 208Pb are similar in quantity and quality and
only key differences are noted. For systematics of neutron
skins and binding energies, see the companion Letter [23].

A. 16O experimental data used in DOM analysis

For protons, twenty-eight differential elastic cross section
data sets and twenty analyzing power data sets from 10–200
MeV were incorporated. Only three proton reaction cross
section data sets, ranging from 20–65 MeV, were available.
As an added constraint, we used systematic trends from
the comprehensive proton σrxn review of Carlson [47] to
generate proton σrxn pseudodata from 70–200 MeV, which
were included in the fit. These pseudodata are shown as gray
open symbols in the proton σrxn figures in Appendix C. For
neutrons, ten differential elastic cross section data sets from
10 MeV to 95 MeV, a single neutron reaction cross section
data point at 14 MeV, and our newly measured σtot results
for 16O were included. In all, over sixty experimental nucleon
scattering data sets were used to constrain the 16O parameters.

In addition to nucleon scattering data, several sectors of
bound-state data were included in the fit. Neutron (proton)
0p1/2 and 0d5/2 single-particle level energies were assigned
according to the nucleon separation energies of 16O and 17O
isotopes (16O, 17F isotopes) [48]. Charge density distributions
were taken from the compilation of [49]. Since the time of
that compilation, new experiments (particularly muonic-atom
measurements) have improved the precision of many root-
mean-square (rms) charge radii by roughly an order of magni-
tude [50]. To account for these improved data, we rescaled the
distributions from [49] to recover the updated rms charge radii
while still conserving particle number. We also fitted directly
to the updated rms charge radii of [50]. Because the DOM
self-energy does not necessarily conserve particle number, we
included the “experimental” proton and neutron numbers of
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FIG. 11. 16,18O, 58,64Ni, 112,124Sn neutron σtot relative differences from our measurement. In each panel, the colored bands indicate regions
of 1σ uncertainty due to target thickness imprecision (blue) and from both target thickness and statistics (red). The gray dashed lines show the
prediction for the σtot relative difference per the strongly absorbing sphere (SAS) model of Eq. (1), which assumes a simple A

1
3 size scaling for

the nuclear radius. The gray dotted lines show the SAS model prediction but with an A
1
6 size scaling. The black dash-dotted lines shows the

σtot relative differences from the median parameter values of the O, Ni, and Sn DOM analyses performed in this work (detailed in the following
section).

eight as part of the fit. Lastly, the total binding energy of 16O
from [48] was included as a constraint.

B. 18O experimental data used in DOM analysis

Numerous proton elastic scattering data for 18O were
available from the EXFOR database. Twenty-eight proton
elastic differential cross sections were included ranging from
10–200 MeV. Unfortunately, no proton reaction cross section
data were available at all in the relevant range of 10–200
MeV. As with 16O, we generated proton reaction cross section
pseudodata from systematic trends in [47] from 70–200 MeV.
On the neutron side, two differential elastic cross section
data sets were included, at 14 and 24 MeV, but no analyzing
powers were available. One datum for the neutron reaction
cross section, at 14.1 MeV, was incorporated as well. Our σtot

results for 18O were the sole neutron total cross section data
used in the fit. The energies of the proton and neutron 0p1/2

and 0d5/2 single-particle levels were assigned according to the
same procedure used for 16O.

Unlike 16O, for 18O, no charge density distribution was
available from [49]. To approximate it, we rescaled the charge
density distribution used for 16O to give the 18O rms charge
radius of [50] while preserving eight units of charge. As with
16O, we also fitted to the experimental rms charge radius
directly, to the particle numbers N and Z , and the total binding
energy.

C. MCMC analysis

Several aspects of the DOM potential make optimization
challenging. Even with the reduced number of potential pa-
rameters used in this work (42 for 208Pb and 43 for all other
pairwise fits) compared to past DOM studies (for example, 60
or more in [1]), we found that classical gradient-descent meth-
ods were inappropriate for reliably searching the parameter
space. A recent study [51] systematically compared Bayesian
optical model optimization techniques to frequentist ones,
the type almost universally used in previous analyses, and
found that traditional algorithms may be overconfident in their
parameter estimation. To avoid these problems, we used the
affine-invariant MCMC library, EMCEE [52], for optimization

and uncertainty characterization. For an in-depth introduction
to applied MCMC, see [53].

In the ensemble-sampling approach, several hundred
“walkers” are first randomly initialized in parameter space for
each isotopic system to be fitted. At each subsequent step t
during the random walk, each walker’s position is updated
from �xt → �xt+1 either by accepting a new position �x′ with
probability

p(�x → �x′) = min

(
1,

U (�x′|D)

U (�x|D)

)
(12)

or by remaining in the same position �x with probability
1 − p(�x → �x′). New positions are proposed according to the
stretch-move proposal distribution of [54] (for our stretch
move scaling, we used α = 1.3 instead of the default α = 2.0,
which improved the typical acceptance fraction from around
5% to 15%). In Eq. (12), the utility of a parameter vector
conditional on the experimental data U (�x|D) was defined
according to Bayes’s rule (omitting the evidence term):

U (�x|D) ∝ L(D|�x) × P(�x), (13)

where D is the full set of constraining experimental data.
The parameter prior distribution P(�x) was specified as uni-
form over a physically reasonable range for each parameter.
For example, the diffusenesses of all Woods-Saxon potential
geometry terms were restricted to 0.4–1.0 fm. Other more
sophisticated choices for the prior distribution (e.g., broad
truncated Gaussians) were tested and had little impact on the
resulting posterior distributions. The likelihood function was
defined as a least-squares function over all data sectors d:

L(D|�x) =
∑

d

1

Nd

Nd∑
i=1

(
ycalc

d,i − yexp
d,i

σ calc
d,i + σ

exp
d,i

)2

, (14)

where

(i) Nd is the number of experimental data points in a data
sector d ,

(ii) ycalc,exp
d,i are the calculated and experimental values,

respectively, for the ith datum of sector d , and
(iii) σ

calc,exp
d,i are the assigned model and experimental

errors, respectively, for the ith datum of sector d .
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TABLE II. Model error terms for each data sector used in the
MCMC utility function. For terms with units of %, the model
error was calculated as a percentage of the experimental data point
magnitude. For dσ

d
the model error increased linearly with respect

to the scattering angle in the center-of-mass frame with units of %
per degree. εnlj are the single-particle energies for valence nucleons
as calculated from separation energies in [48]. rrms is the root-mean-
square charge radius and ρq is the charge density distribution.

dσ

d
A σtot σrxn εnlj BE/A N, Z rrms ρq

(%/deg) (%) (%) (MeV) (%) (fm) (%)

0.25 0.10 0.25 0.25 0.10 5.0 0.10 0.005 1.0

Appendix A shows the parameter definitions and prior
distributions used in the present analysis.

Due to the choice of functional form and finite model basis
size, DOM predictions for nuclear observables suffer from in-
herent model error. For example, many previous OM analyses
tend to easily reproduce low-angle experimental dσ

d
data taken

at lower scattering energies but are increasingly discrepant
with the data at high energies and at backward angles, where
the predicted cross sections may differ from experimental
results by an order of magnitude or more. This discrepancy in-
dicates a deficiency in the potential form of the OM; ignoring
it can lead to drastic underestimation of variances of extracted
quantities. In this investigation, we found that the inclusion
of reasonable model discrepancy terms in our utility function
improved the visual fit to experimental data while broadening
parameter uncertainties, in keeping with the methodological
findings of [55]. Table II shows the model error terms we used
for each data sector. We assigned model error for each data
set according to how well preliminary fits could reproduce
differing regions of each data sector, the flexibility of the func-
tional forms, and intuition from the successes and failures of
past OM analyses. In principle, the form of these model error
terms could also be treated as random variables to be sampled
over during MCMC, but due to computational limitations and
the already-challenging size of the DOM parameter space, we
elected to fix the model error terms. After N samples have
been taken from the posterior distribution, a subset can be
used to estimate the true parameter distributions, and physics
results calculated for each sample. Ensuring that this subset
is representative of the true posterior is discussed in the next
section.

Following [52] we attempted an autocorrelation analysis to
test for convergence and estimate the number of independent
samples we had collected for each nucleus. Because of com-
putational limitations on the number of walkers and steps used
to approximate the posteriors, posterior estimation involves a
finite MCMC sampling error. The integrated autocorrelation
time for a physics feature f , denoted τ f , represents the number
of steps required for a walker to produce a new, decorrelated
posterior sample for the feature that is independent of the
previous independent sample. In an ideal MCMC analysis,
τ f could be accurately computed for each physics quantity
and the MCMC sampling error could be robustly estimated.
In practice, we found this to be computationally infeasible
for the DOM parameter space. For example, in preliminary

analysis of 18O, we were able to perform N = 31 000 steps for
each of 336 walkers (more than 100 000 CPU hours in total).
Over this domain, we calculated the integrated autocorrelation
time for each potential parameter p, denoted τp, to be roughly
2800 steps. Assuming an N > 100τp rule-of-thumb condition
for convergence of the τp estimate near its true value, the
decorrelation time appears to be extremely long. In other
words, from τp alone, we could not exclude the possibility
that the parameters had not yet fully “settled” in the region
of their optimal values and begun independent sampling of
the parameter posteriors. We note that the true τ f could be
considerably smaller than τp due to the highly correlated
nature of DOM parameter space.

To proceed, we applied several commonsense tests to judge
whether our parameter and extracted-quantity estimates were
accurate. First, we sampled as long as possible and used as
many parallel walkers as possible, given our computational
resources. From time to time during sampling, we analyzed
the mean walker positions and the mean walker position
likelihood as a function of sampling step. Encouragingly, for
all nuclei walkers quickly converged on a common region
(within 1000 samples) and their mean parameter values sta-
bilized soon afterward (within 10 000 samples), suggesting
that walkers were sampling a reasonably optimal subspace.
At this point, we considered the chain tentatively converged.
As an additional test, we restarted sampling from a different
(uniformly random) initial position for each nucleus and
found that a similar optimal subspace was reached, again
within roughly 1000 samples, indicating that our results are
independent of the initial walker positions. Finally, for a
“converged” chain, we calculated extracted physics quantities
(e.g., neutron skins, scattering cross sections) for all walkers
at several intervals to confirm that their mean values were
stable. Again using 16O and 18O as an example, we found
their mean neutron skin values varied by less than 0.001 and
0.01 fm, respectively, over several thousand sampling steps
late in sampling. Out of caution (and given our expectation
of very large autocorrelation times) we used only the terminal
sample for each walker chain to produce the results presented
here and in the companion Letter [23]. In the end, we expect
that additional sampling could slightly reduce the estimated
variance of each extracted quantity but have a negligible effect
on the mean values. For all quantities derived from MCMC
analysis, the estimated 16th, 50th, and 84th posterior per-
centile values are denoted as 5084

16. The range between the 16th
and 84th percentiles corresponds to a 1σ -uncertainty range if
the posteriors are assumed to be Gaussian. The median values
and ranges for each parameter for each isotope system are
listed in Appendix B.

D. Fit results on 16,18O

Figure 12 in Appendix C shows the DOM fit of 16O and
experimental data. The experimental proton σrxn, neutron dσ

d
,

σtot, and σrxn charge density distribution, binding energy per
nucleon, and p1/2 and d5/2 single-particle energy data are
all well reproduced, suggesting that the DOM is effective
for modeling nuclei as light as A = 16. Almost all exper-
imental proton dσ

d
data are accurately reproduced by the
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DOM calculations with the exception of an overprediction
of cross sections at backward angles and high energies, a
regime known to be challenging from past OM analyses.
In addition, the median DOM-generated rms charge radius,
2.72 fm, slightly exceeds the experimental value of 2.70 fm.
Taken together with the 16,18O relative difference results in
panel (a) of Fig. 11, these overestimations indicate that the
traditional OM assumption of radial proportionality with A1/3

must be tweaked for a better description of 16O.
To reproduce the 16O proton σrxn pseudodata generated

from [47], a larger volume imaginary term was required above
100 MeV, which in turn reduced the spectroscopic strength
for the valence π and ν p1/2 nucleons by roughly 0.05. We
also note the importance of the charge density distribution for
determining the magnitude of the imaginary strength below
the Fermi energy. For example, in test fits where the charge
density was not included as a constraint, most of the negative
imaginary strength was concentrated in the surface term be-
tween −30 < E < εF MeV, and the tail of the charge density
was overpredicted. With the charge density included as a
constraint, the imaginary surface magnitude shrank by a factor
of two and the volume term grew to compensate, pushing
nucleon density deeper in energy space and increasing the
binding energy closer to the experimental value.

While all data sectors contributed at least some informa-
tion not fully captured by any other sector, the proton σrxn,
neutron σtot, and charge density provided the most stringent
constraints on the self-energy. The analyzing powers were the
most difficult sector of experimental data to reproduce, with
moderate deviations visible from 10–15 MeV for both protons
and neutrons and above 100 MeV for protons [Figs. 12(b)
and 12(d)]. Some of the difficulty with the analyzing powers
is attributable to our neglecting of an imaginary spin-orbit
term in the DOM potential used in this work, a choice made
due to the unreasonable unbounded growth of the imaginary
spin-orbit term as 	 grows in the traditional 	 · σ definition
used in [21]. In a future analysis we intend to quantitatively
investigate the importance of the imaginary spin-orbit term
and to compare different options for its functional form.

Figure 13 in Appendix C shows the 18O experimental
data and the DOM fit. The paucity of 18O experimental
data presented a challenge for our analysis. To constrain
the negative-energy domain of the potential, the only un-
ambiguous experimental data were the neutron and proton
separation energies and the overall binding energy. As with
16O, broad agreement with experimental data was achieved
for experimental proton and neutron dσ

d
data, the neutron σtot,

rms charge radius, binding energy per nucleon, and p1/2 and
d5/2 single-particle energy data. The artificially scaled charge
density and proton σrxn data were also easily reproduced.
Due to the deterioration of systematic trends from [47] below
70 MeV, we did not generate proton σrxn pseudodata for lower
energies, so the positive-energy surface term of the potential
was largely unconstrained.

In symmetric 16O, the proton and neutron potentials were
identical except for the Coulomb interaction, so the neutron
σtot data provided information about both the proton and
neutron imaginary strength at positive energies. For 18O, this
expectation of symmetric potentials was inapplicable, making

proton σrxn data essential for fixing the positive-energy imagi-
nary strength for protons. In principle, 18O proton and neutron
differential elastic scattering cross sections about 100 MeV
could jointly yield some information about the asymmetry
dependence of the imaginary strength for 18O, but no neutron
elastic scattering data were available above 24 MeV. For a
better characterization of this nucleus, even a single proton
σrxn datum between 10 and 50 MeV would be valuable.

E. Fit results for 40,48Ca, 58,64Ni, 112,124Sn, and 208Pb

Figures 14–20 in Appendix C show 40,48Ca, 64Ni, 112,124Sn,
and 208Pb experimental data and the DOM fits. The avail-
ability of single-nucleon scattering data for 40,48Ca, 58,64Ni,
112,124Sn, and 208Pb followed the same trends as that for
16,18O: plentiful proton differential elastic scattering data,
moderate coverage for neutron differential elastic cross sec-
tions and proton reaction cross sections on abundant isotopes
(40Ca, 58Ni, and 208Pb), with little to no coverage for neutron
scattering or proton reaction cross section data on rare iso-
topes (48Ca, 64Ni, 112Sn, 124Sn). For 112Sn and 124Sn, however,
even proton elastic scattering data sets were sparse and no
data above 50 MeV were available, making our newly col-
lected neutron σtot data especially valuable in constraining the
potential. For 40Ca and 208Pb, experimental proton reaction
cross section data were available up to 200 MeV; for the other
isotopes, proton reaction cross section pseudodata (discussed
in the 16,18O subsections) were used as a constraint. As for
18O, no charge density parametrization was available for 112Sn
in [49], so we rescaled the available 124Sn distribution to
reproduce the 112Sn charge radius.

Generally, all sectors of experimental data were well repro-
duced; exceptions include the large-angle (above 120◦) proton
elastic scattering data for 40Ca and 208Pb, where data sets
were available up to 200 MeV, and the single-particle energies
for neutron open shells in 112,124Sn (see Figs. 18 and 19),
where several levels are partially filled and clustered near the
Fermi surface. Achieving more accurate single-particle ener-
gies while preserving particle number accuracy may require
a more sophisticated treatment of pairing. Our new neutron
σtot data were well reproduced across the board, typically
within 2% of the experimental value, by the DOM fits, sug-
gesting that our Lane-like parametrization of the potential’s
asymmetry dependence [Eqs. (A15)–(A18)] is a promising
starting point for extrapolation away from stability. We note
that because 208Pb was fitted on its own without an isotopic
partner, initial fits showed that the asymmetry-dependence of
the Hartree-Fock radius term was too poorly constrained to
yield reliable neutron skin results; in the final treatment, this
term was disabled for 208Pb.

F. Discussion

Table III shows DOM-calculated SFs for valence proton
and neutron levels for all nine systems. Significant depletion
from the mean-field expectation appears even in the light
systems 16,18O. In the present study, the extracted proton
SFs show only a very weak dependence on neutron-richness
within each isotopic pair, in keeping with the weak depen-
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TABLE III. Spectroscopic factors for valence proton (π ) and neutron (ν) levels, extracted from our DOM analysis. The 16th, 50th, and
84th percentile values of the MCMC-generated posterior distributions are reported as 5084

16.

Isotope 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

π :
Level 0p1/2 0p1/2 0d3/2 0d3/2 0 f7/2 0 f7/2 0g9/2 0g9/2 2s1/2

SF 0.640.70
0.58 0.590.66

0.53 0.630.70
0.55 0.620.70

0.55 0.590.65
0.55 0.570.63

0.52 0.550.61
0.52 0.560.62

0.52 0.640.70
0.58

ν:
Level 0p1/2 0d5/2 0d3/2 0 f7/2 1p3/2 1p3/2 1d5/2 0h11/2 1 f5/2

SF 0.630.71
0.57 0.830.79

0.87 0.620.70
0.55 0.720.77

0.65 0.720.76
0.69 0.680.75

0.64 0.650.70
0.60 0.640.70

0.59 0.670.73
0.60

dence extracted in (e, e′ p) and transfer reaction studies and
at odds with knockout-reaction analyses that recover a strong
asymmetry dependence [45,56]. The recent DOM analyses
of [43,57] identified proton reaction cross sections above
roughly 100 MeV as important for their successful repro-
duction of 40,48Ca (e, e′ p) cross sections without arbitrary
SF rescaling. Compared to the present work, these analyses
found a much larger reduction of valence proton SFs in 48Ca
with respect to 40Ca, indicative of an SF asymmetry depen-
dence somewhere between the weak dependence deduced
from transfer reactions and the very strong dependence from
knockout reactions.

To understand the differences between these analyses,
we conducted several diagnostic runs with artificially scaled
Carlson pseudodata in 48Ca. These diagnostic runs confirmed
that fitting to appropriate high-energy proton reaction cross
sections leads to larger 48Ca proton imaginary strength both
far above and far below the Fermi energy, an effect already
seen in previous DOM work. However, the growth we ob-
served in the imaginary potential was more modest compared
to previous treatments, potentially explaining the weaker
asymmetry-dependent SF reduction. We also note that in the
present work, the high-energy neutron total cross sections
and proton reaction cross sections appeared to have little
impact on other extracted quantities such as neutron skins,
as had been previously hypothesized for the neutron skin
of 48Ca [1]. We conclude that the different methodological
choices, especially the focus of this work on simultaneous
fitting of isotope pairs, is responsible for the differences in
these asymmetry-dependent quantities. To further clarify the
situation, the potentials of the present work should be used to
generate (e, e′ p) cross sections that can be compared to the
previous findings of [57].

Surprisingly, despite the extensive proton and neutron elas-
tic scattering data for 16O, 40Ca, and 208Pb, the extracted
spectroscopic factor distributions and parameter uncertainties
for these isotopes are just as wide as for those systems with
barely any available elastic scattering data, such as 64Ni. We
tentatively conclude that the elastic scattering data we used are
very weak constraints on the all-important imaginary terms
of the optical potential, at least for the stable, spherical sys-
tems discussed here. Unfortunately, this suggests that elastic
scattering measurements in inverse kinematics on radioactive
beams are of diminishing utility for extrapolating optical
potentials away from β stability. A program of proton reaction

cross section and neutron total cross section measurements
on radioactive targets could be useful for understanding the
potential’s near-Fermi-level asymmetry dependence but is ex-
perimentally daunting. Instead, a two-pronged approach may
be required. On the experimental side, proton reaction and
neutron total cross section measurements on stable isotopic
chains can help identify which asymmetry-dependence forms
are justifiable for increasingly asymmetric systems. On the
theoretical side, sensitivity studies are needed to clarify how
bound-state data on highly asymmetric systems connect to
scattering cross sections.

Lastly, a few systematics in optical potential parameter val-
ues are worth mention. For most of the parameters, there was
minimal variation with nuclear size or asymmetry, suggesting
that a global DOM treatment using the functional forms we
have selected is achievable. The radial term for the real cen-
tral potential (r1) and for the positive-energy imaginary vol-
ume and surface (r+

4 , r+
5 ) are nearly constant among 40,48Ca,

58,64Ni, 112,124Sn, and 208Pb, but the values for 16,18O show
moderate deviations, another indication that the geometric
form of the potential is insufficient for light systems. As a
consequence of the limited negative-energy data available for
fitting, the negative-energy geometric terms (r−

4 , r−
5 , a−

4 , a−
5 )

show large variation. The nonlocalities for the negative imag-
inary components are systematically larger than those for
the positive imaginary components. This suggests that while
traditional OMs have been able to successfully reproduce
positive-energy scattering data with strictly local potentials,
description of hole properties requires true nonlocal character
in the negative-energy potential. In practice, we found it
impossible to simultaneously reproduce charge density dis-
tributions, binding energies, and scattering data unless the
central potential and at least the volume imaginary terms were
equipped with a nonlocality. In the end, for simplicity and
generality, each element of the potential (except Coulomb)
was treated nonlocally, but it is unclear which particular data
are most important for constraining these several nonlocali-
ties. As one moves further from stability to systems with even
less (or no) scattering data available, the risk of overfitting will
loom until this issue is resolved.

In preliminary fits, the imaginary volume magnitude (A−
4 )

component of the potential was shown to be strongly sensitive
to the inclusion of the binding energy as a constraint during
fitting. We expect the asymmetry dependence of this term
(A−

vol,asym) to impact DOM-based predictions of the Ca, Ni,
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and Sn neutron drip lines (as in [28]), though in this work, this
dependence was very poorly constrained due to the absence
of experimental asymmetry-dependent data probing the most
deeply bound nucleons. Because they encode information
about how protons and neutrons share energy throughout the
nucleus, experimental neutron-skin thicknesses could provide
this kind of valuable information.

For the Ca, Ni, Sn, and Pb fits, the median positive-energy
surface imaginary magnitude (A+

sur,asym) is positive, indicat-
ing enhancement in proton surface imaginary strength with
increasing neutron richness and a corresponding decrease for
neutron surface imaginary strength. Of course, the nuclei
under study in the present work are stable; the trend for nuclei
with large asymmetries, relevant for the r-process neutron-
capture rate, is unknown.

VII. CONCLUSION

By adopting a digitizer-driven approach, we measured σtot

on the important closed-shell nuclides 16,18O, 58,64Ni, and
112,124Sn across more than two orders of magnitude in energy
(3–450 MeV). Except at the highest energies, our results on
natural targets are in good agreement with previous analog-
mediated measurements that required an order of magnitude
more target material.

Using these new data and a suite of scattering and bound-
state literature data on 16,18O, 58,64Ni, and 112,124Sn, we ex-
tracted DOM potentials capable of reproducing a diverse
range of scattering and structural data for both neutrons
and protons, validating the use of the DOM away from
doubly closed shells from A = 16 to A = 208, though with
indications that the traditional A1/3 radial dependence may
require modification for light systems. These analyses fur-
ther indicate that simultaneous fits of isotopically resolved
neutron σtot, proton σrxn, and charge density distribution
data on isotopic partners provide a more stringent constraint
on the asymmetry dependence of both real and imaginary
components.
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APPENDIX A: DEFINITION OF DOM POTENTIAL

1. Functional forms

Before giving the full parametrization, we identify a few
standard functional forms. Radial dependencies are defined by
a Woods-Saxon shape or a derivative:

fvol(r; r0, a) = −1

1 + e(r−R)/a
,

fsur (r; r0, a) = 1

r

d

dr
fvol(r; r0, a). (A1)

R is the nuclear radius, calculated as R = r0A
1
3 . The sign of

the potential is such that the Woods-Saxon form provides an
attractive interaction. For nonlocalities, we use a Gaussian
nonlocality first proposed by [58]:

N (r, r′; β ) = 1

π
3
2 β3

e−(r−r′ )2/β2
, (A2)

where β sets the Gaussian width. The energy dependencies of
the imaginary components are based on the functional form
of [59]:

ωn(E ; A, B,C) = �(X )A
X n

X n + Bn
, (A3)

where

X = |E − εF | − C

and �(X ) is the Heaviside step function.
For symmetric nuclei, the same potential was used for pro-

tons and neutrons, excepting Coulomb. For asymmetric nu-
clei, we introduced five asymmetry-dependent terms. For all
energy dependencies, the energy domain was εF − 300 MeV
to εF + 200 MeV.

The irreducible self-energy (optical potential) used in this
work is defined as

�∗(α, β; E ) = �∗
s (α, β ) + �∗

im(α, β; E ) + �∗
d (α, β; E ).

(A4)

The energy-independent real part �s(α, β ) and energy-
dependent imaginary part �∗

im(α, β ) parametrizations are
given in the following two subsections. The dispersive correc-
tion term �∗

d (α, β; E ) is completely determined by an integral
over the imaginary part (Eq. (3) of [29]). All free parameters
that are fitted via MCMC sampling are typeset in bold.

2. Real part

The energy-independent real part of the self-energy
consists of a nonlocal Hartree-Fock and a spin-orbit
component (plus a local Coulomb term if the nucleon in
question is a proton):

�s(r, r′) = �HF(r, r′) + Vso(r, r′) + VC (r)δ(r − r′). (A5)

The Coulomb potential is calculated using the same
experimentally derived charge density distributions (see
[49]) used in fitting. The Hartree-Fock component VHF has
two subcomponents:

�HF(r, r′) = Vvol(r, r′) + Vwb(r), (A6)
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where the nonlocal Hartree-Fock volume term Vvol(r, r′)
is defined as a Woods-Saxon form coupled to a Gaussian
nonlocality:

Vvol(r, r′) = −V1× fvol(r; r1, a1)×N (r, r′; β1). (A7)

The local Hartree-Fock wine-bottle term Vwb, named for
resemblance to the dimple at the bottom of a wine bottle, is
defined as a Gaussian centered at the nuclear origin,

Vwb(r) = V2×er2/σ2
2
. (A8)

The real spin-orbit component Vso is defined using
a derivative-Woods-Saxon shape in keeping with the
expectation that the spin-orbit coupling is strongest near
the nuclear surface:

Vso(r, r′) =
(

h̄

mπc

)2

V3 × 1

r
fsur (r; r3, a3)

× N (r, r′; β3)×(	 · σ ). (A9)

The leading constant ( h̄
mπ c )2 is taken to be 2.0 fm2 [30]. In

total, there are ten free parameters for the symmetric real part
of the potential.

3. Imaginary part

The imaginary part of the potential is composed of inde-
pendent surface and volume terms both above and below the
Fermi surface:

�∗
im(r, r′, E ) = �±

vol(r, r′, E ) + �±
sur (r, r′, E ), (A10)

where the volume and surface components are defined:

�±
vol(r, r′, E ) = W ±

vol(E )× fvol(r; r±
4 , a±

4 )N (r, r′; β±
4 ),

�±
sur (r, r′, E ) = 4a5W

±
sur (E )× fsur (r; r±

5 , a±
5 )N (r, r′; β±

5 ).
(A11)

The terms labeled with + determine the potential above εF ,
and the terms labeled with − determine the potential below
εF . The energy dependence of the imaginary volume terms
read

W ±
vol(E ) = A±

4

[
(E�)4

(E�)4 + (B±
4 )4

+ W ±
NM (E )

]
, (A12)

where E� = |E − εF | and

W +
NM(E ) = α4

[√
E + (εF + E+

4 )
3
2

2E
− 3

2

√
εF + E+

4

]
,

W −
NM(E ) = (εF − E − E−

4 )2

(εF − E − E−
4 )2 + (E−

4 )2
. (A13)

The terms W ±
NM are asymmetric above and below the Fermi

surface and are modeled after nuclear-matter calculations.

They account for the decreasing phase space at negative
energies and the increasing phase space at positive ener-
gies. The energy dependence of the imaginary surface terms
reads

W ±
sur (E ) = ω4(E , A±

5 , B±
5 , 0) − ω2(E , A±

5 , B′±
5 , C±

5 ). (A14)

In total, there are thirteen free parameters for the symmetric
imaginary volume terms of the potential and fourteen free
parameters for the symmetric imaginary surface terms of the
potential. Thus for symmetric nuclei, thirty-seven real and
imaginary parameters were used.

4. Parametrization of asymmetry dependence

For asymmetric nuclei, the parametric forms must be mod-
ified to account for the different potential experienced by
protons and neutrons. For the real central potential, the depth
V1 and radius r1 from Eq. (A7) were allowed to vary linearly
with asymmetry:

V1 ⇒
{

V1 + Vasym × N−Z
A for protons,

V1 − Vasym × N−Z
A for neutrons,

(A15)

r1 ⇒
{

r1 + rasym × N−Z
A for protons,

r1 − rasym × N−Z
A for neutrons.

(A16)

The magnitude of the energy dependence for the imaginary
surface and volume potentials, A±

4 and A±
5 from Eqs. (A12)

and (A14), were also allowed to vary linearly with asymmetry:

A±
4 ⇒

{
A±

4 + A±
vol,asym × N−Z

A for protons,

A±
4 − A±

vol,asym × N−Z
A for neutrons,

(A17)

A±
5 ⇒

{
A±

5 + A±
sur,asym × N−Z

A for protons,

A±
5 − A±

sur,asym × N−Z
A for neutrons.

(A18)

There should be no confusion between A±
4,5, A (the total

number of nucleons), and the analyzing power. With these
six additional asymmetry-dependent terms, the total number
of free parameters used for fitting asymmetric nuclei in the
present work totals forty-three.

APPENDIX B: PARAMETER VALUES
FOR DOM POTENTIAL

Parameter labels of Tables IV–VII correspond to those
in the equations of Appendix A. For each parameter, the
prior distribution was defined to be uniform with minimum
and maximum values listed in the second and third columns
of each table. For each nucleus, the 16th, 50th, and 84th
percentile values for each estimated parameter distribution
are listed. The format is 5084

16. For 208Pb, the asymmetry-
dependent HF radius term (rasym) was disabled during
fitting.
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TABLE IV. Real central potential parameters.

Parameter Min Max Units Equation 16,18O 40,48Ca 58,64Ni 112,124Sn 208Pb

V1 50 150 MeV 19 112.0124.8
100.1 101.6111.3

92.3 103.4115.8
92.5 108.7119.0

98.2 102.6120.4
91.0

Vasym −100 200 MeV 27 −10.6634.39
−49.61 40.5853.81

28.47 −17.328.71
−43.29 24.5943.08

4.09 30.3642.05
20.18

r1 0.6 1.6 fm 19 0.991.03
0.95 1.101.13

1.07 1.091.12
1.06 1.111.14

1.09 1.121.16
1.09

rasym −1.0 1.0 fm 28 0.100.30
−0.11 −0.010.05

−0.10 0.340.45
0.21 −0.040.05

−0.13 –

a1 0.4 1.0 fm 19 0.510.56
0.46 0.580.63

0.54 0.600.64
0.56 0.480.58

0.42 0.680.75
0.60

β1 0.5 1.5 fm 19 1.051.13
0.96 1.141.20

1.06 1.101.19
1.02 1.171.23

1.12 1.141.23
1.06

V2 0 50 MeV 20 27.7643.62
10.72 26.0042.79

7.53 24.6840.64
7.01 29.5144.77

10.54 25.5042.30
8.48

σ2 0 3 fm 20 0.110.20
0.04 0.160.25

0.05 0.170.26
0.05 0.260.33

0.21 0.170.27
0.07

TABLE V. Imaginary central potential parameters.

Parameter Min Max Units Equation 16,18O 40,48Ca 58,64Ni 112,124Sn 208Pb

A+
4 0 60 MeV 24 34.2449.21

23.22 23.1434.87
16.87 25.6941.18

15.61 25.6036.94
20.18 26.4635.55

19.27

B+
4 0 200 MeV 24 71.2086.82

56.97 74.9095.95
56.62 77.0197.72

51.18 53.2266.99
43.60 65.4677.13

52.45

r+
4 0.6 1.6 fm 23 0.921.16

0.72 1.191.31
1.03 1.341.44

1.20 1.231.32
1.14 1.281.33

1.22

a+
4 0.4 1.0 fm 23 0.820.94

0.64 0.780.93
0.60 0.650.83

0.50 0.780.93
0.62 0.680.84

0.54

β+
4 0.5 1.5 fm 23 0.620.75

0.53 0.590.67
0.53 0.730.82

0.64 0.680.73
0.62 0.600.67

0.54

A−
4 0 60 MeV 24 10.0524.98

3.83 34.2651.39
15.06 28.1537.91

18.70 30.5642.31
19.87 38.0051.09

26.52

B−
4 0 200 MeV 24 130.3177.1

70.0 110.5153.9
63.2 79.0125.2

38.7 72.7117.2
34.3 105.8159.3

53.9

r−
4 0.6 1.6 fm 23 1.091.36

0.80 0.961.14
0.77 1.001.15

0.83 0.911.07
0.79 1.121.23

0.99

a−
4 0.4 1.0 fm 23 0.720.90

0.52 0.610.81
0.45 0.700.87

0.51 0.800.94
0.64 0.560.76

0.44

β−
4 0.5 1.5 fm 23 1.021.35

0.76 0.981.31
0.74 1.001.29

0.80 1.031.31
0.83 1.151.39

0.88

α4 0 0.5 25 0.160.29
0.06 0.200.28

0.11 0.130.29
0.03 0.180.26

0.11 0.200.30
0.11

E+
4 50 200 MeV 25 109.5160.5

71.7 109.9157.7
74.2 105.6160.6

61.4 90.0125.8
65.7 132.2178.0

85.1

E−
4 50 200 MeV 25 104.7143.9

77.4 101.3131.6
74.1 114.2144.5

85.2 127.9170.2
97.0 135.1171.3

97.3

A+
vol,asym −100 200 MeV 29 37.7276.02

9.43 11.3928.73
−0.39 8.4730.29

−13.51 7.5318.04
−4.93 17.4429.66

6.43

A−
vol,asym −100 200 MeV 29 131.1180.2

37.7 7.9117.8
−63.5 −10.3966.67

−61.63 −8.8670.86
−59.46 −9.2750.04

−66.04
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TABLE VI. Imaginary surface potential parameters.

Parameter Min Max Units Equation 16,18O 40,48Ca 58,64Ni 112,124Sn 208Pb

A+
5 0 50 MeV 26 24.1834.54

17.24 23.5731.91
16.31 25.2234.17

17.14 31.6341.32
22.73 32.9841.90

22.15

B+
5 0 50 MeV 26 21.9624.14

19.70 21.7324.57
18.83 18.3420.60

15.74 18.8921.90
16.54 18.4220.93

15.79

B′+
5 0 50 MeV 26 28.7337.59

20.87 41.4047.79
31.75 31.9240.20

23.80 29.0838.47
21.91 41.1447.18

31.04

C+
5 0 10 MeV 26 4.788.31

1.81 5.768.65
1.79 6.688.83

3.29 3.016.85
0.87 6.368.62

2.75

r+
5 0.6 1.6 fm 23 1.381.48

1.21 1.211.31
1.07 1.221.30

1.10 1.221.29
1.08 1.221.26

1.16

a+
5 0.4 1.0 fm 23 0.590.79

0.49 0.730.86
0.63 0.660.80

0.56 0.670.80
0.57 0.610.76

0.51

β+
5 0.5 1.5 fm 23 1.041.36

0.72 1.131.36
0.84 0.991.27

0.72 0.961.25
0.72 0.871.07

0.67

A−
5 0 50 MeV 26 23.0234.32

13.93 38.6147.59
23.44 24.8536.31

12.25 26.0434.54
17.03 35.0845.70

24.41

B−
5 0 50 MeV 26 11.7814.83

9.09 13.4918.26
9.98 9.0711.06

7.23 9.1611.28
7.51 15.7721.66

11.11

B′−
5 0 50 MeV 26 33.4844.79

21.44 36.3246.11
22.61 32.1543.99

20.96 28.4739.31
18.61 34.4943.95

23.61

C−
5 0 10 MeV 26 6.479.02

3.35 6.248.57
1.88 5.848.71

2.54 5.518.68
1.70 7.079.24

4.03

r−
5 0.6 1.6 fm 23 0.760.91

0.64 0.820.93
0.67 0.780.97

0.63 1.101.14
1.02 1.011.08

0.88

a−
5 0.4 1.0 fm 23 0.470.57

0.42 0.510.62
0.43 0.620.74

0.48 0.530.68
0.44 0.640.85

0.50

β−
5 0.5 1.5 fm 23 1.171.40

0.92 1.241.39
0.98 1.121.31

0.90 1.121.34
0.91 0.911.17

0.71

A+
sur,asym −100 200 MeV 30 −22.1015.74

−64.99 20.1145.79
2.93 9.4240.11

−25.44 54.3280.91
29.32 27.4555.00

6.87

A−
sur,asym −100 200 MeV 30 48.2142.3

−52.4 −7.6831.56
−47.07 12.9254.11

−28.07 11.3537.52
−16.09 −4.7924.43

−32.12

TABLE VII. Spin-orbit parameters.

Parameter Min Max Units Equation 16,18O 40,48Ca 58,64Ni 112,124Sn 208Pb

V3 0 20 MeV 21 10.4412.64
8.57 12.0713.93

10.36 13.4816.00
11.28 9.9912.49

8.00 13.0516.62
10.03

r3 0.6 1.6 fm 21 0.891.00
0.79 0.931.02

0.81 1.051.14
0.90 1.051.14

0.97 1.141.20
1.05

a3 0.4 1.0 fm 21 0.600.72
0.49 0.680.79

0.57 0.680.85
0.55 0.600.77

0.46 0.770.90
0.61

β3 0.5 1.5 fm 21 0.590.80
0.53 0.630.75

0.54 0.741.00
0.58 0.831.08

0.59 0.771.05
0.60

APPENDIX C: DOM FIT COMPARISON TO
EXPERIMENTAL DATA

Figures 12–20 show the data sectors used to constrain the
DOM potential. Experimental scattering cross sections are
shown as points with associated experimental error bars in
panels (a) through (f) of each figure. Experimental bound-state
data are shown as bands in panels (g) through (j). DOM
calculations for each data sector are plotted as 1σ and 2σ

uncertainty bands. References for each data set are provided
in Appendix B of [26].

Panels (a) and (c) show proton dσ
d

and analyzing powers
from 10–200 MeV. Panels (b) and (d) show neutron dσ

d
and

analyzing powers from 10–200 MeV. For visibility, data sets
at different energies are offset vertically and colored according
to the scattering energy. Panels (e) show proton σrxn data.

Experimental data are plotted as black points and pseudodata
generated from [47] are plotted as gray open circles. Panels
(f) show the neutron σtot and σrxn. The charge distributions of
panels (g) are derived from the compilation of [49] (see com-
ments in the DOM Analysis section), and are displayed with an
arbitrary 1% uncertainty band in black. In panels (h), single-
particle energies εnlj are shown as horizontal lines. In the
“calc” column, DOM-calculated single-particle energies are
plotted; the height of each rectangle spans the 1σ calculated
uncertainty for that level. Panels (i) show DOM-calculated
charge radii; the experimental charge radius is displayed using
dark gray and light gray bands representing 1σ and 2σ un-
certainties, respectively. Panels (j) show the DOM-calculated
binding energy per nucleon; the experimental value is shown
with a thin gray band.
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FIG. 12. 16O: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 13. 18O: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 14. 40Ca: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 15. 48Ca: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 16. 58Ni: Constraining experimental data and DOM fit. See introduction of Appendix C for description.

034601-21



C. D. PRUITT et al. PHYSICAL REVIEW C 102, 034601 (2020)

FIG. 17. 64Ni: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 18. 112Sn: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 19. 124Sn: Constraining experimental data and DOM fit. See introduction of Appendix C for description.
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FIG. 20. 208Pb: Constraining experimental data and DOM fit. See introduction of Appendix C for description.

034601-25



C. D. PRUITT et al. PHYSICAL REVIEW C 102, 034601 (2020)

[1] M. H. Mahzoon, M. C. Atkinson, R. J. Charity, and W. H.
Dickhoff, Phys. Rev. Lett. 119, 222503 (2017).

[2] F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C 86, 015802
(2012).

[3] X. Viñas, M. Centelles, X. Roca-Maza, and M. Warda, Eur.
Phys. J. A 50, 27 (2014).

[4] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[5] S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75, 1352

(1949).
[6] G. R. Satchler, Introduction to Nuclear Reactions (John Wiley

and Sons, 1980).
[7] J. M. Peterson, Phys. Rev. 125, 955 (1962).
[8] R. W. Finlay, W. P. Abfalterer, G. Fink, E. Montei, T. Adami,

P. W. Lisowski, G. L. Morgan, and R. C. Haight, Phys. Rev. C
47, 237 (1993).

[9] R. B. Schwartz, R. A. Schrack, and H. T. Heaton II, Tech. Rep.
138 (National Bureau of Standards, 1974).

[10] W. P. Poenitz and J. F. Whalen, Tech. Rep. 80, Argonne National
Laboratory, 1983.

[11] W. P. Abfalterer, R. W. Finlay, and S. M. Grimes, Phys. Rev. C
62, 064312 (2000).

[12] W. P. Abfalterer, F. B. Bateman, F. S. Dietrich, R. W. Finlay,
R. C. Haight, and G. L. Morgan, Phys. Rev. C 63, 044608
(2001).

[13] S. G. Carpenter and R. Wilson, Phys. Rev. 114, 510
(1959).

[14] I. Angeli and J. Csikai, Nucl. Phys. A 158, 389 (1970).
[15] C. B. O. Mohr, Proc. Phys. Soc. A 68, 340 (1955).
[16] H. Feshbach, Annu. Rev. Nucl. Part. Sci. 8, 49 (1958).
[17] K. W. McVoy, Ann. Phys. 43, 91 (1967).
[18] I. Ahmad, N. Bano, and A. N. Saharia, Pramana 1, 188 (1973).
[19] C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 17, 1

(1976).
[20] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and

T. B. Clegg, Phys. Rep. 201, 57 (1991).
[21] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231

(2003).
[22] F. S. Dietrich, J. D. Anderson, R. W. Bauer, S. M. Grimes, R. W.

Finlay, W. P. Abfalterer, F. B. Bateman, R. C. Haight, G. L.
Morgan, E. Bauge et al., Phys. Rev. C 67, 044606 (2003).

[23] C. D. Pruitt, R. J. Charity, L. G. Sobotka, M. C. Atkinson, and
W. H. Dickhoff, Phys. Rev. Lett. 125, 102501 (2020).

[24] T. W. Phillips, B. L. Berman, and J. D. Seagrave, Phys. Rev. C
22, 384 (1980).

[25] D. G. Foster and D. W. Glasgow, Phys. Rev. C 3, 576 (1971).
[26] C. D. Pruitt, Ph.D. thesis, Washington University in St. Louis,

2019.
[27] R. Shane, R. J. Charity, J. M. Elson, L. G. Sobotka, M. Devlin,

N. Fotiades, and J. M. O’Donnell, Nucl. Instrum. Methods
Phys. Res., Sect. A 614, 468 (2010).

[28] J. M. Mueller, R. J. Charity, R. Shane, L. G. Sobotka, S. J.
Waldecker, W. H. Dickhoff, A. S. Crowell, J. H. Esterline, B.
Fallin, C. R. Howell et al., Phys. Rev. C 83, 064605 (2011).

[29] M. H. Mahzoon, R. J. Charity, W. H. Dickhoff, H. Dussan, and
S. J. Waldecker, Phys. Rev. Lett. 112, 162503 (2014).

[30] M. Mahzoon, Ph.D. thesis, Washington University in St. Louis,
2015.

[31] M. S. Moore, Nucl. Instrum. Methods 169, 245 (1980).
[32] J. M. Clement, P. Stoler, C. A. Goulding, and R. W. Fairchild,

Nucl. Phys. A 183, 51 (1972).
[33] W. P. Abfalterer, F. B. Bateman, F. S. Dietrich, C. Elster, R. W.

Finlay, W. Glöckle, J. Golak, R. C. Haight, D. Hüber, G. L.
Morgan et al., Phys. Rev. Lett. 81, 57 (1998).

[34] Y. V. Dukarevich, A. N. Dyumin, and D. M. Kaminker, Nucl.
Phys. A 92, 433 (1967).

[35] M. Anselment, K. Bekk, A. Hanser, H. Hoeffgen, G. Meisel, S.
Göring, H. Rebel, and G. Schatz, Phys. Rev. C 34, 1052 (1986).

[36] F. Perey, T. A. Love, and W. E. Kinney, Tech. Rep. 482 (Oak
Ridge National Laboratory, 1972).

[37] F. J. Vaughn, H. A. Grench, W. L. Imhof, J. H. Rowland, and
M. Walt, Nucl. Phys. 64, 336 (1965).

[38] S. R. Salisbury, D. B. Fossan, and F. J. Vaughn, Nucl. Phys. 64,
343 (1965).

[39] C. M. Perey, F. G. Perey, J. A. Harvey, N. W. Hill, N. M. Larson,
R. L. Macklin, and D. C. Larson, Phys. Rev. C 47, 1143 (1993).

[40] R. W. Harper, T. W. Godfrey, and J. L. Weil, Phys. Rev. C 26,
1432 (1982).

[41] V. M. Timokhov, M. V. Bokhovko, A. G. Isakov, L. E. Kazakov,
V. N. Kononov, G. N. Manturov, E. D. Poletaev, and V. G.
Pronyaev, Sov. J. Nucl. Phys. 50, 609 (1989).

[42] J. Rapaport, M. Mirzaa, M. Hadizadeh, D. E. Bainum, and R. W.
Finlay, Nucl. Phys. A 341, 56 (1980).

[43] M. C. Atkinson, H. P. Blok, L. Lapikás, R. J. Charity, and W. H.
Dickhoff, Phys. Rev. C 98, 044627 (2018).

[44] C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
[45] W. H. Dickhoff and R. J. Charity, Prog. Part. Nucl. Phys. 105,

252 (2019).
[46] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
[47] R. F. Carlson, At. Data Nucl. Data Tables 63, 93 (1996).
[48] M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and X.

Xi, Chin. Phys. C 41, 030003 (2017).
[49] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[50] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69

(2013).
[51] G. B. King, A. E. Lovell, L. Neufcourt, and F. M. Nunes, Phys.

Rev. Lett. 122, 232502 (2019).
[52] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,

Publ. Astron. Soc. Pac. 125, 306 (2013).
[53] S. Sharma, Annu. Rev. Astron. Astrophys. 55, 213 (2017).
[54] J. Goodman and J. Weare, Commun. Appl. Math. Comput. Sci.

5, 65 (2010).
[55] J. Brynjarsdóttir and A. O’Hagan, Inverse Problems 30, 114007

(2014).
[56] J. A. Tostevin and A. Gade, Phys. Rev. C 90, 057602 (2014).
[57] M. C. Atkinson and W. H. Dickhoff, Phys. Lett. B 798, 135027

(2019).
[58] F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962).
[59] R. J. Charity, J. M. Mueller, L. G. Sobotka, and W. H. Dickhoff,

Phys. Rev. C 76, 044314 (2007).

034601-26

https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevC.86.015802
https://doi.org/10.1140/epja/i2014-14027-8
https://doi.org/10.1103/PhysRevLett.85.5296
https://doi.org/10.1103/PhysRev.75.1352
https://doi.org/10.1103/PhysRev.125.955
https://doi.org/10.1103/PhysRevC.47.237
https://doi.org/10.1103/PhysRevC.62.064312
https://doi.org/10.1103/PhysRevC.63.044608
https://doi.org/10.1103/PhysRev.114.510
https://doi.org/10.1016/0375-9474(70)90190-9
https://doi.org/10.1088/0370-1298/68/4/410
https://doi.org/10.1146/annurev.ns.08.120158.000405
https://doi.org/10.1016/0003-4916(67)90293-X
https://doi.org/10.1007/BF02847190
https://doi.org/10.1016/0092-640X(76)90007-3
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1103/PhysRevC.67.044606
https://doi.org/10.1103/PhysRevLett.125.102501
https://doi.org/10.1103/PhysRevC.22.384
https://doi.org/10.1103/PhysRevC.3.576
https://doi.org/10.1016/j.nima.2010.01.005
https://doi.org/10.1103/PhysRevC.83.064605
https://doi.org/10.1103/PhysRevLett.112.162503
https://doi.org/10.1016/0029-554X(80)90129-9
https://doi.org/10.1016/0375-9474(72)90930-X
https://doi.org/10.1103/PhysRevLett.81.57
https://doi.org/10.1016/0375-9474(67)90228-X
https://doi.org/10.1103/PhysRevC.34.1052
https://doi.org/10.1016/0029-5582(65)90361-5
https://doi.org/10.1016/0029-5582(65)90362-7
https://doi.org/10.1103/PhysRevC.47.1143
https://doi.org/10.1103/PhysRevC.26.1432
https://doi.org/10.1016/0375-9474(80)90361-9
https://doi.org/10.1103/PhysRevC.98.044627
https://doi.org/10.1007/978-1-4613-9910-0_1
https://doi.org/10.1016/j.ppnp.2018.11.002
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1006/adnd.1996.0010
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/PhysRevLett.122.232502
https://doi.org/10.1086/670067
https://doi.org/10.1146/annurev-astro-082214-122339
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1088/0266-5611/30/11/114007
https://doi.org/10.1103/PhysRevC.90.057602
https://doi.org/10.1016/j.physletb.2019.135027
https://doi.org/10.1016/0029-5582(62)90345-0
https://doi.org/10.1103/PhysRevC.76.044314

