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Background: Spectroscopic factors, overlaps, and isospin symmetry are often used in conjunction with single-
particle wave functions for the phenomenological analysis of nuclear structure and reactions. Many differing
prescriptions for connecting these quantities to physically relevant asymptotic normalization constants or widths
are available in the literature, but their relationship and degree of validity are not always clear.
Purpose: This paper derives relationships among the above quantities of interest using well-defined methodology
and starting assumptions.
Method: R-matrix theory is used as the primary tool to interoperate among the quantities of interest to this work.
Particular attention is paid to effects arising from beyond the nuclear surface, where isospin symmetry is strongly
violated.
Results: Relationships between the quantities of interest are derived. Example applications of these methods to
mirror levels in nucleon + 12C, nucleon + 16O, and nucleon + 26Al are presented. A new approach to multilevel
mirror symmetry is derived and applied to the first three 2+ states of 18O and 18Ne.
Conclusions: The relationship between the quantities of interest is clarified and certain procedures are recom-
mended. It is found that the asymptotic normalization constant of the second 2+ state in 18Ne deduced from the
mirror state in 18O is significantly larger than found in previous work. This finding has the effect of increasing
the 17F(p, γ ) 18Ne reaction rate in novae.
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I. INTRODUCTION

The concepts of spectroscopic factors, overlaps, and
isospin symmetry are widely used for the phenomenological
analysis and conceptual understanding of nuclear structure
and reactions. These quantities are often used as a “black
box,” with little understanding of how they relate to each
other or to more fundamental descriptions of nuclei. These
quantities have physical counterparts, asymptotic normaliza-
tion constants (ANCs) and widths, that are the relevant ones
in experiments and applications. R-matrix theory provides a
convenient framework for unifying these descriptions.

This work also focuses on energies near nucleon separation
thresholds, where significant effects due to the continuum
may arise. This energy regime is also a pertinent one for
understanding thermonuclear reaction rates in astrophysics,
where the use of these concepts has recently been discussed
[1,2]. Most of these methods have been developed for many
decades, but the results are scattered throughout the litera-
ture and in some instances forgotten. There is presently a
resurgence of interest in these principles, due to the inter-
est in astrophysical applications and the availability of new
radioactive ion beams. In many cases, the determination of
astrophysical reaction rates requires the combination of direct
measurements, indirect measurements, and theoretical inputs.
It is hoped that this paper will be helpful in such efforts.

*brune@ohio.edu

This paper is organized as follows. First, in Secs. II and III,
the concepts of single-particle wave functions and reduced-
width amplitudes are introduced. This discussion includes
several methods of defining resonances energies and widths
as well as computation methods. Most of the calculations in
this paper utilize R-matrix theory, with the tail of the nuclear
potential beyond the channel radii included. This approach
allows single-particle quantities, such as widths and ANCs,
to be calculated in the typical manner from Woods-Saxon po-
tentials. At the same time, these quantities can be described in
the R-matrix framework using single-particle reduced-width
amplitudes and penetration factors. The inclusion of multiple
channels is also straightforward in the R-matrix approach.
Next, in Sec. IV, the concepts of spectroscopic factors and
overlaps are introduced using the same language and con-
nected to R-matrix theory. Then, in Sec. V, these concepts are
applied to isospin and mirror symmetry. Mirror symmetry is
then investigated in Sec. VI using the examples of nucleon
+ 12C, nucleon + 16O, and nucleon + 26Al. All of these
examples involve � = 0 nucleons and energy levels near the
nucleon separation threshold, where the effects of continuum
coupling may be significant. Several different approaches are
compared. Finally, in Sec. VII, the effect of mirror symmetry
operating on a set of levels is considered. In this situation,
there is a mixing of the levels due to mirror symmetry
breaking beyond the channel radii. The R-matrix approach
presented here is a new and efficient method for investigating
this question. These effects are demonstrated using the first
three 2+ states of 18O and 18Ne. Appendix A describes an
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algorithm that is useful for determining the contribution of the
wave-function tail to the overall normalization in a Coulomb
potential.

II. SINGLE-PARTICLE WAVE FUNCTIONS

Single-particle wave functions provide a basis for the
approximate description of the many-body nuclear physics
problem. While the term “single-particle” is appropriate for
the nucleon + nucleus case, one can consider these wave func-
tions more generally as one-body wave functions describing
a particular two-cluster configuration of a many-body nuclear
wave function. The single-particle radial wave function u(r)/r
is assumed to satisfy the radial Schrödinger equation

− h̄2

2μ

d2u

dr2
+ [V (r) + VC (r)]u + h̄2

2μ

�(� + 1)

r2
u = Eu, (1)

where r � 0 is the distance between the clusters, E is the
relative energy, � is the relative orbital angular momentum
quantum number, μ is the reduced mass, and h̄ is Planck’s
constant. The nuclear single-particle potential V (r) is as-
sumed to be real, central, and local, with limr→0 r2V (r) = 0
and limr→∞ r2V (r) = 0, and VC (r) is the Coulomb potential.
Physical solutions will have u(r) ∝ r�+1 for r → 0, which
provides a boundary conditions for u(0). This single-particle
wave function is specific to a particular channel, where a chan-
nel is defined to be a configuration of given cluster type, total
angular momentum, parity, orbital angular momentum, and
channel spin. This approach ignores any coupling between
different channels.

When the energy E corresponds to a bound or unbound
energy level, the single-particle reduced-width amplitude γ is
defined by

γ = u(a)

(
h̄2

2μa
∫ a

0 u2 dr

)1/2

. (2)

The reduced-width amplitude has the physical interpretation
of being the amplitude of the resonant wave function at the
channel radius, when the wave function is normalized to unity
inside the channel radius. All of the ANCs, widths, and re-
duced widths in this section are derived from single-particle
wave functions and are single-particle quantities.

In what follows, I will use r (possibly with a subscript) to
indicate an arbitrary radius, b to indicate a large radius where
V (r) is negligible, and a to indicate a channel radius, which
is located outside the nuclear surface where V (r) is small
but not necessarily negligible. In this section, I define the
Coulomb functions used in this work and discuss two integral
relations that are useful for single-particle states. Then three
slightly different ways of defining resonances are introduced
and discussed.

A. Coulomb functions

In regions where only the point-Coulomb potential is
present, the solutions to Eq. (1) are given by u = G�(η, ρ) ≡
G and u = F�(η, ρ) ≡ F , which are the irregular and regular
Coulomb functions, respectively. I also define ρ = kr, k =√

2μE/h̄2, and ηk = Z1Z2q2μ/h̄2, where Z1q and Z2q are the

charges of the two clusters. The Wronskian relation for the
Coulomb functions is

G
dF

dr
− F

dG

dr
= k. (3)

Outgoing and incoming Coulomb waves are defined via

O = exp(−iσ )(G + iF ) and (4a)

I = exp(iσ )(G − iF ), (4b)

where σ (�, η) is the Coulomb phase shift. One also has

O = exp

[
π

2
(η − i�)

]
W−iη,�+1/2(−2iρ), (5)

where W is the Whittaker function. For E real and negative,
such as is the case for bound states, I take k = i

√
−2μE/h̄2,

and W is real. I also consider situations where E is complex,
with Re E > 0 and Im E < 0, in which case the sign of k =√

2μE/h̄2 defined such that Re k > 0 and k is located near
the physical (i.e., real and positive) k axis. The logarithmic
derivative of the outgoing solution by

L ≡ r

O

dO

dr
, (6)

and when E is real one also defines

L ≡ Ŝ + iP, (7)

where Ŝ and P are the shift and penetration factors,
respectively. Note that P vanishes for E � 0. Finally,
the phase φ is defined by tan φ = F/G. The functions
F, G, O, I, W, L, Ŝ, P, and φ are useful for large radii,
where V (r) is negligible. They may be continued to smaller
radii using the differential equation, Eq. (1), to yield the
nuclear-modified Coulomb functions F , G, O, I, W, L,
Ŝ, P , and 	. Where applicable, these modified Coulomb
functions obey the same Wronskian relations as the usual
Coulomb functions because of the differential equation they
satisfy, Eq. (1).

B. Two integral relations

Here I derive two integral relations which enable the ex-
traction of ANCs or widths from the single-particle radial
wave function. The first integral relation concerns the energy
derivative of the logarithmic radial derivative of u. An early
reference for this procedure is given by Lane and Thomas
[3, V.1, Eqs. (1.5)–(1.9), p. 283]. Using Eq. (1) with two
different solutions u1 and u2 corresponding to energies E1 and
E2, one can show that

− h̄2

2μ

d

dr

[
u1

du2

dr
− u2

du1

dr

]
= (E2 − E1)u1u2. (8)

Upon integrating from r = r1 to r2, with r1 < r2, this becomes

− h̄2

2μ

[
u1u2

(
1

u2

du2

dr
− 1

u2

du1

dr

)]r2

r1

= (E2 − E1)
∫ r2

r1

u1u2 dr.

(9)
Taking u1 → u2 yields

− h̄2

2μ

[
u2 ∂

∂E

(
1

u

du

dr

)]r2

r1

=
∫ r2

r1

u2 dr, (10)
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where ∂E is taken at fixed radius. Using the boundary condi-
tion on u(0), one can take r1 → 0 to obtain

− h̄2

2μ
u2(r2)

[
∂

∂E

(
1

u

du

dr

)]
r2

=
∫ r2

0
u2 dr. (11)

The second relation is an application of the two-potential
formalism [4, X.V.17, pp. 404–405]. The regular Coulomb
wave function F is the solution to Eq. (1) for the point-
Coulomb potential alone, VpC = Z1Z2q2/r, while u is the
solution for V + VC . Taking the differential equation satisfied
by u multiplied by F and subtracting the differential equation
satisfied by F multiplied by u, I obtain

h̄2

2μ

d

dr

(
F

du

dr
− u

dF

dr

)
= F (V + VC − VpC ) u. (12)

Upon integrating from r = r1 to r2, with r1 < r2, this becomes

h̄2

2μ

(
F

du

dr
− u

dF

dr

)r2

r1

=
∫ r2

r1

F (V + VC − VpC ) u dr. (13)

I now specify r1 → 0 and r2 = b, where V + VC − VpC be-
comes negligible, and u(r) = αF (r) + βG(r) in the vicinity
of r = b, where α and β are constants. Using the Wronskian
relation, Eq. (3), this becomes

−β
h̄2k

2μ
=

∫ b

0
F (V + VC − VpC ) u dr. (14)

C. S matrix

The radial wave function may be written as a linear combi-
nation of modified Coulomb functions

u ∝ I − SO, (15)

where S is the scattering matrix. This relation may also be
expressed as

u ∝ cos δF + sin δ G, (16)

where δ is the phase shift and

S = exp[2i(δ + σ )]. (17)

It is important to note that Eqs. (15) and (16) are valid for any
radius, although they will only be used for r � a.

In the S-matrix approach, discrete energy levels may be de-
fined to be those energies where the solution consists of a pure
outgoing wave. This provides the usual large-radius boundary
condition for bound states, where E is real and negative. For
unbound states, this boundary condition can only be achieved
for complex E . If there is such an energy level at E = E0, then
the S matrix has a first-order pole at the energy such that near
E = E0

S(E ) = A

E − E0
+ function that is regular at E0, (18)

where A is the residue. Using Eq. (15), one finds

1

u

du

dr
= S−1 dI

dr + dO
dr

S−1I + O . (19)

The energy derivative of the logarithmic radial derivative of
u at E = E0 may then be evaluated by substituting this result

into Eq. (11). By using the Wronskian relation

I dO
dr

− OdI
dr

= 2ik, (20)

one obtains

−2ik

A

u2(r2)

O2(r2)
= 2μ

h̄2

[∫ r2

0
u2 dr + h̄2

2μr2
u2(r2)

(
∂L
∂E

)
r2

]
.

(21)

This equation is independent of r2, since on the left side one
has u(r) ∝ O(r) by definition and Eq. (10) shows the right
side is independent of r2.

If the level is bound, one may normalize the u over all
space by requiring that the quantity in brackets on the right
side of Eq. (21) is equal to unity. This result can be seen by
taking r2 → ∞ where the surface term vanishes and the usual
bound-state normalization condition emerges. It is also shown
by Lane and Thomas [3, Eq. (A.29), p. 351]. However, since it
is convenient to consider different normalizations, I will leave
the normalization unspecified and instead define

I∞ =
∫ r2

0
u2 dr + h̄2

2μr2
u2(r2)

(
∂L
∂E

)
r2

. (22)

One also has
u(r)

I1/2
∞

= CW (r) = C exp

[
−π

2
(η − i�)

]
O(r), (23)

where C is the ANC, which is a real quantity. There is also a
simple relationship between the ANC and the residue:

C2 = i exp[π (η − i�)]
μA

h̄2k
. (24)

If the level is unbound, the all-space normalization may
also be achieved by normalizing u such that I∞ = 1. In this
case, the normalization is less obvious, because the integral is
not convergent in the usual sense as r2 → ∞. However, this
regularization procedure has been shown to be useful and also
consistent with the Zel’dovich regularization method which
involves inserting a convergence factor into the integrand
[5–7]. Since the level energy E0 is complex in this case, one
may define the real and imaginary parts according to

E0 = ES − i
�S

2
, (25)

where ES is the resonance energy defined by the S-matrix
pole and �S is the corresponding width. In addition, the pole
residue can be used to define a width via

�S1 = |A|. (26)

In general, �S �= �S1, but they become equal in the limit �S �
ES .

Another expression for �S may be found by multiplying
Eq. (1) by u∗, subtracting the complex conjugate, and then
integrating [8]:

�S = i
h̄2

2μ

(
u du∗

dr − u∗ du
dr

)
r2∫ r2

0 |u|2 dr
(27a)

= i
h̄2

2μr2

|u(r2)|2(L∗ − L)r2∫ r2

0 |u|2 dr
. (27b)
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This formula is useful when �S is very small and other
approaches to calculating �S may not be accurate [9]. In this
situation, one can use the first-order Taylor series

L ≈ Ŝ + iP − i
�S

2

(
∂Ŝ
∂E

+ i
∂P
∂E

)
, (28)

where Ŝ, P , and their energy derivatives are evaluated on the
real energy axis at ES and are real quantities. Defining for
convenience an alternative reduced width amplitude

|γ̄ |2 = h̄2

2μr2

|u(r2)|2∫ r2

0 |u|2 dr
(29)

yields

�S ≈ 2|γ̄ |2P (r2)

1 + |γ̄ |2( ∂Ŝ
∂E

)
r2

, (30)

a formula that is very accurate when �S � ES . Equations (27)
and (30) are valid for all r2, but are most easily evaluated for
r2 = b.

One also has [
u(b)

O(b)

]2

= i
μAI∞
h̄2k

(31)

for large radii. The integral relation given by Eq. (14) yields

u(b)

O(b)
= − 2μ

h̄2k
exp(iσ )

∫ b

0
F (V + VC − VpC ) u dr, (32)

which provides an alternative method of calculating the
residue and hence also the ANC or �S1. Finally, by adopting
r2 = a in Eq. (21), the residue may be expressed in terms of
the reduced-width amplitude:

A = −2i
ka

O2(a)

γ 2

1 + γ 2
(

∂L
∂E

)
a

. (33)

D. R matrix

In the R-matrix approach, the logarithmic derivative of u
at the channel radius a is described by the R matrix, which
is a scalar quantity in the single-channel case. Specifically
[3, IV.2, Eq. (2.4), p. 274],(

r

u

du

dr

)
a

= R−1 + B, (34)

where B is the real boundary condition constant. R-matrix
energy levels are defined by the poles of the R matrix, where
the logarithmic derivative of u is B/a. The eigenfunctions
satisfying this boundary condition form a complete set inside
the channel radius and it can be shown [3, IV, pp. 272–274]
that

R =
∑

λ

γ 2
λ

Eλ − E
, (35)

where γλ are the reduced width amplitudes and Eλ are the
level energies. Note that these reduced widths, defined as
residues of R-matrix poles, are completely consistent with
the definition given by Eqs. (2), (11), and (34). In order to

investigate a level at an energy ER in the R-matrix approach, it
is natural to choose B = Ŝ (ER), the real part of the outgoing
wave boundary condition.

If the level is bound, this boundary condition is unchanged
from the S-matrix case and the results for u are identical.
Rewriting Eq. (21) with r2 = a, taking into account the def-
inition of the reduced width amplitude, replacing the residue
and O with the appropriately normalized ANC and W , and
noting ∂L/∂E = ∂Ŝ/∂E for bound states yield

C2 = 2μa

h̄2W2(a)

γ 2

1 + γ 2
(

∂Ŝ
∂E

)
a

. (36)

If the level is unbound, the boundary condition implies that

u(r) = u(a)
F (a)F (r) + G(a)G(r)

F2(a) + G2(a)
. (37)

Unlike the other cases, this condition depends somewhat on
the value of a. The R-matrix expression for the phase shift is

δ = −	(a) + tan−1 P (a)

R−1 − Ŝ (a) + B
. (38)

A convenient definition of the width �R is provided by(
dδ

dE

)
ER

= −
(

d	

dE

)
ER

+ 2

�R
, (39)

that implies

�R = 2γ 2P (a)

1 + γ 2
(

∂Ŝ
∂E

)
a

. (40)

Note that this expression for the width is very similar in
structure to Eq. (36), the equation for the ANC. For unbound
states, the integral relation given by Eq. (14) yields

u(a)G(a)

F2(a) + G2(a)
= − 2μ

h̄2k

∫ b

0
F (V + VC − VpC ) u dr, (41)

which provides another way to calculate the reduced-width
amplitude. Note that unbound states in the R-matrix approach
cannot be normalized to unity over all space via the regular-
ization procedure that may be applied for the case of Gamow
states. The normalization is left unspecified, although it is
often assumed that

∫ a
0 u2 dr = 1.

E. K matrix

Here I will consider an unbound state with a K-matrix
boundary condition, where the resonance energy is defined to
have a phase shift of δ = π/2 + mπ , where m is an integer
and u(r) ∝ G(r) at the resonance energy (see the work of
Humblet [10, Eq. 9.4]). Using

1

u

du

dr
= cos δ dF

dr + sin δ dG
dr

cos δF + sin δ G , (42)

one finds at a K-matrix resonance[
∂

∂E

(
r

u

du

dr

)]
r2

=
[

∂

∂E

(
r

G
dG
dr

)]
r2

− kr2

G2(r2)

dδ

dE
. (43)
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TABLE I. Effect of the resonance definition on the resonance energy (ES , ER, and EK ) and resonance width (�S , �s1, �R, and �K ), for three
situations.

System n� ES ER EK
ES − ER

�S

ES − EK

�S
�S �S1 �R �K

(keV) (keV) (keV) (keV) (keV) (keV) (keV)

p + 12C 2s 420.5 424.0 424.1 −0.0921 −0.0935 37.50 35.85 39.17 39.23
p + 14N 2s 259.3 259.3 259.3 −0.0072 −0.0072 1.173 1.169 1.173 1.173
p + 26Al 2s 126.8 126.8 126.8 4.96×10−9 4.96×10−9 4.96×10−9 4.96×10−9

The K-matrix width �K may be defined at the K-matrix reso-
nance energy EK via (

dδ

dE

)
EK

= 2

�K
. (44)

Then, using Eqs. (11) and (43), one finds

�K = h̄2k

μ

u2(r2)

G2(r2)

{ ∫ r2

0
u2 dr

+ h̄2

2μr2
u2(r2)

[
∂

∂E

(
r

G
dG
dr

)]
r2

}−1

. (45)

The integral relation given by Eq. (14) yields

u(b)

G(b)
= − 2μ

h̄2k

∫ b

0
F (V + VC − VpC ) u dr. (46)

F. Practical calculations

For calculations, I assume that V (r) is described by a
phenomenological Woods-Saxon potential

V (r) = −V0

1 + exp[(r − Rn)/an]
(47)

and the Coulomb potential is given by a uniformly charged
sphere of radius RC . In this work, numerical calculations
will only be performed for nucleon + A-nucleon configu-
rations, although all equations are completely general and
apply, for example, to α + nucleus channels. It is assumed
that Rn = rnA1/3 and RC = rCA1/3, with rn = rC = 1.25 fm
and a diffuseness parameter of an = 0.65 fm, unless otherwise
specified. The potential depth V0 is often adjusted to reproduce
the level energy and n, the number of radial nodes inside the
channel radius (including the origin). When E is complex,
u(r) is likewise complex, and the nodes are counted using the
real part of u(r), where the phase of u(r) is fixed such that
u(r) is real and positive near r = 0.

Equation (1) is solved numerically via the Numerov
method. In the case of u, either the potential depth is var-
ied to generate the desired level energy or the level energy
is determined for a fixed potential. One solution is propa-
gated outward from r = 0, starting with u(0) = 0. Another
solution is propagated inward from r = b, starting with the
desired boundary condition. The solutions are compared at the
channel radius r = a. The level energy or potential depth is
then varied to reproduce the desired n value and match the
logarithmic derivatives at the channel radius. The modified
Coulomb functions are also found by numerical integration,

starting with the unmodified Coulomb functions at r = b and
integrating inward to r = a. I utilize a = Rn + an, unless oth-
erwise specified, and b = 20 fm.

In the preceding development, energy derivatives of L,
Ŝ, P , and (r/G)(dG/dr) play an important role. For r = b,
where the Coulomb functions are unmodified, ∂L/∂E can be
efficiently calculated using the continued fraction algorithm
given in Appendix A. This algorithm is of general use for
the normalization of bound and Gamow states, as well as for
R-matrix calculations. For smaller radii, one has from Eq. (10)

− h̄2

2μ

[O2

r

(
∂L
∂E

)]b

r1

=
∫ b

r1

O2 dr (48)

that allows ∂L/∂E at smaller radii to be calculated from
∂L/∂E at r = b and an integration. Since L = Ŝ + iP , this
method takes care of three out of four of the needed energy
derivatives. Alternatively, ∂L/∂E may be calculated by nu-
merical differentiation, an approach that also works for the
remaining case, the energy derivative of (r/G)(dG/dr), that
in practice is only needed for r = b.

G. Discussion

The different resonance definitions do give rise to some-
what different resonance energies and widths when the
resonances become broad. This effect has been investigated
by considering � = 0 resonances in p + 12C, p + 14N, and
p + 26Al. The potential depth was adjusted once to reproduce
the resonance energy for R-matrix definition, and was then
left constant for the calculation with the other definitions. The
results are shown in Table I, where the resonance energy for
p + 12C is from Ref. [11], that for p + 14N is from Ref. [12],
and that for p + 26Al is from Refs. [13,14]. Because of the
variable Coulomb barrier and resonance energy, the single-
particle width vary considerably. In the case of p + 12C, the
single-particle width is just under 10% of the resonance en-
ergy and non-negligible differences in the resonance energies
and widths are seen. The differences in resonance energy are
seen to be a small fraction of the resonance width.

These differences are easily understood. For example, the
single-channel S and R matrices are related via

S = 2iρ

O2
(R−1 − Ŝ − iP + B)−1 + I

O . (49)

The energy dependence of the shift and penetration factors
may be approximated using

Ŝ + iP ≈ B + iPR + (E − ER)

(
∂Ŝ
∂E

+ i
∂P
∂E

)
ER

, (50)
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FIG. 1. The dependence of the R-matrix p + 12C resonance en-
ergy and width on the channel radius. The arrows indicate the
channel radius of 3.51 fm used for the calculations reported in
Table I.

where PR and the energy derivatives are evaluated at ER.
Making a single-level approximation to R then allows the
S- and R-matrix pole positions to be related:

ES − i
�S

2
≈ ER − i

γ 2PR

1 + γ 2
(

∂Ŝ
∂E + i ∂P

∂E

)
ER

, (51)

where γ is the R-matrix reduced width.
The R-matrix resonance energy and width also have some

dependence on the value of the channel radius. This variation
is shown for the case of the p + 12C resonance and 3 � a �
6 fm in Fig. 1, where both ER and �R are seen to vary by
about 0.4 keV. However, the ES and �S calculated from the
R-matrix pole parameters using Eq. (51) only vary within 0.12
and 0.05 keV, respectively.

The differences between the various resonance energy and
width definitions are small, unless the width is not small
compared to the resonance energy. Different resonance en-
ergy definitions are also discussed in Ref. [15], where similar
conclusions are reached. These approaches should be viewed
as different, but equivalent, descriptions of the same reso-
nance. In practice, if the choice matters, it should be dictated
by consistency with how the single-particle state is used.
If a transfer reaction or R-matrix calculation is coupled to
a single-particle calculation, consistent resonance definitions
should be utilized throughout. For example, some versions of
the transfer reaction code DWUCK4 [16] utilizes the K-matrix
boundary condition to define a resonant state. In addition,
if the resonance is not narrow, it is unlikely to be a good
approximation to treat it in isolation. Rather, the effects of
potential scattering and/or interference with other resonances
will be significant.

Although the S- and K-matrix approaches are formally
independent of the channel radius, all three approaches can

also be unified from a generalized R-matrix point of view
with a channel radius [17]. See also [18] for the S-matrix
pole expansion using a channel radius. In the K-matrix case,
the results can be recast into R-matrix form by noting the
K-matrix boundary condition corresponds to adopting B =
(r/G)(dG/dr) at the channel radius. For the remainder of
this work, I will utilize the R-matrix definition of resonances
parameters almost exclusively.

It should also be kept in mind that these results depend to
various degrees on the single-particle potential parameters and
channel radius. The reduced widths vary with radius of the
nuclear potential (which depends on A), the orbital angular
momentum, and number of radial nodes. The systematics of
these variations have been studied by Iliadis [19], where sub-
stantial variations are seen, even if the reduced width is made
dimensionless. The variation of the single-particle reduced
width with charge and energy is weaker, provided the energy
variation stays within a few MeV of the separation threshold.
The reason for this observation is that Coulomb energy differ-
ence or potential energy change is relatively small compared
to the depth of the nuclear potential, which accordingly leads
to a small change in the wave function inside the channel
radius.

III. FURTHER DEVELOPMENT

A. Effect of the nuclear potential on the penetrability

By including the attractive tail of the nuclear potential
in the calculation of the Coulomb functions, the penetration
factors are increased compared to a Coulomb-only calcula-
tion. The advantage of this approach is that single-particle
ANCs and widths calculated from potentials with a tail, such
as the Woods-Saxon potential used here, can be expressed
using R-matrix formulas involving single-particle reduced-
width amplitudes, such as shown by Eqs. (36) and (40). Here,
I consider the penetrability ratio defined to be the ratio of
the penetration factor calculated with the nuclear potential
included to that calculated without. This ratio can be de-
fined for any energy to be |O(a)/O(a)|2. When the energy
is real and positive, this becomes P (a)/P(a) since P (a) =
ka/[F2(a) + G2(a)] and P(a) = ka/[F 2(a) + G2(a)] in this
case. For bound states, with E real, the ratio is given by
W 2(a)/W2(a). This ratio is shown in Figs. 2 and 3 for the
cases of nucleon + 12C and nucleon + 26Al, for three n� val-
ues and real energies. For these calculations, the nuclear well
depth has been adjusted to place the single-particle level en-
ergy at the energy of the ratio calculation, using the R-matrix
boundary condition. The ratios are seen to be moderately
increased from unity, reasonably independent of energy, and
continuous across E = 0. The results for n + 12C are similar
to those reported by Johnson [20, Fig. 4] for n + 16O with a
fixed well depth.

B. Volume renormalization factor

In the single-channel case, the volume renormalization fac-
tor for R-matrix states is given by[

1 + γ 2

(
∂Ŝ
∂E

)
a

]−1

, (52)
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FIG. 2. The penetrability ratio as a function of the level energy
for p + 12C and n + 12C for n� = 2s, 1p, and 1d . See Sec. III A for
details.

which appears in many places in this work, including the defi-
nitions of single-particle ANCs, Eq. (36) and single-particle
widths, Eq. (40). In the many-channel case, this quantity
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FIG. 3. The penetrability ratio as a function of the level energy
for p + 26Al and n + 26Al for n� = 2s, 2p, and 1d . See Sec. III A
for details.
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FIG. 4. The volume renormalization for p + 12C and n + 12C,
for the single-channel case and the single-particle reduced width.

generalizes to

[
1 +

∑
c

γ 2
c

(
∂Ŝc

∂E

)
ac

]−1

. (53)

It likewise appears in several contexts below, including
Eqs. (68), (70), and (80). The volume renormalization factor
for Gamow states, where Ŝ is replaced by L, is very similar,
being identical in the case of bound states and having a small
complex component for narrow resonances. Examples of the
volume renormalization factor for nucleon + 12C and nucleon
+ 26Al are shown in Figs. 4 and 5, for low partial waves. These
calculations are for the single-channel case and assuming the
single-particle reduced width. The factor differs significantly
from unity in all cases, with the largest differences being near
the nucleon separation threshold. For � = 1 neutrons, a cusp
at the threshold is produced.

It should be noted that this factor appears in several other
contexts besides the ones discussed in this paper. For example,
it can be used to explain threshold anomaly [21,22] observed
in (d, p) reactions on heavy nuclei. It also arises in the expla-
nation of why states with a significant single-particle structure
tend to be located near separation thresholds [23]. In both
of these cases, the factor is describing the excitation energy
compression for physical resonant states that is caused by a
channel threshold. A more detailed mathematical model for
this compression is provided by the transformation methods
described in Appendix B of this work. In this picture, the
compression occurs when one transforms from eigenstates
satisfying constant logarithmic boundary conditions to reso-
nant boundary conditions.
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IV. OVERLAPS, SPECTROSCOPIC FACTORS,
AND REDUCED WIDTH AMPLITUDES

The radial overlap function Rc(r) is the projection of a
many-body nuclear wave function on to a particular chan-
nel configuration [24–32] that satisfies an inhomogeneous
Schrödigner-like equation. For large r, Rc(r) satisfies a
one-body radial Schrödinger equation with the intercluster
Coulomb potential and the cluster separation energy. Here,
channels denote a two-cluster configuration with quantum
numbers discussed in the first paragraph of Sec. II. Channels
will be labeled with the subscript c when necessary. The
overlap function allows one to link together the spectroscopic
factor, reduced-width amplitude, and many-body theoretical
calculations.

A. Computational point of view

If the many-body wave function |�〉 is known, for exam-
ple, by finding the eigensolution to a given Hamiltonian, then
the overlap function may be calculated. One may then define
spectroscopic factors according to [33]

Sc =
∫ ∞

0
R2

c (r) r2 dr, (54)

where it assumed that the wave function is normalized to
unity over all space, i.e., 〈�̃|�〉∞0 ≡ 1. Because of the nor-
malization convention, the spectroscopic factor can only be
strictly defined for Gamow states. In this work, I refer to
multichannel states as Gamow states if they have outgoing
waves in all channels. This definition includes bound states.
It is also useful to define the spectroscopic amplitude whose

square is the spectroscopic factor

Sc = A2
c . (55)

Note that the spectroscopic factor and amplitude, as de-
fined here, include an isospin Clebsch-Gordan factor that is
discussed below in Sec. V. Time-reversal invariance allows
Rc, Sc, and Ac to be defined as real quantities when the
energy of the state is real.

The reduced-width amplitude is defined according to
[3, III.4, Eq. (4.8a), p. 271]

γc =
(

h̄2ac

2μc〈�̃|�〉a
0

)1/2

Rc(ac), (56)

where the factor 〈�̃|�〉a
0 implements the R-matrix convention

that the wave function is normalized to unity inside the chan-
nel radii. When the energy is real, 〈�̃|�〉a

0 is real, positive,
and less than 1. Because the normalization is not extended to
infinity, reduced widths may be defined for a much broader
class of states, including unbound R-matrix eigenstates.
The single-channel R-matrix resonance condition given in
Sec. II D generalizes naturally to[

1

Rc

d (rRc)

dr

]
ac

= [Ŝc]ac , (57)

for all channels and at the level energy. This represents the
real part of the outgoing wave boundary condition.

It should be noted that spectroscopic factors are subject to
some theoretical ambiguity arising from from how the under-
lying nuclear interactions are defined [29,34,35]. On the other
hand, widths and ANCs, which are asymptotic quantities, are
free from such ambiguities. The reduced width amplitude,
being nearly asymptotic, is also essentially free from this
issue.

B. Phenomenological point of view

In the phenomenological approach, neither the Hamilto-
nian nor the wave function are assumed to be known. One
instead works directly with level energies, ANCs, and partial
widths. In addition, the radial overlap function may be approx-
imated using the replacement

Rc(r) → Ac
uc(r)

r
, (58)

where uc(r)/r is the single-particle radial wave function, as
discussed in Sec. II. Provided that uc(r) is normalized such
that I∞ = 1 via Eq. (22), this replacement is consistent with
Eq. (54). This approximation is commonly used in transfer
reaction calculations. In bound channels, one then finds for
the square of the ANC

C2
c = Sc C2

c,sp, (59)

where C2
c,sp is the square of the single-particle ANC given

by Eqs. (23), (24), or (36). For unbound channels, the partial
width is given by

�c = Sc �c,sp, (60)

where �c,sp is the single-particle partial width. Strictly speak-
ing, the single-particle partial width should be taken as �S1,
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as defined Eq. (26), since Ac scales the asymptotic single-
particle wave function. However, as discussed in Sec. II G,
all of the width definitions are approximately equivalent if the
single-particle width is narrow.

In a phenomenological analysis, the number of channels is
limited to one or a small number. Those with a large spec-
troscopic factor, small separation energy, and/or low orbital
angular momentum are likely to be important and should be
included. As discussed in Sec. II A, it is assumed that the
Coulomb functions can be extended inward to the channel
radii, including the effects of the nuclear single-particle po-
tential. This approach has been utilized in several studies,
including Refs. [20,36–39]. While this procedure is a very
reasonable approximation where the tail of the nuclear po-
tential is concerned, it does have some limitations. Since
the true overlap functions satisfy an inhomogeneous radial
equation (see, e.g., Ref. [30]), there will be small violations
of the Wronskian relation satisfied by the modified Coulomb
functions. Also, Robson [37, pp. 494–495] has noted that
using channel radii just outside the nuclear surface gives rise
to some mild nonorthogonality between the channels. These
effects could be removed by using larger channel radii, but
that would introduce additional breaking of isospin symme-
try. I agree with Robson [37] that channel radii just outside
the nuclear surface are the best choice for phenomenological
analyses when isospin symmetry is utilized.

In the phenomenological approach, the extension of Rc(r)
for a Gamow state beyond the channel radii is given by

Rc(r) = Rc(ac)
Oc(r)/r

Oc(ac)/ac
(61a)

= γc

(
2μc〈�̃|�〉a

0

h̄2ac

)1/2 Oc(r)/r

Oc(ac)/ac
, (61b)

where Eq. (56) has been utilized. Equation (10) implies∫ ∞

ac

Oc(r)

Oc(ac)
dr = h̄2

2μcac

(
∂Lc

∂E

)
ac

, (62)

which is a regularized value if the channel is unbound. One
then has ∫ ∞

ac

R2
c (r) r2 dr = γ 2

c 〈�̃|�〉a
0

(
∂Lc

∂E

)
ac

. (63)

The normalization condition 〈�̃|�〉∞0 ≡ 1 may be expressed
as

〈�̃|�〉a
0 +

∑
c

∫ ∞

ac

R2
c (r) r2 dr = 1, (64)

which yields

〈�̃|�〉a
0 =

[
1 +

∑
c

γ 2
c

(
∂Lc

∂E

)
ac

]−1

. (65)

This is a generalization of the well-known volume renormal-
ization factor in R-matrix theory [3, IV.7, p. 280; Eqs. (A.29)
and (A.30), p. 351] that is discussed above in Sec. III B.

Equations (2) and (22), with I∞ = 1, yield

h̄2

2μcac

u2
c (ac)

γ 2
c,sp

=
[

1 + γ 2
c,sp

(
∂Lc

∂E

)
ac

]−1

. (66)

The square of Eq. (56), with the replacement R2
c (ac) →

Scu2
c (ac)/a2

c , then provides

γ 2
c

1 + ∑
c′ γ 2

c′
(

∂Lc′
∂E

)
ac′

= Sc

γ 2
c,sp

1 + γ 2
c,sp

(
∂Lc
∂E

)
ac

. (67)

With these equations, it is straightforward to interoperate fully
among the single-particle wave functions and spectroscopic
factors and among the single-particle and actual ANCs, partial
widths, and reduced widths. For a state bound in channel c,
Eqs. (36), (59), and (67) may be combined to yield

C2
c = 2μcac

h̄2W2
c (ac)

γ 2
c

1 + ∑
c′ γ 2

c′
(

∂Ŝc′
∂E

)
ac′

, (68)

which is the general relation between the ANC and the re-
duced widths. For a state that is unbound in channel c, one
may likewise combine Eqs. (26), (33), and (67) to obtain

�c = 2

∣∣∣∣∣ kcac

O2
c (ac)

γ 2
c

1 + ∑
c′ γ 2

c′
(

∂Lc′
∂E

)
ac′

∣∣∣∣∣, (69)

where this is the partial width defined by the S-matrix pole
residue. The corresponding partial width for the R-matrix
definition is

�c = 2Pc(ac)
γ 2

c

1 + ∑
c′ γ 2

c′
(

∂Ŝc′
∂E

)
ac′

, (70)

with all of the terms in this formula being real quantities. In
what follows, it is useful to unify the treatment of bound and
unbound channels by defining

Xc =
⎧⎨
⎩

h̄2W2
c (ac )C2

c
2μcac

bound channel

�c
2Pc (ac ) unbound channel

, (71)

where the R-matrix definition of the partial width is utilized.
It should be noted that low-energy nuclear physics ex-

periments are insensitive to short-range features of nuclear
wave functions. Consequently, neither the single-particle po-
tential nor the spectroscopic factor are well constrained from
a phenomenological point of view. However, ANCs, widths,
and reduced widths, being asymptotic or nearly asymptotic
quantities, can be constrained by such experiments. This ob-
servation implies that a certain combination of spectroscopic
factor and single-particle wave function, essentially S1/2

c uc(r)
at and beyond the nuclear surface, can be well constrained.

C. An alternative definition of the spectroscopic factor

When working in an R-matrix framework with channel
radii, it is convenient to utilize an alternative definition of the
spectroscopic factor that only depends on the wave function
inside the channel radii. This property makes it very useful for
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studying isospin symmetry. From a computational perspec-
tive, the alternative definition is

Sc =
∫ ac

0 R2
c (r) r2 dr

〈�̃|�〉a
0

. (72)

In this work, I will refer to Sc as the internal spectroscopic
factor. The phenomenological replacement of the radial over-
lap function, analogous to Eq. (58), is

Rc(r)(〈�̃|�〉a
0

)1/2 → Ac
uc(r)

r
( ∫ ac

0 u2
c (r) dr

)1/2 , (73)

where Ac is the internal spectroscopic amplitude and Sc = A2
c .

The quantities Sc and Ac can again be defined as real quanti-
ties when the energy is real. Now, because the normalization
does not extend over all space, the internal spectroscopic fac-
tor and amplitude can be defined for a much broader class of
states without approximation, including R-matrix eigenfunc-
tions. In this framework, the analog of Eq. (67) becomes much
simpler:

γ 2
c = Scγ

2
c,sp or γc = Acγc,sp. (74)

The difference between Sc and Sc is often small, but this
is not always the case, particularly when smaller channel radii
are utilized and/or when the state in question has low angular
momentum and lies near a channel threshold. Also note that
the difference disappears for single-particle states, i.e., when
Sc = Sc = 1, indicating that differences will be larger when
the spectroscopic factors depart significantly from unity. It is
interesting to note that Eq. (74) is how spectroscopic factors
were originally defined [40,41], but this definition was largely
supplanted by Eq. (54). The different definitions are alluded to
in the work of Robson [37, pp. 489–490]. These differences
have led to some confusion in the literature [19,42–44]. It
also appears that the denominators in Eq. (67) are sometimes
dropped as an approximation. It should be noted that the
validity of such an approximation hinges in part on both the
single-particle and actual reduced widths being sufficiently
small.

Another consideration arises if spectroscopic factors from
a shell model calculation using harmonic oscillator basis
states are utilized. In this case, the energy eigenstates do not
have the correct outgoing-wave behavior beyond the channel
radii. Instead, the magnitude of the wave function falls off
much more quickly with radius. In this case, it is likely a better
approximation to consider such spectroscopic factors as in-
ternal spectroscopic factors Sc for the purpose of calculating
ANCs or widths.

The distinction between Sc and Sc is closely related to
the distinction between observed and formal widths or re-
duced widths; see the work of Descouvemont and Baye
[45, Sec. 5] for definitions of these quantities. In this work,
all widths are defined to be observed widths and all reduced
widths to be formal reduced widths. In addition, dimension-
less reduced widths are not utilized in this work. I find the
proliferation of additional notation to be unnecessary and it
creates additional opportunities for confusion.

V. ISOSPIN AND MIRROR SYMMETRY

Some examples of the use of isospin in the present context
are provided by Refs. [36,37,46–48]. If the nuclear state B
is a member of an isospin multiplet with well-defined total
isospin, its decay into clusters A and a, that are also assumed
to have well-defined total isospins, may be described using the
isospin formalism. It is assumed that TX are the total isospins
of nuclei X , and TX3 are the corresponding isospin projections,
where X = B, A, or a. One then has for the spectroscopic
amplitude [33, Eq. (5.3.11), p. 193]

Ac′ = 〈TATA3, TaTa3|TBTB3〉Ãc. (75)

Alternatively, one can write

Ac′ = 〈TATA3, TaTa3|TBTB3〉Ãc (76)

or

γc′ = 〈TATA3, TaTa3|TBTB3〉γ̃c. (77)

Note that in general a channel c′ can occur more than once
in a particular nucleus. For example, a T = 1 n + 3H channel
has both n + 3He and p + 3H analogs in the 4He nucleus.
Mirror channels can only occur once in the respective nuclei.
In all three of the above cases, the spectroscopic amplitude
or reduced width written with the tilde symbol is common to
the multiplet, and the symbols on the left without the tilde
vary across the multiplet, depending upon the TX3 values in
the Clebsch-Gordan coefficient. It is assumed that the other
quantum numbers needed to define the channels c and c′
remain fixed across the multiplet. It should also be noted that
these definitions are in general not equivalent, although the
difference between the latter two is generally very small. The
latter two approaches can be made exactly equivalent if an
average single-particle reduced width is used for the multiplet
[49,50]. In the case of an isospin mirror pair, the states have
opposite TX3 components, resulting in spectroscopic factors
(for the first two definitions) or squared reduced width ampli-
tudes (for the third definition) that are equal.

Isospin symmetry is violated by the Coulomb interaction,
which dominates beyond the channel radii. It is further broken
by energy displacements, which also contribute to different
radial dependences beyond the channel radii. Consequently,
one expects the first approach, Eq. (75) involving normaliza-
tions that extend to infinity, to be less accurate than the second
two, Eqs. (76) and (77) involving normalizations inside the
channel radii [37]. Note also that the utilization of the more
accurate approaches, Eqs. (76) or (77), leads to isospin sym-
metry breaking in the traditional spectroscopic factor defined
by Eq. (75). As already discussed in Sec. IV B, it is also im-
portant to utilize channel radii just outside the nuclear surface,
in order to avoid introducing additional isospin symmetry
breaking.

If either of the first two approaches, defined by Eqs. (75)
and (76) using spectroscopic amplitudes, are utilized in con-
junction with the well-depth procedure to determine the
single-particle wave functions, some additional dependence
on the short-range behavior of the single-particle potential is
introduced. For example, this procedure for determining the
single-particle wave function includes the Thomas-Ehrman
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shift [51,52] in the energy. However, if the level in question
has a small spectroscopic amplitude for the single-particle
configuration, this energy shift is spurious. It has also been
found that nonlocal contributions to the single-particle poten-
tial are important when the spectroscopic amplitude is small
[53]. One approach to minimizing this issue that has been sug-
gested is to match the single-particle level energy by varying a
surface potential rather than the main (volume) Woods-Saxon
potential [54]. For the purposes of this work, the question
can be bypassed by adopting the third approach, defined by
Eq. (77) using the reduced width amplitude. This procedure
avoids making any reference to properties of potentials or
wave functions inside the channel radii and will be utilized
extensively in the remainder of this work.

VI. SINGLE-LEVEL MIRROR SYMMETRY

It is very common in practice to work with cases involving
mirror symmetry between isolated levels. Here, I describe two
approaches to this case and provide some examples.

A. R-matrix approach

If there is only a single important channel, the relationship
between ANCs and/or widths of the mirror states are particu-
larly simple. Using the R-matrix framework and Eq. (71), the
width or ANC of a level is related to the reduced width via

X −1 = γ −2 +
(

∂Ŝ
∂E

)
a

, (78)

where the channel label has been dropped. Assuming the value
γ 2 is identical for the mirror levels in question, as implied by
Eq. (77), one then finds

X −1
1 −

(
∂Ŝ1

∂E

)
a

= X −1
2 −

(
∂Ŝ2

∂E

)
a

, (79)

where the subscript 1 or 2 indicates the particular member of
the mirror pair, keeping in mind that the states differ in both
energy and charge.

The multichannel case is only slightly more complicated.
According to Eq. (71), one has

Xc = γ 2
c

1 + ∑
c′ γ 2

c′
(

∂Ŝc′
∂E

)
ac′

. (80)

This equation may be inverted to yield

γ 2
c = Xc

1 − ∑
c′ Xc′

(
∂Ŝc′
∂E

)
ac′

. (81)

Suppose the widths and/or ANCs X1c of a state in nucleus
1 are known. The procedure is to determine corresponding
widths and/or ANCs X2c of the mirror state 2 is as follows.
First, the X1c are converted into γc using Eq. (81). Then the γc

are converted to X2c using Eq. (80), implicitly assuming the
reduced widths γc are equal for both states. The result of this
procedure is

X2c = X1c

1 + ∑
c′ X1c′

[(
∂Ŝ2c′
∂E

) − (
∂Ŝ1c′
∂E

)]
ac′

. (82)

B. Result of Timofeyuk and collaborators

Another formula relating ANCs and/or widths of mirror
states has been put forward by Timofeyuk and collaborators
[26,32,55–57]. It only considers a single channel and in the
present notation reads

X1/|O1(a)|2
X2/|O2(a)|2 =

∣∣∣∣exp(iσ1) F1(ã)/k1

exp(iσ2) F2(ã)/k2

∣∣∣∣
2

. (83)

Here, the quantity ã is a channel radius, but it need not be
the same as a. The left side of this equation is essentially
a ratio of ANCs and/or widths and the right side is a pre-
diction. This formula is nontrivially different from Eq. (79),
that does not involve the regular Coulomb function or predict
the relationship to be a ratio. As discussed in Refs. [26,57],
the derivation of this formula depends on certain assumptions
about the wave functions and matrix elements of the Coulomb
interaction in the nuclear interior.

Some insight into this equation can be deduced in the
R-matrix framework by making some assumptions regarding
Eqs. (32) and (41), for r � ã:

F1(r)

F1(ã)
= F2(r)

F2(ã)
, (84a)

[V (r) +VC (r) −VpC (r)]1 = [V (r) +VC (r) −VpC (r)]2, (84b)

u1(r) = u2(r), and (84c)

b = a = ã. (84d)

Note that u1(r) = u2(r) embodies the mirror-symmetry as-
sumption and implies the single-particle reduced widths are
equal. The assumption that b = a implies that the channel ra-
dius is large enough such that at the channel radius, Coulomb
interactions are negligible and the unmodified Coulomb func-
tions can be utilized. In Eq. (41), I further assume the unbound
state is well below the Coulomb and angular momentum
barriers such that G(a)  F (a) and the left-hand side of
the equation may be replaced by u(a)[P(a)/(ka)]1/2. Then,
Eq. (32) (for a bound state) and Eq. (41) (for an unbound state)
both lead to

γ 2
sp = 2μ|O(a)|2

h̄2a

∣∣∣∣exp(iσ )

k

∫ a

0
F (V +VC −VpC ) u dr

∣∣∣∣
2

. (85)

Considering the assumptions described by Eq. (84) and
assuming equal internal spectroscopic factors described by
Eq. (74), the quantity∣∣∣∣O(a)F (a)

exp(iσ )

k

∣∣∣∣
2

(86)

should be equal for both members of the mirror pair. If this
is true, then Eq. (83) reduces to X1 = X2, which is equivalent
to Eq. (79), if the volume renormalization factors ∂ Ŝ/∂E are
neglected. In fact, Timofeyuk and Descouvemont [56] point
out that Eq. (83) should be modified by the volume renormal-
ization factor for the case of an unbound state. However, they
mention no such correction for bound states, although it is
clear that it should be included in this case as well.

A mathematical explanation of why the quantity given
by Eq. (86) is approximately equal for both members is
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provided by the Wentzel-Kramers-Brillouin (WKB) approx-
imation [58]. For bound states, or unbound states below the
Coulomb and/or angular momentum barriers, the solutions
to Eq. (1) for radii beyond the range of the nuclear poten-
tial depend exponentially on the radius. Following Ref. [58,
Eqs. (34.4), (34.5), and (34.8), pp. 270–271],

u± ∝ κ−1/2 exp

(
±

∫
κ dr

)
with (87a)

κ =
{

2μ

h̄2

[
−E + h̄2

2μ

�(� + 1)

r2
+ Vc(r)

]}1/2

, (87b)

where κ is real. One also finds

1

u±

du±
dr

= − 1

2κ

dκ

dr
± κ (88)

for the logarithmic derivative. For the energy regime under
consideration, the regular Coulomb function F is identified
as the exponentially increasing solution and the outgoing
Coulomb function O as the exponentially decreasing solution.
One thus has

1

F

dF

dr
≈

(
1

u+

du+
dr

)
WKB

= − 1

2κ

dκ

dr
+ κ and (89a)

1

O

dO

dr
≈

(
1

u−

du−
dr

)
WKB

= − 1

2κ

dκ

dr
− κ. (89b)

I note in passing that this result for the WKB shift function

ŜWKB =
(

r

u−

du−
dr

)
WKB

= − r

2κ

dκ

dr
− κr (90)

agrees with that given in Lane and Thomas [3, Eq. (A.18),
p. 350], apart from their Langer modification. As discussed in
Ref. [3], this expression may also be used to derive a WKB
approximation for the energy derivative of the shift function.
The Wronskian relation, Eq. (3), may be written as

1

F

dF

dr
− 1

O

dO

dr
= k

FO exp(iσ )
. (91)

Thus, in the WKB approximation,∣∣∣∣O(a)F (a)
exp(iσ )

k

∣∣∣∣
WKB

= 1

2κ
. (92)

One is now in a position to understand why this quantity
will be approximately the same for mirror states. Considering
Eq. (1) and the approximation given by Eq. (84c) at r = a,
one finds

E2 − E1 ≈ VC2(a) − VC1(a) (93)

for the Coulomb energy difference of the single-particle wave
functions. Then considering Eq. (87b), one has κ1(a) ≈ κ2(a),
and one does indeed find Eq. (92) to be the same for both
states of the mirror pair. It is important to note that the
Coulomb energy difference plays a key role in this approxi-
mate equivalence and that of Eqs. (79) and (83). A somewhat
similar analysis of the justification for Eq. (83) has been given
in Ref. [57].

C. Discussion

Four methods for implementing mirror symmetry have
been introduced. Three of the methods are based on Eqs. (75)–
(77); the fourth is described in the previous subsection. The
R-matrix approach based on Eq. (77) is described in detail in
Sec. VI A. Of all of the approaches, this one most strongly
adopts the spirit of the phenomenological R matrix, as no
assumptions about potentials or wave functions inside the
channel radii are necessary. Approaches based upon Eq. (75)
are expected to be somewhat less accurate than the others,
because this spectroscopic amplitude is normalized over all
space, which unnecessarily includes isospin violation due to
the Coulomb force beyond the channel radii. Using the inter-
nal spectroscopic amplitude, as defined by Eq. (76), does not
suffer from this shortcoming. It can also supply some internal
mirror symmetry breaking due to mirror symmetry breaking
in the single-particle reduced-width amplitudes. The R-matrix
approaches, Eqs. (76) or (77), also have the advantage of
allowing multichannel effects to be included. It is not clear
from this discussion which approach, Eqs. (76) or (77), is
preferable. It may be possible to address this question in par-
ticular cases if accurate many-body calculations are available.
I have some preference for Eq. (77), due to its conceptual
simplicity.

The approach of Timofeyuk described in Sec. VI B leads
to results that are similar to the other methods in most cases.
However, this formula does not take into account the volume
renormalization factors, which can lead to a significant error if
these factors differ significantly from unity. This consideration
is particularly relevant for the first excited 1/2+ states of 13C
and 13N discussed below.

D. Examples

1. � = 0 mirror states in 13C and 13N

The first excited 1/2+ states of 13C and 13N have long been
a testing ground for mirror symmetry [49,51,56]. The level
is single particle in nature and is bound in 13C but unbound
in 13N. The neutron ANC in 13C has been measured by two
independent groups using the 12C(d, p) 13C transfer reaction
in similar kinematics. Liu et al. [59] measured C2

n = 3.39 ±
0.59 (stat + sys) fm−1, while Imai et al. [60] reported C2

n =
3.65 ± 0.34 (stat) ±0.35 (sys) fm−1. In neither experiment is
it clear if the systematic uncertainty includes the theoretical
uncertainty from the transfer reaction analysis; I adopt C2

n =
3.52 ± 0.50 fm−1. The proton width in 13C is taken from the
elastic scattering data and R-matrix analysis of Meyer et al.
[11]. This work does not quote uncertainties; I adopt �p =
33.8 ± 2.0 keV, which is also consistent with the analysis of
Ref. [49].

First, calculations were performed using two-body poten-
tial and assuming spectroscopic factors of unity. The potential
depth was adjusted separately for each state to reproduce the
known separation energy. With the standard potential parame-
ters given in Sec. II F, the depths for each state only difference
by a few percent. Likewise, the single-particle reduced widths
for each state only differed by a few percent. The resulting
ANC and proton width are shown as the filled circle in Fig. 6.
Then the potential was fixed at a depth taken to be the average
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FIG. 6. The relationship between �p and C2
n for the first excited

states of 13C and 13N. The solid and dashed curves show the results
of Eqs. (79) and (83), respectively. The filled circle shows the results
of the single-particle calculation. The filled square indicates the
experimental results.

two results found for each state. The relationship predicted
for �p versus C2

n using Eq. (79), taking the common γ 2 to be
a varying parameter, is shown as the solid curve in Fig. 6. The
curve shows significant curvature, due to volume renormal-
ization factors that depend upon ∂Ŝ/∂E . The experimental
results are shown as the filled square with error bars, which
are in fair agreement with the solid curve.

The sensitivity of Eq. (79) to the channel radius is shown as
the solid curve in Fig. 7, for C2

n = 3.52 fm−1. This sensitivity
is seen to be rather modest. Equation (79) is insensitive to
the tail of the nuclear potential: ±10% changes in rn only
change the solid curve by 1%. Such changes do of course
modify the single-particle ANC and width more significantly.
The effect of ignoring the tail of nuclear potential completely
is shown as the dashed curve. This insensitivity indicates that

FIG. 7. The relationship between �p and the channel radius pre-
dicted by Eq. (79) for a fixed value of C2

n . The solid and dashed
curves show the results including of including and ignoring the tail of
the nuclear potential, respectively. The arrow indicates the nominal
channel radius of 3.51 fm used for the calculations shown in Fig. 6
and discussed in the text.

FIG. 8. The relationship between C2
p and C2

n for the first excited
states of 17O and 17F. The solid and dashed curves show the results
of Eqs. (79) and (83), respectively. The filled circle shows the results
of the single-particle calculation. The filled square indicates the
experimental results.

the tail of the nuclear potential could be safely ignored for this
calculation.

The prediction of Eq. (83) assuming the same channel
radius is shown by the dashed curve in Fig. 6. For larger
values of C2

n and �p, it is seen to diverge significantly from the
solid curve given by Eq. (79), the single-particle values, and
the experimental measurements. The disagreement between
Eq. (83) and the single-particle model, microscopic models,
and experiment has been noted previously [26,32,56]. If vol-
ume renormalization factors in Eq. (79) are neglected, the
result from that equation becomes very close to that Eq. (83).
I thus conclude that the disagreement between Eq. (83) and
other approaches and experiment is due to the lack of volume
renormalization factors in Eq. (83), a deficiency that has al-
ready been noted.

2. � = 0 mirror states in 17O and 17F

The situation with the first excited 1/2+ states of 17O
and 17F is quite similar to the previous example. The states
are single particle in nature, but in this case both states are
bound. The neutron ANC in 17O has been determined by the
analysis of 16O(d, p) data by Guo et al. [61] to be C2

n = 8.4 ±
1.3 fm−1. The proton ANC in 17F has been reviewed by Arte-
mov et al. [62], where their own and previous proton transfer
experiments were analyzed to yield C2

p = 6220 ± 780 fm−1.
The proton ANC was also determined using 16O( 3He, d ) by
Gagliardi et al. [63] to be C2

p = 6490 ± 680 fm−1. I adopt
C2

p = 6380 ± 510 fm−1, which is also in the range required
to correctly describe low-energy 16O(p, γ ) cross-section mea-
surements to the first excited state of 17F [61,64,65].

Calculations were performed in the same manner as in the
previous example and are shown in Fig. 8. In this case, the
prediction of Eq. (79) does not deviate so much from that of
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Eq. (83). This finding results because this case is more tightly
bound and has a higher charge, leading to a smaller effect from
the volume renormalization factors. Both calculations are in
reasonable agreement with the experimental results.

For this case, it has been noted by Refs. [55,66,67] that
Eq. (83) is not in good agreement with calculations using
the single-particle model or other more sophisticated models.
Possible explanations, such as core excitations, are discussed
in these works. However, the inclusion of the volume renor-
malization factors brings Eq. (83) into much better agreement
with the other models. This appears to be the primary reason
for the discrepancy.

3. � = 0 mirror states in 27Al and 27Si

The 9/2+ mirror pair located at Ex = 7807 keV in 27Al
and 7590 keV in 27Si couple to a nucleon and 26Al with
� = 0, but with a small spectroscopic factor of about 0.01.
This situation thus provides an example in a regime where the
levels in question are not close to being single-particle states.
Two independent measurements of the 26Al(d, p) reaction are
described in Refs. [68–71]. Using the reported spectroscopic
factors and neutron binding potentials, the � = 0 ANC value
from Ref. [68] is C2

n = 0.301 ± 0.062 fm−1, where the error
includes the experimental uncertainty and a 15% uncertainty
from the transfer reaction analysis. Similarly, Refs. [69,70]
yield C2

n = 0.259 ± 0.053 fm−1, where the error includes the
experimental uncertainty only. Since both experiments were
performed with similar kinematics and utilized nearly identi-
cal transfer reaction analyses, a common systematic error of
15% from the transfer reaction analysis is assumed for both
experiments, leading to an adopted value of C2

n = 0.284 ±
0.054 fm−1. The mirror level is unbound in 27Si, appearing
as a resonance at ER = 126.8 ± 0.9 keV. Since �p � �γ for
this resonance, its strength is governed by �p which can be
estimated from C2

n of the mirror state. This procedure has
been carried out in Refs. [68–70], where it is found that this
resonance dominates the 26Al(p, γ ) reaction rate for temper-
atures relevant to asymptotic giant branch and Wolf-Rayet
stars. The adopted resonance energy is determined from the
excitation energy measured by Lotay et al. [13] and the proton
separation energy from Ref. [14]. Because the resonance is far
below the Coulomb barrier, the calculated �p is quite sensitive
to the energy: The 0.9-keV uncertainty contributes a 13%
uncertainty to the �p deduced using mirror symmetry. Note
also that this uncertainty in the resonance energy contributes
a further correlated uncertainty in the thermonuclear reaction
rate.

Although these levels can couple to � = 2 nucleons, the
contributions of these channels negligibly effect the volume
renormalization factors and are neglected. Because of the
small � = 0 spectroscopic factor, the volume renormalization
factor is likewise small, leading to a linear proportional-
ity between �p and C2

n in all approaches. Note, however,
that this factor cannot be neglected when calculating single-
particle ANCs or widths. The predicted relation assuming
equal reduced-width amplitudes, Eq. (79), is shown by the
solid curve in Fig. 9. This case has significant mirror symme-
try breaking in the single-particle reduced width amplitudes:

FIG. 9. The relationship between C2
n and �p for the 7807- and

7590-keV 9/2+ states of 27Al and 27Si. The solid, red-dashed, and
blue-dotted curves show the results of Eq. (79); Eq. (74); and
Eqs. (59) and (60), respectively. The vertical line and gray error band
show the adopted experimental C2

n value.

γ 2
n,sp = 2.10 MeV and γ 2

p,sp = 2.46 MeV, a 17% difference.
Assuming a constant internal spectroscopic factor and us-
ing Eq. (74) thus lead to a somewhat different prediction,
shown by the red-dashed line. The approach of Timofeyuk
and collaborators, using the same channel radius as in the
other approaches, is not shown but is very close to the red-
dashed line. Some previous analyses have assumed that the
traditional spectroscopic factor is the same for both states, and
related �p and C2

n using Eqs. (59) and (60). As discussed in
Sec. V, this approach is expected to be somewhat less accurate
than the other two shown in Fig. 9. This prediction is shown
by the blue-dotted curve, where it is seen to lie somewhat
below the other two. The adopted experimental value for C2

n
is shown by the vertical line and gray error band. All of the
approaches are in reasonable overall agreement and the inter-
pretation of the experimental data is not seriously limited by
the choice of model. Considering Eqs. (79) and (74), the solid-
black and red-dashed curves, a value of �p = 57 ± 15 neV is
extracted, in agreement with previous determinations [68–70].
Note also that any deviation of a prediction from the blue-
dotted curve can be interpreted as a renormalization of the
traditional spectroscopic factor between the mirror states.

VII. MULTILEVEL MIRROR SYMMETRY

It is important to note that all of the definitions of bound
or unbound resonant energy levels discussed up to this point
violate isospin. This occurs because the resonance condition,
which is always some version on an outgoing-wave boundary
condition, depends upon the energy and charges in the ex-
ternal region. Since isospin rotations generally involve both
changes in charge and energy shifts, this situation is both
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necessary and expected. In the R-matrix case, the resonance
condition is given by Eq. (57), which requires the logarithmic
derivative match the shift function at the channel radius. The
symmetry breaking coming from the boundary condition has
important effects if one considers isospin transformations on
a set of levels with the same spin and parity. An R-matrix
approach to calculating the effects arising from this symmetry
breaking is given below for the case of mirror symmetry, along
with an example application to 2+ states in 18O and 18Ne.

A. General phenomenological approach

For examples of the use of isospin in multilevel phe-
nomenological R-matrix analyses, one may see Refs. [46,48]
for light nuclei and Ref. [37] for heavier nuclei. It is very use-
ful to work in a basis that satisfies boundary conditions that are
independent of energy and isospin. The energy-independent
boundary conditions of traditional R-matrix theory [3,72] pro-
vide an ideal basis for this purpose. For these states, the
logarithmic derivatives at the channel radius are equal to the
constants Bc, rather than the energy- and charge-dependent
shift function of the resonance boundary conditions given by
Eq. (57). Note also that any tail of the nuclear potential must
be kept independent of energy (i.e., fixed) in an R-matrix
calculation.

I will consider the transformation from a set of resonance
levels of particular Jπ in nucleus 1 to a mirror nucleus 2.
A set of states {Ei(1), γic(1)} satisfying resonance bound-
ary conditions in nucleus 1 may be transformed into a set
{Êλ(1), γ̂λc(1), Bc} satisfying constant boundary conditions as
described in Appendix B. The number of levels is preserved
by the transformation. I next suppose that the difference
between the Hamiltonians of the nuclei is �H = H2 − H1.
Using the internal basis states |λ〉 solving H1 with boundary
conditions Bc, the level matrix [3, IX.1, Eq. (1.11), p. 294] for
nucleus 2 may be written as

[A−1]λμ = (Êλ(1) − E )δλμ + 〈λ|�H |μ〉
−

∑
c

γ̂λc(1)γ̂μc(1)(Ŝc + iPc − Bc), (94)

where shift and penetration factors are evaluated for the en-
ergy E in nucleus 2 and at the channel radii. This equation
results from applying Eqs. (58)–(60) of Lane and Robson
[17]; see also Ref. [48]. If the internal matrix elements
〈λ|�H |μ〉 could be evaluated, this equation could be put into
standard form by diagonalization and the R-matrix parameters
for nucleus 2 would be determined. In a phenomenological
analysis, this avenue is unavailable. The operator �H con-
sists of Coulomb potentials and possibly charge-symmetry
violating nuclear interactions. It is expected that the dominant
contribution to 〈λ|�H |μ〉 will be a constant Coulomb energy
shift along the diagonal, with variations along the diagonal
and off-diagonal elements being much smaller. I thus assume
that 〈λ|�H |μ〉 = �λδλμ. In this case, no diagonalization is
necessary and the R-matrix parameters for nucleus 2 are

Êλ(2) = Êλ(1) + �λ and (95a)

γ̂λc(2) = ±γ̂λc(1). (95b)

TABLE II. Adopted information for the first three 2+ states of
18O and 18Ne.

18O 18Ne

n� j Ex C2
c Ex C2

c or �c

(keV) (fm−1) (keV) (fm−1 or keV)

2s1/2 5.77 ± 0.63 16.0 ± 8.0
1982.1 1887.3

1d5/2 2.10 ± 0.23 2.6 ± 1.2

2s1/2 4.11 ± 0.62 148 ± 56
3920.4 3616.4

1d5/2 0.45 ± 0.06 3.1 ± 1.2

2s1/2 2.18 ± 0.33 44.5 ± 1.7
5254.8 5098 ± 8

1d5/2 0.0080

I will usually assume constant �λ = �, but allowing the
diagonal elements to vary provides the flexibility needed to
exactly match the resonance energies in nucleus 2 to experi-
mental values, if desired. The sign in Eq. (95b) is chosen to be
consistent with Eq. (77), which predicts that mirror reduced
widths will at most differ by a change in sign. Finally, the
level parameters {Êλ(2), γ̂λc(2), Bc} may be transformed into
resonance parameters for nucleus 2, {Ei(2), γic(2)}, using the
method described in Appendix B. For �λ = �, this procedure
is independent of the Bc values used.

These procedures produce energy shifts of the resonance
levels in mirror nuclei in addition to the �λ. The additional
changes arise from the differences in the external wave func-
tions (i.e., coupling to the continuum). These shifts are the
multilevel generalization of the well-known Thomas-Ehrman
shift [51,52]. In addition, a particular reduced width amplitude
γic(2) has in general a parentage in all of the γ jc(1). This
mixing leads to a breaking of the simple single-level isospin
relation, Eq. (77), for the resonant reduced width amplitudes.
In the multilevel case, this equation should applied instead to
the reduced width amplitudes of the states satisfying energy-
and isospin-independent boundary conditions.

B. Application to 2+ states in 18O and 18Ne

The mirror nuclei 18O and 18Ne have three 2+ states with
significant spectroscopic strength in nucleon decay channels
that are located near the nucleon separation threshold (partic-
ularly in the case of 18Ne). This system thus provides a good
case for demonstrating the nontrivial effects that may arise.
The importance of continuum mixing in this case has been
noted and studied previously using the shell model embedded
in the continuum [73,74]. The ANC of the second 2+ state
in 18Ne plays an important role in determining the rate of the
17F(p, γ ) 18Ne reaction in novae [73,75,76]. The notation (1)
and (2) will often be utilized to indicate 18O and 18Ne in this
subsection.

The available information for the excitation energies and
widths or ANCs for these states is summarized in Table II. The
excitation energies are very well known, with the exception of
the 2+

3 state of 18Ne, where the value adopted is the weighted
average of 5075 ± 13 keV [77], 5099 ± 10 keV [77], and
5106 ± 8 keV [78], with the error rescaled to provide a χ2

of 2. The 17O +n ANCs for the 2+
1 and 2+

2 states of 18O
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are taken from Al-Abdullah et al. [75], who performed an
analysis of their 13C( 17O, 18O) 12C data and the 17O(d, p) 18O
data of Li et al. [79]. The 2s1/2 ANC for the 2+

3 state of
18O is calculated from the spectroscopic factor and binding
potential reported by Ref. [79]. The value was renormalized
downward by 10%, a factor the brought the ANCs of Ref. [79]
into agreement with Ref. [75] for the 2+

1 and 2+
2 states. The

experimental 17O(d, p) 18O angular distribution indicates that
the 1d5/2 spectroscopic factor for the 2+

3 state of 18O is very
small [79]. This finding is supported by the shell model calcu-
lations of Lawson et al. [80]. The ANC for the state adopted in
Table II is based on their calculations; setting this quantity to
zero does not significantly change any of the results reported
below. The ANCs for the 2+

1 and 2+
2 states of 18Ne are taken

from the measurements of Kuvin et al. [76]. Note that this is a
difficult radioactive ion beam experiment with limited angular
coverage. The 2s1/2 and 1d5/2 ANCs were not independently
determined; the ratio from the mirror nucleus was assumed.
As shown in the table, the uncertainties in the ANCs are
rather large and are the result of adding the experimental
statistical and systematic uncertainties reported in Ref. [76]
in quadrature. The proton width of the 2+

3 state of 18Ne is
determined from the weighted average of 45 ± 5 keV [78],
45 ± 2 keV [81], and 42 ± 4 keV [82]. The result of Hahn
et al. [78] is a total width determination and the latter two were
extracted from fits to elastic scattering that appear to have
assumed the width is entirely due to � = 0 proton emission
to the 17F ground state. The 1d5/2 single-particle width for
this state is 6.6 keV, so it is potentially possible that this
channel contributes somewhat to the total width. However, in
light of the small spectroscopic factor for this channel in the
mirror state, this is unlikely. I also note that Almaraz-Calderon
et al. [83] report �p′/�p = 0.11 ± 0.04 for a combination of
the 5.10- and 5.15-MeV states of 18Ne. The decay of a 2+
state to a proton and the first excited state of 17F requires
� = 2. Considering the additional Coulomb barrier present
in this case, this reported branch to the first excited state of
17F cannot involve the 2+ state of 18Ne. For these reasons,
the measured proton width is assigned entirely to the 2s1/2

channel.
I first investigated the results of treating the levels inde-

pendently, using two different methods, as shown in Table III.
Al-Abdullah et al. [75] predicted ANCs in 18Ne from the ex-
perimental values for 18O, assuming the spectroscopic factors
Sc are the same for both members of the mirror pair, using
Eq. (59). I have used the same approach for the ANCs or
widths [using Eq. (60)], with the results shown in the fourth
column. These findings are in good agreement with their work
for the first two levels, the only 2+ states analyzed in Ref. [75].
For the remainder of the calculations shown in this subsection,
the depth of the Woods-Saxon potential was fixed at 53.5
MeV, which places the � = 0 single-particle states at −4.03
and −0.48 MeV relative to the nucleon separation thresholds
in 18O and 18Ne, respectively. The fifth column shows the
results of applying Eq. (82) to determine the ANCs or widths.
Little difference is seen, except for the �p for the 2+

3 state,
which is about 30% larger in the latter approach. The single-
particle width of this state is rather broad, about 330 keV,
which is the likely reason for some of the difference in this

TABLE III. The quantities �, Ei(1), and Ei(2) are the nucleon or-
bital angular momentum and the experimental level energies relative
to the nucleon separation thresholds in 18O and 18Ne, respectively.
The final two columns provide the ANC or width predictions in 18Ne,
treating each pair of levels independently and using two different
methods.

18Ne

18O Eqs. (59) and (60) Eq. (82)
Ei(1) Ei(2) C2

c or �c C2
c or �c

� (MeV) (MeV) (fm−1 or keV) (fm−1 or keV)

0 14.89 14.87−6.062 −2.034
2 2.84 2.59
0 117.4 125.2−4.124 −0.305
2 2.48 2.20
0 102 130−2.790 1.176
2 1.9 × 10−2 1.7 × 10−2

case. There is also little sensitivity to the assumed nuclear
potential: Neglecting it entirely changes the results by less
than 10%, for the preferred channel radius of 3.86 fm. This
value corresponds to a = Rn + an, as discussed in Sec. II F,
and lies just outside the nuclear surface, such that additional
mirror symmetry breaking is avoided. This sensitivity to the
tail of the nuclear potential and channel radius are shown in
Fig. 10. For the 2+

1 and 2+
2 states, the predicted ANCs in

18Ne are in good agreement with the experimental values of
Kuvin et al. [76] shown in Table II, although the large ex-
perimental errors preclude any accurate statement. However,
for the 2+

3 state, the predicted proton widths are more than
a factor of 2 larger than the accurately known experimental
value. The calculations using Eq. (82) included the � = 2∗
channel introduced below, using the γic(1) from Table IV.
This consideration had very little effect.

In this case, there are three important channels with thresh-
olds located in the neighborhood of the first three 2+ levels.
The first two are the � = 0 and � = 2 n + 17O or p + 17F
channels already discussed. The nuclei 17O and 17F have
low-lying 1/2+ states, thus leading to an additional important
channel and couples � = 2 nucleons to these excited states.
These channels will be indicated as � = 2∗. No experimental
information for these channels is available. In addition, the
relative signs of the reduced width amplitudes within a par-
ticular channel have a significant impact in the transformation
process described in Appendix B. These unknown parameters
can be fixed using the shell model. In a simple shell model
picture for the 2+ states, with two T = 1 nucleons outside
an 16O core, both the � = 0 and � = 2∗ channels arise from
the (d5/2, s1/2) component of the wave function. This con-
sideration leads to the spectroscopic amplitudes being equal,
up to an overall sign that is irrelevant in the present case.
More detailed calculations were performed using the code
NUSHELLX [84], with the Zuker-Buck-McGrory (ZBM) model
space and interactions for nucleons outside a 12C core [85].
Both interactions given by ZBM were utilized. For the first
three 2+ states, the ratio of the � = 2∗ to � = 0 spectroscopic
amplitude was always found to lie between 0.96 and 0.88,
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FIG. 10. Predicted � = 0 ANCs or widths for the first three 2+

states in 18Ne versus channel radius for various approaches. The re-
sults for treating the levels independently, using Eq. (82), are shown
for the tail of the nuclear potential included (excluded) by the blue
dash-dotted (green dotted) curve. The results for treating the levels
simultaneously are shown for the tail of the nuclear potential in-
cluded (excluded) by the solid black (red dashed) curve. The plotted
points show the results for the simultaneous treatment with the tail
of the nuclear potential included, for the preferred channel radius of
3.86 fm used for the calculations shown in Table IV (solid circles)
and for a channel radius of 4.2 fm (open squares).

depending somewhat upon the particular state and interaction.
The simple picture is thus confirmed within a good degree
of accuracy and will be used below to estimate the param-
eters for the � = 2∗ channels. This calculation also predicts
the signs for all of the channels, where good agreement is
seen for both interactions and also the three calculations of

Lawson et al. [80, Table IV]. The lone exception is for the
� = 2 channel for the 2+

3 state, where the spectroscopic am-
plitude is very small. In this case, the sign from Ref. [80]
is utilized, although it has no impact on the results reported
below.

The three states are then treated simultaneously as de-
scribed in Sec. VII A. The reduced width amplitudes γic(1)
in 18O were determined from the experimental 18O ANCs
in Table II using Eq. (81). The relative signs of the re-
duced width amplitudes within a particular channel have a
significant impact on the transformation process described in
Appendix B. These signs are taken from the shell model cal-
culations described above. Further following the shell model,
the � = 2∗ reduced-width amplitudes were adjusted such that
γ̂λ,�=2∗ = 0.815γ̂λ,�=0, where 0.815 is the ratio of single-
particle reduced-width amplitudes. The boundary-condition
constants Bc were chosen to equal to the shift function for
the 2+

2 state in 18Ne. The parameters {Ei(1), γic(1)} are then
transformed to {Êλc(1), γ̂λc Bc}. A constant shift � = 4.777
MeV was used in Eq. (95a), to match exactly E2(2) to
the experimental energy of the 2+

2 state. The γ̂λc do not
change sign for this mirror transformation. Then the param-
eters {Êλc(2), γ̂λc Bc} are transformed to {Ei(2), γic(2)}, the
resonance parameters in 18Ne. Finally, the ANCs or widths
are calculated from the resonance parameters using Eq. (80).
Since the calculated Ei(2) do not necessarily exactly match
the experimental values, the experimental energy values are
used in this last step. The resulting ANCs or widths and the
parameter values at the steps of this process are shown in
Table IV.

Significant differences are seen compared to the results
considering each level independently. The squares of the
ANCs of the first two 2+ states in 18Ne are predicted to be
significantly larger by the multilevel calculation. This result
is still in agreement with the experimental result, due to the
large experimental error. In addition, the width of the 2+

3
state is found to be about a factor of 3 smaller, such that
the prediction is now below the experimental value. These
finding were found to be sensitive to several ingredients in the
calculation. The dominant sensitivity is to the � = 0 reduced-
width amplitudes and their signs, but the � = 2 and � = 2∗

TABLE IV. Transformation of the 18O (1) resonance parameters to 18Ne (2) resonance parameters. The meaning of the various quantities
is described in the text. The final column gives the resulting ANCs or widths in 18Ne.

� Ei(1) γic(1) Êλ(1) γ̂λc Êλ(2) Ei(2) γic(2) C2
c or �c (2)

(MeV) (MeV1/2) (MeV) (MeV1/2) (MeV) (MeV) (MeV1/2) (fm−1 or keV)

0 −6.062 −0.747 −8.099 −0.999 −3.322 −2.023 −0.835 17.94
2 −1.483 −1.420 −1.494 2.53
2∗ −0.609 −0.814 −0.681 0.68

0 −4.124 0.896 −5.083 1.158 −0.305 −0.305 1.158 172.5
2 −1.185 −1.343 −1.343 2.34
2∗ 0.730 0.944 0.944 0.48

0 −2.790 −0.789 −2.798 −0.782 1.979 1.594 −0.343 34.2
2 0.075 0.075 0.113 5.2×10−2

2∗ −0.643 −0.637 −0.280 1.6×10−2
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channels also contribute nontrivially. Changing the sign of the
input � = 0 2+

2 reduced-width amplitude causes the predicted
ANC of the 2+

2 state in 18Ne to be smaller than that found
when the levels are considered independently. It also is found
that all of the first three 2+ states play an important role in this
mixing.

Several other factors were investigated that had little in-
fluence on these results. A background level with physically
reasonable reduced-width parameters placed at E4 = 10 MeV
in 18O was found to have little effect. Neglecting the tail of
the nuclear potential was likewise found to have little effect,
as shown in Fig. 10.

The energy shift utilized leads to E1(2) being overpredicted
by 12 keV and E3(2) being overpredicted by 418 keV, com-
pared to the experimental values. Differences of up to a few
hundred keV are expected, because the actual Coulomb en-
ergy shift includes contributions that depend upon the specific
internal structure of the state [77,86]. The constant energy
shift was varied to match the energies of the 2+

1 and 2+
3

states, and the predicted ANCs and widths were found to
not change significantly. Calculations were also performed
using level-dependent shifts in Eq. (95a) that allowed all of
the Ei(2) to match experiment values. Again, no significant
changes in the predicted ANCs or widths were found. In this
case, the results become slightly Bc dependent, as discussed in
Appendix B. These calculations were done using various Bc

values, including values matching the shift function for other
levels and Bc = 0. None made a significant difference in the
predictions.

The dependence of the calculation on the channel radius
and the tail of the nuclear potential is shown in Fig. 10, along
with calculations treating the levels separately. All calcula-
tions converge to the same result for large channel radii, as
expected since more of the wave functions are inside the
channel radii. Mathematically, the volume renormalization
factors approach unity and the shift factors approach zero
in this limit. However, the most physically correct channel
radius is one just outside the nuclear surface, as discussed in
Sec. IV B.

There are some indications that this calculation over-
predicts the mixing effects. The width of the 2+

3 state is
overcorrected, with the predicted value of 34.2 keV being
about 30% below the experimental value. Also, the energy of
this state is overpredicted by 421 keV, which is more than
expected from differences in the internal Coulomb energy.
These issues could be due to channel nonorthogonality, as
mentioned in Sec. IV B, since this case has three channels
with significant spectroscopic strength. If the channel radius
is modestly increased to 4.2 fm, these discrepancies with
experiment are much reduced, with the overpredictions of
E1(2) and E3(2) becoming 28 and 169 keV, respectively,
and the prediction for the width of the 2+

3 state becoming
42.9 keV. The predictions for the � = 0 C2

p for the 2+
1 and 2+

2

states are then 16.81 and 159.7 fm−1, respectively. The pre-
dictions for channel radii of 3.86 and 4.2 fm are indicated in
Fig. 10.

This model of external mixing correctly predicts the strik-
ing reduction by a factor of 2–3 in the predicted width of the

2+
3 state in 18Ne compared to using naive mirror symmetry.

Take the average of the a = 3.86 and 4.2 fm results, I recom-
mend

C2
p (2+

1 ) = 17.4 ± 2.6 fm−1 and

C2
p (2+

2 ) = 166 ± 25 fm−1, (96)

for the � = 0 ANCs of the first two 2+ states of 18Ne, using
mirror symmetry. The 15% uncertainty is estimated from the
various model uncertainties discussed above; the experimental
errors on the input mirror ANCs given in Table II contribute
an additional 15% uncertainty. The value for the 2+

2 state is
42% higher than the result of Al-Abdullah et al. [75], that
was extracted using naive mirror symmetry. This result is 12%
higher than the determination of Kuvin et al. [76] that does
not rely upon mirror symmetry, but this difference is well
within their 35% uncertainty. The present result would lead to
a somewhat higher reaction rate for 17F(p, γ ) 18Ne in novae.
A re-evaluation of this rate will not be attempted here. At
this time, one is placed in the difficult position of choosing
between using the more accurate information available from
the mirror nucleus or the less accurate measurements in 18Ne.
An improved experimental determination of the 2+ ANCs in
18Ne would be most helpful here.

The importance of external mixing has been noted pre-
viously in this case [73,74,87]. Timofeyuk and Thompson
[87] performed three-body calculations considering either two
neutrons or two protons outside an inert 16O core. They report
smaller mirror symmetry breaking effects than reported here.
However, it is known that four-particle–two-hole excitations
(i.e., excitations of the 16O core) must be taken into account
in order to describe the first three 2+ states [80], making this
difference unsurprising. Calculations using the shell model
embedded in the continuum have been reported by Okołowicz
et al. [74]. For the 2+

1 state they find an increase in the ratio
of the 18Ne to 18O ANCs that is similar to this work. For the
2+

2 state, they report a decrease in this ratio, in the opposite
direction of the significant increase found here. They did not
report results for the 2+

3 state. It appears that much of this
difference can be attributed to the present calculation being
tuned to experimental ANCs in 18O. For example, they report
[74, Table VII] squared � = 0 ANCs for the 2+

2 state of 18O
that are 50–85% larger than the experimental value. If their
18O ANCs for the first two states are used in the present cal-
culations, the discrepancy largely goes away. However, their
results for the 2+

3 state would need be included in order to
make a definitive comparison of the two approaches.

C. Discussion

If the off-diagonal components of the matrices in
Eqs. (B1), (B2), and (B4) are zero, the transformation process
becomes identical to treating the levels independently. This
situation would occur if the shift factors were independent of
energy and the boundary condition constants were taken equal
to these shift factors. It can thus be said that external mixing
is driven by the energy dependence of the outgoing-wave
boundary condition. However, from this discussion in Sec. II,
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this energy dependence is intimately related to the extension
of wave functions beyond the channel radius. This quantity is
largest near separation thresholds and for low orbital angular
momentum. Note also that the energy dependence of the shift
factor also gives rise to the volume renormalization factor. The
magnitude of the off-diagonal elements is also proportional
to the reduced-width amplitudes. The symmetry breaking for
the resonant states then results because the ingredients listed
above are modified for mirror states by the different charges
and separation energies. The 2+

2 and 2+
3 states of 18O and 18Ne

are thus ideal for exposing this phenomenon since they couple
with significant spectroscopic strength to nucleons with � = 0
and are located near the nucleon separation threshold.

VIII. CONCLUSIONS

This work reviewed the relationship between spectroscopic
factors and single-particle wave functions and their physical
counterparts, ANCs and widths. R-matrix theory was used
extensively to describe these relationships. Also, particular
attention was paid to effects arising from beyond the channel
radii, which may be termed coupling to the continuum. These
effects may be large for levels near a channel threshold, if the
level couples significantly to that channel.

A natural application of these concepts is isospin and mir-
ror symmetry. R-matrix theory is an efficient tool to study the
symmetry breaking in analog or mirror states arising from
differences in the wave functions beyond the channel radii.
The examples of single levels in nucleon + 12C, nucleon +
16O, and nucleon + 26Al were studied. It is straightforward
to extend this analysis to a group of levels, in which case
the continuum coupling may cause a mixing of the levels.
The first three 2+ states of 18O and 18Ne were studied in this
manner. It was found that the ANC of the second 2+ state
in 18Ne deduced from the mirror state in 18O is significantly
larger than found in previous work. This finding has the effect
of increasing the 17F(p, γ ) 18Ne reaction rate in novae.

The concepts described in this paper arise frequently in the
analysis of transfer reaction experiments, the use of theoretical
spectroscopic factors to determine ANCs or widths, and the
prediction of ANCs or widths using mirror symmetry. It is
hoped that this paper will allow future analyses of this type to
be carried out with greater confidence and clarity.
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APPENDIX A: ALGORITHM FOR COMPUTING ∂L/∂E

The quantity ∂L/∂E , where the derivative is taken with
fixed radius and L is the logarithmic radial derivative of the
outgoing Coulomb wave defined by Eq. (6), is important for
normalizing bound and/or Gamow states, as well as relat-
ing observed and reduced widths in R-matrix calculations.
Existing methods for calculating this quantity include the
numerical differentiation of L values calculated using standard
Coulomb function routines and numerical quadrature [88].
For the uncharged case, an analytic result is available; see
Gyarmati and Vertse [6, Eq. (6)] and Eqs. (A4) and (A5)
below. Here, I present a more efficient and more accurate
approach to computing ∂L/∂E for the general Coulomb case
that can be performed in parallel with the calculation of L
itself.

Modern numerical routines for the computation of
Coulomb wave functions [89–91] use a continued fraction
technique to calculate L as an intermediate step for much of
the �-ρ-η parameter space. The continued-fraction algorithm
is described in detail by Barnett et al. [92], and I will utilize
their notation and work in terms of the dimensionless vari-
ables ρ and η. The approach is to apply the energy derivative
to the continued fraction analytically. The derivative ∂E is to
be evaluated at fixed radius, implying ρη is constant. Using
∂ρ/∂E = ρ/2E , one finds

∂

∂E
= ρ

2E

(
∂

∂ρ
− η

ρ

∂

η

)
, (A1)

when ρ and η are considered independent variables. The out-
going Coulomb wave O satisfies

O′′ +
[

1 − 2η

ρ
− �(� + 1)

ρ2

]
O = 0, (A2)

where ′ ≡ d/dρ. Since L = ρO′/O, one has

L′ = O′

O
+ ρ

[
O′′

O
−

(
O′

O

)2]
(A3)

and hence

L′ = 1

ρ
[L(1 − L) + �(� + 1)] + 2η − ρ. (A4)

Defining˙≡ ∂/∂η, one then has

∂L

∂E
= ρ

2E

(
L′ − η

ρ
L̇

)
. (A5)

Note that when η = 0 this equation provides an analytic result
that can be expressed in terms of spherical Hankel functions.
If η = 0 and � is an integer, then L and L′ are rational functions
of ρ and the infinite sequence for L given below terminates.

Steed’s algorithm [92, Eq. (32)] provides a sequence of
�hn and hn values with

hn =
{

i(ρ − η) n = 0

h0 + ∑n
k=1 �hk n > 0

(A6)

such that limn→∞hn = L. The starting values and recurrence
formulas for the �hn sequence are given in the first column of
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TABLE V. Starting values (n = 1) and recurrence formulas (n > 1) for the sequences to
evaluate L and L̇.

L L̇

Starting values
a1 = −η2 − �(� + 1) + iη ȧ1 = −2η + i
b1 = 2(ρ − η + i) ḃ1 = −2
D1 = 1/b1 Ḋ1 = −ḃ1/b2

1 = 2/b2
1

�h1 = ia1D1 �ḣ1 = i(ȧ1D1 + a1Ḋ1)
h1 = i(ρ − η) + �h1 ḣ1 = −i + �ḣ1

Recurrence formulas
an = an−1 + 2(n − 1) + 2iη ȧn = ȧn−1 + 2i
bn = bn−1 + 2i ḃn = ḃn−1 = ḃ1 = −2

Dn = (Dn−1an + bn)−1 Ḋn = − Ḋn−1an + Dn−1ȧn + ḃn

(Dn−1an + bn)2

�hn = (bnDn − 1)�hn−1 �ḣn = (ḃnDn + bnḊn)�hn−1 + (bnDn − 1)�ḣn−1

hn = hn−1 + �hn ḣn = ḣn−1 + �ḣn

Table V. Differentiating Eq. (A6) with respect to η yields

ḣn =
{−i n = 0

ḣ0 + ∑n
k=1 �ḣk n > 0

. (A7)

Assuming that the sum can be differentiated term by term in
the limit that n → ∞, one then has

L̇ = lim
n→∞ ḣn. (A8)

The starting values and recurrence formulas for the �ḣn se-
quence are straightforward to calculate by differentiation and
are given in the second column of Table V. Note that L and L̇
are calculated in parallel, as the L̇ sequence depends upon the
L sequence. With L and L̇ in hand, ∂L/∂E may be calculated
using Eqs. (A4) and (A5).

A rigorous proof of Eq. (A8) requires showing that the limit
of the right-hand side of the equation converges uniformly in
η to its limit, which I have not attempted. In practice, the se-
quence converges in a manner very similar to the hn sequence.
Table VI shows the convergence properties for some of the
cases encountered in this work. The quantities N (L) and N (L̇)
are the n values required to achieve |�hn/hn| < 10−13 and
|�ḣn/ḣn| < 10−13, respectively. The ḣn sequence is seen to
converge with just a modest number of additional iterations
compared to the hn sequence in every case.

APPENDIX B: R-MATRIX PARAMETER
TRANSFORMATIONS

Methods for transforming between R-matrix eigenfunc-
tions satisfying resonance boundary conditions for all energy
levels and a basis satisfying energy-independent boundary
conditions have been given by Brune [93]. The N eigenfunc-
tions satisfying resonance boundary conditions correspond to
level energy and reduced width parameters Ei and γic, where
i is the level index and c is the channel index. The parameters
corresponding to energy-independent boundary conditions,
the assumption of traditional R-matrix theory [3,72], are in-
dicated by Êλ and γ̂λc. In addition, the boundary condition
parameters Bc are assumed to be real and independent of
energy and isospin. Note that the present notation differs from
that of Ref. [93].

I first consider the transformation {Ei, γic}→{Êλ, γ̂λc, Bc}.
The matrices M and N are defined with elements given by

Mi j =
{

1 i = j

−∑
c γicγ jc

Ŝic−Ŝ jc

Ei−Ej
i �= j

(B1)

and

Ni j =
{

Ei + ∑
c γ 2

ic(Ŝic − Bc) i = j∑
c γicγ jc

(EiŜ jc−Ej Ŝic

Ei−Ej
− Bc

)
i �= j

, (B2)

TABLE VI. The number of iterations required to reach a specified convergence (see text) are given by N (L) and N (L̇) for L and L̇,
respectively, for some applications and corresponding values of �, ρ, and η.

� ρ η N (L) N (L̇) Application

0 0.480 − i0.011 1.404 + i0.031 147 157 420.5 − i18.75 keV p + 12C, r = 3.51 fm
0 2.735 − i0.061 1.404 + i0.031 35 37 420.5 − i18.75 keV p + 12C, r = 20 fm
0 i0.267 −i4.261 136 150 −105.2 keV p + 17F, r = 3.86 fm
0 i1.384 −i4.261 39 44 −105.2 keV p + 17F, r = 20 fm
0 0.334 5.662 238 265 126.8 keV p + 26Al, r = 4.35 fm
0 1.534 5.662 81 90 126.8 keV p + 26Al, r = 20 fm
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where the notation Ŝic indicates the shift function evaluated
at Ei. Next one solves the real symmetric generalized linear
eigenvalue equation

(N − ÊλM)bλ = 0. (B3)

As discussed in Ref. [93], it is expected that M is positive def-
inite for physically reasonable parameters and the eigenvalue
problem can be solved to yield N real eigenvalues and eigen-
vectors. The eigenvectors bλ may be arranged into a square
matrix b and are normalized such that bT Mb = 1, where 1 is
the unit matrix. The matrix N is also diagonalized by b, with
bT Nb = e, where eλμ = Êλδλμ. The reduced widths γic and
γ̂λc may be arranged into column matrices γc and γ̂c that allow
the transformed reduced widths to be written as γ̂c = bT γc.
This completes the transformation to the {Êλ, γ̂λc, Bc} basis.

The transformation in the other direction, {Êλ, γ̂λc, Bc} →
{Ei, γic}, is accomplished by solving the real symmetric non-
linear eigenvalue equation{

e − Ei1 −
∑

c

γ̂c[Ŝc(Ei ) − Bc]γ̂T
c

}
ai = 0 (B4)

for eigenvalues Ei and eigenvectors ai. As discussed in
Ref. [93], this equation has N real eigenvalues if ∂Ŝc/∂E � 0.
This condition is always met when the potential outside the
channel radius consists of the repulsive Coulomb and angular
momentum barriers [94]. The tail of the attractive nuclear po-
tential included in the calculations presented here could spoil
this situation, but in this work the derivative has been found
to be positive, for the potential strengths and energy ranges
considered. This question would need to be revisited for
� = 0 neutron channels with positive energy, where there is
no Coulomb or angular momentum barrier and any attractive
potential will likely create a negative energy derivative. The
solution of nonlinear eigenvalue problems has been reviewed
by Voss [95]. If the energy derivative of the shift function
is positive, the eigenvalue problem is characterized as over-
damped, which provides several nice mathematical properties
[95,96], including the existence of N real eigenvalues noted
above. For this work, I have solved the eigenvalue equation
using the safeguarded iteration algorithm [95]. The eigen-
vectors are normalized such that aT

i ai = 1 and γic = aT
i γ̂c,

completing the transformation.
The mirror transformation {Ei(1), γic(1)}→{Ei(2), γic(2)}

is implemented as follows, where (1) and (2) indicate
the initial and final nuclei. First, the resonance parameters
{Ei(1), γic(1)} are transformed to {Êλ(1), γ̂λc(1), Bc}. In this
basis, the boundary conditions satisfied by the eigenfunctions

are independent of isospin. The transformation is then applied
using Eq. (95). Finally, one transforms {Êλ(2), γ̂λc(2), Bc} →
{Ei(2), γic(2)}.

When not considering mirror symmetry, {Ei, γic} and phys-
ical observables are independent of the Bc, even when the
number of levels in finite [93,97,98]. The question of Bc

invariance under the mirror transformation is investigated as
follows. Equation (B4) becomes{

e(1) + � − Ei(2)1

−
∑

c

γ̂c(1)[Ŝc(Ei(2)) − Bc]γ̂T
c (1)

}
ai = 0, (B5)

where the components of � are given by �λδλμ. Note also that
the charge used to evaluate the shift function must also change
when 1 → 2. The transformation to different boundary con-
ditions, {Êλ(1), γ̂λc(1), Bc} → {Ê ′

λ(1), γ̂ ′
λc(1), B′

c}, is given by
[98]

e′(1) = KCKT and γ̂ ′
c(1) = Kγ̂c(1), (B6)

where the real orthogonal matrix K diagonalizes

C = e(1) −
∑

c

γ̂c(1)(B′
c − Bc)γ̂T

c (1). (B7)

With a′
i = Kai, Eq. (B5) becomes{

e′(1) + K�KT − Ei(2)1

−
∑

c

γ̂ ′
c(1)[Ŝc(Ei(2)) − B′

c]γ̂ ′T
c (1)

}
a′

i = 0. (B8)

If [K,�] = 0, then this equation becomes{
e′(1) + � − Ei(2)1

−
∑

c

γ̂ ′
c(1)[Ŝc(Ei(2)) − B′

c]γ̂ ′T
c (1)

}
a′

i = 0, (B9)

which is of the same form as Eq. (B5) and has the same
energy shifts. The two equations are related by the similar-
ity transformation K. In this case, the eigenvalues Ei(2) and
reduced widths γ ic(2) = aT

i γ̂c(2) = a′T
i γ̂ ′

c(2) are invariant un-
der change of boundary condition. However, the more general
procedure is somewhat Bc dependent.

For the case of a constant Coulomb energy shift applied to
all levels, � = �1, the commutator [K,�] = 0. Thus, in this
particular situation, the procedure is exactly Bc independent.
In the limit of a large number of levels, the various bases
are complete and the more general procedure would also be
expected to become Bc independent.
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