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In the shell-model framework, valence-space Hamiltonians connecting multiple major-oscillator shells are
of key interest for investigating the physics of neutron-rich nuclei, which have been the subject of intense
experimental activity for decades. Here we present an extension of the ab initio valence-space in-medium
similarity renormalization group, which allows the derivation of such Hamiltonians nonperturbatively. Starting
from initial two- and three-nucleon forces from chiral effective field theory, we then calculate properties of
nuclei in the important island-of-inversion region above oxygen, so far unexplored with ab initio methods. Our
results in the neon and magnesium isotopes indicate the importance of neutron excitation from the sd to p f
shells and ground states dominated by intruder configurations around N = 20, consistent with the conclusions
from phenomenological studies. We also benchmark the excitation spectrum of 16O with coupled-cluster theory,
finding generally good agreement, and discuss implications for ground-state energies and charge radii in
oxygen and calcium isotopes. Finally we outline the proper procedure for treating the longstanding issue of
center-of-mass contamination, and show that with a particular choice of valence space, these spurious states can
be removed successfully.
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I. INTRODUCTION

Recent efforts in low-energy nuclear structure have been
particularly focused on unstable exotic nuclei, the study of
which is the primary physics motivation driving the develop-
ment of next-generation rare-isotope-beam facilities around
the world. These nuclei are important for understanding
longstanding problems, such as astrophysical nucleosynthesis
[1,2], the formation and evolution of nuclear magic numbers
[3–5], and the limits of the nuclear landscape [6–11], with
an eye towards a comprehensive understanding of all nuclei.
One key phenomenon arising in these studies is the island of
inversion [12,13], where standard magic numbers break down,
and nuclei in these regions no longer exhibit expected magic
properties. Tremendous effort has been made both in experi-
ment [14–22] and theory [23–28] to understand, in particular,
the disappearance of the N = 20 neutron magic number in
the neon through magnesium (Z = 10–12) isotopes. While
this phenomenon is typically interpreted in terms of enhanced
particle-hole excitations from sd to p f orbits, driven by the
decreased shell gap between the major oscillator shells, so
far all such studies have been based on phenomenological or
quasimicroscopic models.

A fundamental goal of ab initio nuclear theory is to
understand the properties and structure of nuclei from the
underlying interactions between nucleons, with no input
from data beyond that necessary to inform theories of nu-
clear forces. The valence-space formulation of the in-medium
similarity renormalization group (VS-IMSRG) is a broadly

applicable ab initio many-body method capable of provid-
ing an array of observables of ground and excited states of
essentially all open-shell nuclei accessible to the traditional
shell model, including energies, charge radii, and elec-
troweak moments and transitions [9,29–36]. In the standard
phenomenological shell model, one- and two-body matrix
elements of this Hamiltonian are fit to reproduce experimental
data. In the VS-IMSRG, as detailed below, we instead start
from two- (NN) and three-nucleon (3N) forces to nonper-
turbatively decouple an effective valence-space Hamiltonian.
In the absence of approximations, diagonalization of this
Hamiltonian would reproduce eigenvalues of the full A-body
problem.

Despite these successes, the derivation of effective Hamil-
tonians for valence spaces spanning multiple major shells,
essential for studying the island-of-inversion region, is chal-
lenging due to the problem of intruder states [35,37,38]. One
recent approach based on many-body perturbation theory, the
extended Kuo-Krenciglowa method, has shown promise for
generating multishell Hamiltonians perturbatively [28,39], but
single-particle energies are still fit to provide a good de-
scription of data in the region. A complementary approach
currently being pursued is to target a specific state within a
multireference framework [40].

In this paper we extend the reach of the VS-IMSRG to de-
couple valence space Hamiltonians across multimajor shells
to provide the first ab initio description of the island of inver-
sion in the region above oxygen. Through the introduction of a
new generator of the transformation, we show that previously
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intractable cases now decouple smoothly. Nevertheless, in
practice, we find that center-of-mass contamination remains
problematic. We therefore discuss a procedure for removing
these spurious states in ab initio valence-space approaches
and show that this can be achieved for particular choices of
multishell spaces. We use these Hamiltonians to explore the
physics of the island of inversion in the neon, magnesium, and
silicon isotopes, showing that the expected interplay between
normal and intruder orbits in ground and excited states can
be successfully described within our approach. We then turn
to other interesting applications such as the computation of
the excitation spectrum of doubly magic 16O, benchmarking
against coupled-cluster theory [41] and experiment, finding
overall good agreement. Finally, we investigate the trends of
ground-state energies and charge radii in the oxygen and radii
isotope shift in calcium isotopic chains.

II. IMSRG AND NOVEL MULTISHELL GENERATOR

In the valence-space framework, the single-particle Hilbert
space is partitioned into core, valence, and outside spaces. In
the final calculation, the core (e.g., 4He, 16O, 40Ca) and out-
side orbits are taken to be inactive, and a Hamiltonian in the
valence space, containing the essential degrees of freedom to
reproduce the low-lying states, is where we consider all pos-
sible configurations through exact diagonalization. Our goal
here is to construct an effective Hamiltonian where excitations
out of the core or into the outside space are explicitly decou-
pled. To this end, in the IMSRG we evolve the Hamiltonian
using the flow equation:

dH (s)

ds
= [η(s), H (s)], (1)

where the Hamiltonian, which depends on the flow parameter
s, is expressed in second-quantized form:

H (s) = E0(s) +
∑

ab

fab(s){a†
aab} + 1

4

∑
abcd

�abcd{a†
aa†

bad ac}.

(2)

E0, fab, and �abcd are zero-, one-, two-body matrix elements of
the Hamiltonian, respectively. The operator aa (a†

a) annihilates
(creates) the particle in the orbit a, and {. . .} indicates normal
ordering with respect to the single-determinant or ensem-
ble reference state [33]. The anti-Hermitian operator η(s) is
known as the generator:

η =
∑

ai

ηai{a†
aai} +

∑
abi j

ηabi j{a†
aa†

ba jai} − H.c. (3)

with

ai ∈ {pc, ov}, abi j ∈ {pp′cc′, pp′vc, opvv′}. (4)

The indices c, v, and o indicate core, valence, and outside-
space orbits, respectively, and p indicates either v or o.

In this work, for purposes of deriving effective Hamil-
tonians across multiple major shells, we define a new

generator:

ηai = 1

2
arctan

(
2 fai

faa − fii + �aiai + �

)
, (5)

ηabi j = 1

2
arctan

(
2�abi j

faa + fbb − fii − f j j + Gabi j + �

)
, (6)

Gabi j = �abab + �i ji j − (�aiai + �b jb j + [a ↔ b]). (7)

Here we have introduced the energy denominator shift �,
which solves issues inherent in decoupling multishell Hamil-
tonians, as discussed in more detail below. Note that our
choice is the same as the generator used in many earlier works
[30,31,33] except for the energy shift �. Adding � can be re-
garded as simply taking another generator, similar to choosing
from the standard Wegner, White, or imaginary-time gener-
ators used in IMSRG calculations [32]. Instead of directly
integrating the flow equation (1), we use the Magnus formula-
tion of the IMSRG [42]. This approach explicitly produces the
unitary transformation, which enables a much more efficient
treatment of observables [34]. Finally, the IMSRG evolution
induces three- and higher-body terms, which should be kept in
principle, but are inconvenient in practice. Here, we keep up to
two-body terms (known as IMSRG(2) approximation), which
has been observed to be an effective many-body truncation in
many cases [29,32,43–48].

III. NUMERICAL ANALYSES

Throughout this work, our calculations are done with NN
and 3N interactions derived from chiral effective field the-
ory [49,50]. We work in the harmonic oscillator basis, with
frequency h̄ω = 16 MeV, defined by emax = max(2n + l ),
where n and l are the radial quantum number and angular
momentum, respectively. The full treatment of three-body
matrix element is challenging due the memory limitations, so
we apply the additional truncation E3 max = max(2n1 + l1 +
2n2 + l2 + 2n3 + l3). The IMSRG calculations to generate the
effective valence-space Hamiltonians, radii, and E2 operators
were performed with the IMSRG++ code [51], and the final
diagonalization within the valence space and calculations for
corresponding transition densities are done with the KSHELL

code [52].

A. Effects of the energy denominator shift

To illustrate the role of the energy denominator shift �, in
Fig. 1 we show the flow of the neutron single-particle ener-
gies, i.e., fa(s) ≡ faa(s), for 0s (core), 0p and 1s0d (valence),
and 1p0 f (outside) orbits for a calculation decoupling a psd
valence space, using an 16O reference. With � = 0 MeV
[Fig. 1(a)], we find that as the flow parameter s increases, the
trajectory of some outside levels causes them to drop below
the valence-space levels, and flow does not converge. Note
that � = 0 MeV corresponds to the generator used in the
earlier works [31,33], and similar unstable patterns were occa-
sionally observed even in cases of single-shell valence-space
decoupling. According to the figure, the ill-behaved flow be-
gins where dfo/ds < 0, where, fo is a single-particle energy
of an outside orbit. We can understand how this quantity can
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FIG. 1. Flow of the single-particle energies for 16O (4He core,
psd valence space) for (a) � = 0, (b) 10, and (c) 20 MeV cases.
The solid (dashed) curves show the flow of positive (negative) parity
levels. All the calculations are done in the emax = 8 model space.

become negative by inspecting the one-body part1 of the flow
equation (1) [32]:

dfo

ds
=

∑
p

∑
hh′

|�ophh′ |2
fo + fp − fh − fh′

+
∑
pp′

∑
h

|�ohpp′ |2
fo + fh − fp − fp′

. (8)

Here, the subscripts h and p indicate the occupied and un-
occupied orbits, respectively. Since the numerators of both
terms in (8) are manifestly positive, the left hand side can
only be negative when at least one of the energy denominators
are negative. This could happen for the second term if, e.g.,
f0 f7/2 + f0p3/2 − 2 f0d3/2 were negative. The denominator and
dfo/ds become more negative with increasing s and the flow
diverges. As a rule of thumb, we can expect problems in the
flow whenever the range of single-particle energies within a
valence space is larger than the gaps between valence and
core/outside orbits. Similar criterion involving the intruder
states were discussed through the convergence of the pertur-
bation series [37].

To avoid the negative energy denominator we can add an
energy shift �, which maintains the decoupled fixed point
of the SRG flow. The size of � should be comparable to the
single-particle-energy gap, which naively can be empirically
estimated as ≈41 A−1/3 MeV. Then, the suitable value of �

should be on the order of 10 MeV. In Figs. 1(b) and 1(c), we
show � = 10 and 20 MeV cases. As seen in these figures, the
outside levels rise with increasing s, and the flow is stable.
We have checked that the dependence of computed energies

1To simplify the argument, we assume the Hartree-Fock basis, so
fab is diagonal, and take η to be the White generator with Moller-
Plesset energy denominators [replace arctan(x) → x and remove �

and G from the denominators in (5) and (6)].

on the value of � is small (several tens keV change between
� = 10 and 20 MeV). Therefore, following discussions are
based on the calculations at � = 10 MeV.

B. Center-of-mass motion

In multishell valence-space Hamiltonians, whether phe-
nomenologically or microscopically constructed, the issue of
center-of-mass (c.m.) contamination must be treated carefully.
While the Hamiltonian depends solely on intrinsic coordi-
nates, we work in the laboratory frame, which combines
intrinsic and c.m. coordinates. The resulting wave function
|�〉 is in general |�〉 = ∑

iI ciI |� intr
i 〉 ⊗ |�c.m.

I 〉, with the in-
trinsic wave function |� intr

i 〉, c.m. wave function |�c.m.
I 〉,

and coefficient ciI . As discussed in the context of coupled-
cluster calculations [53], we expect that for a sufficiently large
laboratory-frame model space, only one ciI is dominant, i.e.,
|�〉 ≈ |� intr

i 〉 ⊗ |�c.m.
I 〉. Assuming this factorization, we can

use the Glöckner-Lawson prescription [54] to remove spuri-
ous excited states due to the c.m. motion.

This approach is often used in conventional shell-model
calculations, and while stability with respect to the Glöckner-
Lawson term is typically observed, this prescription is not
strictly valid for two reasons. First, the single-particle energies
of the conventional valence-space Hamiltonian are not con-
sistent with the harmonic-oscillator energy spectra, i.e., the
single-particle energies within a major shell are not degener-
ate. Second, the Glöckner-Lawson term introduces undesired
coupling between the valence space and outside orbitals.
There is an alternative option when we add the Hc.m. operator.
Since the Hamiltonian is no longer expressed in the har-
monic oscillator basis after the VS-IMSRG transformation,
the Hc.m. should be consistently transformed. Even if we trans-
form Hc.m. consistently, adding transformed Hc.m. spoils the
decoupling accomplished by the VS-IMSRG transformation
obtained with solely Hintr . For these reasons, our adopted pro-
cedure for treating c.m. motion is to add the Glöckner-Lawson
term at the beginning of the calculation, where the harmonic
oscillator basis representation is initially used. In this case our
Hamiltonian is H = Hintr + βHc.m., where Hintr is the intrinsic
Hamiltonian, Hc.m. = P2/2Am + mAω̃2R2/2 − 3h̄ω̃/2 is the
c.m. Hamiltonian, with the scaling parameter β and ω̃ the
frequency of the c.m. Gaussian wave function. Note that the
expectation value 〈Hc.m.〉 vanishes if the c.m. wave function
can be factorized by a single Gaussian specified by ω̃. In
general ω̃ is not the same as the basis frequency ω and has
to be optimized for each calculated state in the same manner
discussed in Ref. [55]. As we discuss later, 〈Hc.m.〉 approaches
zero with increasing β, and therefore, we use ω̃ = ω in this
work.

To summarize, our calculation procedure is the following.
We begin with H = Hintr + βHc.m. expressed in the harmonic
oscillator basis. Then, the single-particle orbits are optimized
through the Hartree-Fock calculation with the ensemble nor-
mal ordering [33]. By keeping up to two-body terms, the
VS-IMSRG transformation is computed with the newly in-
troduced generator [see Eqs. (3)–(6)]. Finally, we solve the
valence-space problem with the VS-IMSRG transformed op-
erators. In the practical calculations, we increase β to push
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FIG. 2. (a) Ground-state energies and expectation value of the
c.m. (b) Hamiltonian for 16O calculated from the 4He-core p, pd5/2,
pd5/2s1/2, and psd valence spaces. All the calculations are done in
the emax = 8 model space. The inset panels show an enlarged view.

the c.m. modes up out of the spectrum until the calculated
energies become β independent.

In Fig. 2(a) we show the ground-state energy of 16O, tak-
ing 4He as the core and several choices of valence space:
p, pd5/2, pd5/2s1/2, or psd . We see that the p, pd5/2, and
pd5/2s1/2 valence-space energies are nearly β independent,
while the psd valence space exhibits a strong β dependence
for β � 4. To examine further, we calculate the expectation
values of the c.m. Hamiltonian 〈Hc.m.〉 shown in Fig. 2(b). For
the p, pd5/2, and pd5/2s1/2 valence-space calculations, 〈Hc.m.〉
are almost zero, which is consistent with a single Gaussian
for the c.m. wave function. However, for the psd valence
space, energies are shifted down as β increases. Since Hc.m. is
originally positive definite, the large negative value of 〈Hc.m.〉
implies that the induced many-body terms of Hc.m. are large.
Combined with the energy lowering in β � 4, it is expected
that the induced many-body terms of H are not small, and the
IMSRG(2) approximation breaks down. Although adding the
c.m. Hamiltonian is needed to remove the spurious modes, it
breaks the hierarchy of induced terms in some cases. As seen
in Fig. 2, the choice of valence space is crucial to mitigate the
effects of these induced many-body terms. In the following
applications, we only show calculations where these induced
terms are under control and illustrate the typically minor im-
pact of changing β.

IV. RESULTS AND APPLICATIONS

A. Island of inversion

As the primary application of this development, we first
discuss the well-known island of inversion in the neon (Z =
10), magnesium (Z = 12), and silicon (Z = 14) isotopes. We
take for our valence space the neutron 0 f7/2 and 1p3/2 orbits
in addition to the standard sd space above a 16O core, referred
as πsd, νsdf7/2 p3/2. For our input nuclear NN + 3N Hamil-
tonian, we use the 1.8/2.0 (EM) interaction of Refs. [58–60],
which was obtained by combining a free-space SRG evolved

FIG. 3. 0+
2 excitation energies and number of exciting neutrons

from sd to p f orbits for neon [(a) and (d)], magnesium [(b) and (e)],
and silicon [(c) and (f)]. The valence-space Hamiltonian is derived
for the πsd, νsdf7/2 p3/2 space.

NN with an unevolved 3N interactions [58,61]. This interac-
tion well reproduces ground-state energies to A ≈ 100 region
[35,48], specifically with an rms deviation from experiment
of roughly 3.5 MeV across the light and medium-mass re-
gions [9]. The IMSRG evolution is performed in a space with
emax = 12 and E3 max = 16.

In the top row of Fig. 3, we show the excitation energies
of 0+

2 states in neon, magnesium, and silicon in the vicinity
of N = 20 as a function of neutron number. Compared with
the experimental excitation energies, we see that our energies
are systematically high. This is likely due to the IMSRG(2)
approximation employed in this work, as similar trend have
been observed in earlier studies [5,48,60]. For each state we
also illustrate the contribution of normal and intruder (defined
by neutron holes in the sd shell) configurations to the wave
functions. We see in Figs. 3(a) and 3(b), that the intruder
component in the ground state is strongly enhanced as we
move towards N = 20 in neon and magnesium. In contrast,
the ground state in the silicon isotopes is dominated by normal
configurations, as shown in Fig. 3(c).

In the bottom row, we show the number of excited neutrons
from the sd to p f shells (nsd→p f ) for the ground (0+

1 ) and
0+

2 states of the same isotopic chains. Similar to an earlier
study based on a phenomenological valence-space Hamilto-
nian [26], we see a sudden jump in nsd→p f for the ground
states of neon and magnesium at N = 20. Furthermore, the in-
version of the nsd→p f is clearly observed between the ground
and excited states, highlighting the breakdown of the N = 20
shell gap in these isotopes. On the other hand, the very modest
increase of nsd→p f in the ground state of the silicon isotopes
indicates the persistence of the N = 20 gap. This overall
behavior of nsd→p f is in contrast to those obtained with a
semi-microscopic many-body perturbation theory approach
[28], which found a much more gradual transition into the
island-of-inversion region. We note, however, that the quantity
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FIG. 4. Ground-state energies [(a), (b), and (c)] and two-neutron separation energies [(d), (e), and (f)] for neon, magnesium, and silicon
isotopes. Dotted vertical lines indicate the border of sd- and p f -shell spaces. The experimental data (black bars) are taken from atomic mass
evaluation 2016 [56]. All the calculations are done with emax = 12 and E3 max = 16.

nsd→p f is not observable, and depends on the chosen Hamil-
tonian, so strong conclusions should not be drawn based on
levels of agreement.

To see the impact of the neutron excitations from sd to p f ,
we also employ the 16O-core sd and 28O-core πsd, ν f7/2 p3/2

valence spaces. In Figs. 4(a)–4(c), we show the ground-state
energies of neon, magnesium, and silicon isotopes, respec-
tively, calculated within these different valence spaces. As
we move to the neutron rich region N � 20, the difference
between πsd, ν f7/2 p3/2 (single-shell) and πsd, νsdf7/2 p3/2

(multishell) results become significant. This is because the

single-shell ground states correspond to excited states in the
multishell results, which we will revisit later. In Figs. 4(d)–
4(f), the two-neutron separation energies S2n are shown for
neon, magnesium, and silicon isotopes, respectively. Here we
see a marked agreement with respect to experiment as the
N = 20 gap is crossed, compared to standard single major
shell VS-IMSRG calculations here and in earlier studies [60].

Turning to excitation energies, the difference between
single- and multishell results is even more pronounced. In
Fig. 5, the first 2+ energies and the E2 transition probabilities
from 0+

1 to 2+
1 [B(E2)] are shown for the neon, magnesium,

FIG. 5. Excitation energies of and transition probability to first 2+ state for even-even neon [(a) and (d)] magnesium [(b) and (e)], and
silicon isotopes [(c) and (f)]. Dotted vertical lines indicate the border of sd- and p f -shell spaces. The experimental data (black bars) are taken
from nuclear data center [57]. All the calculations are done with emax = 12 and E3 max = 16.
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FIG. 6. 0+ and 2+ states for (a) 26Ne, (b) 30Ne, (c) 32Mg, and
(d) 34Si obtained from sd and sdf7/2 p3/2 calculations. For sd results,
the lowest 0+ and + states are shown. For sdf7/2 p3/2 results, the
three lowest 0+ and 2+ states are shown. The numbers shown in
the sdf7/2 p3/2 results indicate the 0h̄ω components. The numbers

nearby arrow indicate B(E2, 0+ → 2+) in units of e 2fm
4
. All the

calculations are done with emax = 12 and E3 max = 16.

and silicon isotopes. Overall, the calculated 2+ energies are
systematically higher than the experimental data, which has
already observed in earlier works [60] and is again likely due
to the IMSRG(2) truncation. The calculated B(E2) values tend
to be much smaller than the data, also consistent with earlier
findings [34]. While ab initio methods based on spherical
references tend to underpredict B(E2) values due to missing
contributions from many-particle many-hole excitations, the
trends are generally well reproduced [62].

The 2+ energies from sd and πsd, ν f7/2 p3/2 (single-
shell) deviate from the experimental trend at N = 20, while
πsd, νsdf7/2 p3/2 (multishell) calculations show a modest
lowering at N = 20, improving the agreement. Also, when
extending the valence space, B(E2) values increase at N = 20
for the neon and magnesium isotopes and decrease for sil-
icon. These improvements at N = 20 are again because the
single-shell results capture the different states in the multi-
shell calculations, which will be shown later. Combining 2+
energies and B(E2), we see the clear collapse of the N = 20
gap in the neon and magnesium and its persistence in silicon.

FIG. 7. Excitation spectra for 16O obtained from p-shell, pd5/2-
shell, and pd5/2s1/2-shell calculations. Experimental data are taken
from nuclear data [57]. The calculation results with coupled-cluster
method (CCM) and equation-of-motion (EOM) IM-SRG are taken
from Refs. [41] and [34], respectively. The left and right panels show
five lowest positive and negative parity states, respectively. All the
calculations are done in the emax = 12 model space with N2LOsat

interaction [41].

Overall we find that a proper treatment of cross-shell physics
is essential to discuss the disappearance of N = 20 gap, which
is consistent with the discussion with large-scale shell-model
calculations [13,28]. Finally we note that for N � 26, the β

dependence of πsd, νsdf7/2 p3/2 results becomes sizable, as
also seen in Fig. 4. This suggests that we may need to employ
another valence space to discuss the N = 28 gap, essentially
recentering the Fermi surface.

Beyond N = 20, the 2+ energies from πsd, νsdf7/2 p3/2 are
still systematically higher than the data, while πsd, ν f7/2 p3/2

results show very good agreement with data, especially for
the silicon isotopes. The agreement beyond the shell closure
was also pointed out in earlier VS-IMSRG work [60]. We
reproduce the πsd, ν f7/2 p3/2 results when we perform the
calculations with πsd, νsdf7/2 p3/2 Hamiltonian, with a 0h̄ω

truncation. To see the difference between the single- and
multishell calculations more clearly, we show the 0+ and
2+ energies and the B(E2) in 26Ne, 30Ne, 32Mg, and 34Si
within the sd and πsd, νsdf7/2 p3/2 spaces in Fig. 6. For 26Ne,
outside of the island of inversion, it is clear that the sd results
correspond to the lowest two states from the πsd, νsdf7/2 p3/2

calculation. For 30Ne and 32Mg, there is not the clear con-
nection as seen in the 26Ne case. However, looking at the
0h̄ω component (i.e., the probability to have zero excitations
into the p f shell) and B(E2) values, it seems the sd cal-
culations capture states dominated by the 0+

2 and 2+
2 in the

πsd, νsdf7/2 p3/2 calculations, respectively. For 34Si, the sd
ground state corresponds to the πsd, νsdf7/2 p3/2 ground state.
The sd 2+

1 seems to capture the strongly mixed states, because
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the B(E2) values from sd and πsd, νsdf7/2 p3/2 are signifi-
cantly different. Considering these findings, it appears that the
agreement of the πsd, ν f7/2 p3/2 results with the experimental
2+ excitation energies is accidental. For the intruder-dominant
states, the original problems cannot be mapped sufficiently
into the single-shell space problems under the IMSRG(2)
approximation, and we need to derive the Hamiltonian for the
two-major-shell valence space.

B. Excitation spectrum in 16O

In the standard VS-IMSRG prescription of choosing
single-shell valence spaces, doubly magic nuclei were out
of reach except with a single-reference calculation, which
could not access excited states. Here we illustrate the utility
of multishell spaces by calculating the ground-state energy
and excited state spectrum of 16O. To benchmark with the
results from equation of motion coupled-cluster (CC) theory
and IMSRG, we employ the N2LOsat interaction [41], whose
low-energy constants were fitted to reproduce ground-state
properties of selected nuclei up to A = 25.

In Fig. 7 we show the calculated spectrum for 16O, taking
4He as the core and proton-neutron p, pd5/2, and pd5/2s1/2

orbits as the valence spaces. The calculations are done in
a emax = 12 and E3 max = 14 space (where the results are
converged) and using β = 3 for the c.m. Hamiltonian term.
Since the p-shell orbits are fully occupied, the p valence-
space trivially gives the ground-state energy. With an extended
valence space, the ground-state energies are seen to decrease
by a few MeV. If the applied IMSRG transformation were
perfectly unitary, the two approaches would yield identical
results. This additional lowering is an illustration of the effect
of the many-body forces induced by the transformation and
neglected in the IMSRG(2) approximation. The excitation
energies of the negative-parity 3− and 2− states, obtained
with pd5/2 and pd5/2s1/2 valence spaces are very similar. This
indicates that excitations from the p-shell orbits to d5/2 orbits
are dominant, consistent with the earlier CC investigations
[41].

The difference in energies from coupled cluster [41] and
equations-of-motion IMSRG (EOM-IMSRG) [34] gives an
indication the level of the error of the approximations em-
ployed in the two methods. We note that CC with perturbative
triples, CCSD(T), is generally more accurate than the IM-
SRG(2) framework [32], and as pointed out in Refs. [5,48,60],
IMSRG(2) tends to also produce higher first excited-state
energies compared to CCSD(T) and experiment. The com-
parison of our energies with the EOM-IMSRG indicates the
effect of the induced many-body terms by the additional
valence-space decoupling, though it could also reflect excita-
tions beyond 2p2h, which are missing in the EOM calculation
but captured in the diagonalization of the VS-IMSRG Hamil-
tonian.

Adding the s1/2 orbit significantly lowers the energies of
higher excited states. While the importance of s1/2 orbits
for the 1− state was also discussed in the CC calculation,
our 1− state is slightly lower than the 2− state, in contrast
to the CC results. We confirmed that this is indeed caused
by three-particle–three-hole (3p3h) contributions, which are

FIG. 8. (a) Ground-state energies and (b) charge radii for oxy-
gen isotopes. The experimental data (black bars) are taken from
Refs.[56,64]. All the calculations are done with emax = 12 and
E3 max = 16.

not captured in Ref. [41]; in our calculations, the 1p1h,
3p3h, and 5p5h components are 77%, 22%, and 1%, respec-
tively. We find that the positive-parity states are dominantly
4p4h. The 0+

2 energy linearly rises with increasing β,
while 〈0+

2 |Hc.m.|0+
2 〉 is nearly zero. Recalling the Hellmann-

Feynman theorem [dE (0+
2 )/dβ = 〈0+

2 |Hc.m.|0+
2 〉], this could

be another indication that IMSRG(2) does not work to express
the state. Also, these states converge slowly with respect to
emax, and are not converged at emax = 12. This is consistent
with the findings in Ref. [63] that nucleon excitations much
higher than those taken in this work would be needed to
express the 0+

2 state.

C. Oxygen and calcium isotopes

As in many ab initio studies [44,65–67], the oxygen
isotopic chain is also an ideal playground to examine multi-
shell effective Hamiltonians. Here, we use 16O-core sd and
4He-core pd5/2s1/2 valence spaces with the 1.8/2.0 (EM) in-
teraction discussed above for emax = 12 and E3 max = 16. In
Fig. 8(a), the ground-state energies of oxygen isotopes are
shown. First we notice that the β dependence of the ground-
state energies are negligibly small. Additionally, decoupling
of the p orbits gives more binding throughout the chain,
due to the IMSRG(2) truncation error. On the other hand,
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FIG. 9. Isotope shift of charge radii for calcium isotopes. The
experimental data (black bars) are taken from Ref. [64]. All the
calculations are done with emax = 12 and E3 max = 16.

the β dependence of the charge radii, shown in Fig. 8(b),
is not as clean. Except for 14,18O, the converged radii can
be found by increasing β. Since the many-body induced
terms would be more serious for larger β, we stop at β =
5. Although our 18O charge radius is still β dependent, the
experimental trend Rch(18O) > Rch(16O) > Rch(17O) is likely
coming from the excitations of nucleons from p to sd orbits,
as expected. The dip for A > 20 is qualitatively consistent
with recent experimental results from proton-scattering data
[68]. Since the sensitivity to β depends on the nuclide and
operator, we need to investigate further to obtain reliable
results.

The charge radii of calcium isotopes are also worth in-
vestigating, not only because of the recent exploration to
the neutron-rich region [69], but it is also an outstanding
challenge for theory to reproduce the parabolic isotope shift
trend from 40Ca to 48Ca, particularly with ab initio methods.
In earlier shell-model calculations with an s1/2d3/2 f7/2 p3/2

valence space above a 28Si core [70], it was claimed that the
isotope shift and other observables provided evidence that the
Z = 20 shell closure is incomplete in the calcium isotopes. We
show the isotope shift of the charge radii for calcium isotopes
using the 28Si-core s1/2d3/2 f7/2 p3/2 spaces in Fig. 9. Note that
the absolute charge radii are β independent and consistently
smaller than the experimental data. As we move to 48Ca,
we observed that the nucleon excitations from the sd to p f
(nsd→p f ) are suppressed; for example nsd→p f (40Ca) = 1.29,
nsd→p f (44Ca) = 1.08, and nsd→p f (48Ca) = 0.39 at β = 3. Al-
though our calculation shows non-negligible excitations from
sd to p f in the lighter isotopes, the shell closure is restored

when the neutrons are added, in contrast2 to the earlier shell-
model calculations [70]. In Fig. 9, the isotope shifts from
our calculations are flat as a function of A in sharp contrast
with the experimental trend. Also, the agreement of the p f
and s1/2d3/2 f7/2 p3/2 results indicate that the effects of the
excitations from sd to p f on radii are somehow canceled out.
To investigate further, it would be helpful to compare with
other ab initio calculation methods, as this result is indeed
unexpected.

V. CONCLUSION AND OUTLOOK

In this paper we used the VS-IMSRG to derive the first
multishell valence-space Hamiltonians from ab initio theory.
To make this feasible we added an energy shift � in the
denominator of the generator η of IMSRG flow equation to
avoid the single-particle level crossing that otherwise occurs
during the evolution. Although we can now in principle derive
effective Hamiltonians for general multishell valence spaces,
in some cases adding the c.m. Hamiltonian spoils the hier-
archy of the IMSRG induced many-body terms. In practice,
therefore, we have to choose carefully the valence space so
that this hierarchy is preserved.

We then used these multishell valence-space Hamiltonians
to provide an ab initio description of the island of inversion
in the region above oxygen. Here we generally reproduce the
expected evolution of the N = 20 magic number in the neon,
magnesium, and silicon isotopes and see the prominence of in-
truder configurations and cross-shell excitations in ground and
excited states. We then benchmark our calculations against
other large-space ab initio methods in the excitation spectra
of 16O, showing reasonable agreement with the earlier calcu-
lations starting with the same NN + 3N interaction. Finally,
we explored the ground-state energies and radii of oxygen and
radii isotope shift of calcium isotopes, finding that in order to
obtain reliable results for a given nuclide and a given observ-
able, we need to check the center of mass contamination by
varying the parameter β.

This work further extends the reach of the VS-IMSRG to
regions near major oscillator shell closures, where artifacts
were clearly evident in previous calculations. Since in this
framework we can freely add or remove the valence orbits,
we can investigate what are the essential degrees of freedom
to describe a many-body wave function [under the IMSRG(2)
approximation]. While diagonalization of multishell Hamil-
tonians often becomes computationally challenging towards
the sd-p f shell, this method nevertheless opens the way
for ab initio investigations to improve the trend of calcium
charge radii, explore the island of inversion above calcium,
generate multishell Hamiltonians useful for neutrinoless
double-beta-decay calculations [71], and guide future experi-
mental efforts exploring neutron-rich nuclei with rare isotope
beams.

2Again, occupation numbers are not observable and so calculations
employing different Hamiltonians need not agree on them.
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