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Isomeric and collective structures in neutron-rich hafnium isotopes
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The structures of isomeric and collective states in neutron-rich hafnium isotopes have been investigated
within the paired cranked Nilsson-Strutinsky-Bogoliubov (CNSB), and the unpaired cranked Nilsson-Strutinsky
(CNS) formalisms. We show that by combining these two models, a good understanding of the formation of
multiquasiparticle prolate isomers is achieved. The calculations show at angular momenta I � 35, well-deformed
oblate collective rotation strongly competes energetically with the prolate noncollective states. Comparison is
made with experimental data, where available, and with other model calculations.
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I. INTRODUCTION

A nuclear isomer is an excited state of a nucleus with a
long half-life, in the range nanoseconds to years [1]. It is
a quasistable quantum state with a half-life that is at least
several orders of magnitude longer than typical half-lives of
excited states. The study of isomers can be helpful in ex-
ploring the structure of unusual excited states in nuclei, the
nuclear mean-field potential, proton-neutron coupling effects,
and nuclear shapes [2–4]. The theoretical understanding of
nuclear isomers was first introduced by von Weizsäcker in
1936, suggesting that the combination of a large change in the
angular momentum and a low energy in an electromagnetic
transition can lead to a transition with a long half-life [2,3,5].
The lifetime τ of a nuclear state decaying by a single transi-
tion, depends on the transition energy �E and the change in
the quantum numbers between the isomeric state itself and the
state to which it decays [3],

1/τ ∝| 〈 f | Tλ | i〉 |2 (�E )2λ+1,

where Tλ is the transition operator between the initial and
final states and λ is the multipole order of the electromagnetic
transition. A high-K isomer is one of the most well-known
types of nuclear isomer, which occurs from violation of the
electromagnetic transition selection rule requiring that λ �
�K , where the quantum number K is the projection of the
total angular momentum on the symmetry axis, i.e., the sum of
all projections of the angular momenta of unpaired nucleons
along the symmetry axis, K = ∑

�i. A significant difference
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in K values and a violation of this selection rule led to “forbid-
den” decay from the high-K isomer to the rotational states of
a low-K band, and thus a long half-life for the nuclear excited
state [6,7]. A high K value, a relatively low excitation energy,
and a well-deformed axially symmetric shape are effective
factors resulting in a long half-life for an excited state [8].

In even-even deformed nuclei at low spins, the low-
est energy rotational sequence is based on the fully paired
ground state. With increasing angular momentum, the col-
lective excitations lead to the breaking of nucleon pairs, and
the unpaired nucleons can couple their angular momentum
projections � along the symmetry axis, thereby forming two-
quasiparticle configurations which compete to form the yrast
line. However, the situation is more complex if there are
high- j nucleons which are coupled through Coriolis effects,
so that they can align their intrinsic angular momenta with
the collective rotation axis, perpendicular to the symmetry
axis [3,6,9]. Nevertheless, when nucleon pairs are broken and
recoupled at high spin with a minimal energy cost, they can
result in yrast traps, forming long-lived, high-spin isomeric
states [1].

In the mass A ≈ 180 region, there are well-deformed ax-
ially symmetric nuclei with many high-� orbits close to the
neutron and proton Fermi surfaces, and multiquasiparticle
states with high-K values can be formed. These states and
their rotational bands can compete to form the yrast line
[3,6,10–12]. The bandhead decays often need a big change in
the K quantum number to occur, and therefore K-forbidden
transitions and long half-lives will occur. For example, the
Kπ = 16+, 31-yr isomer of 178Hf is one of the most interest-
ing, arising from a four-quasiparticle configuration [1,13,14].
Predictions for the Z = 72 hafnium isotopes indicate a contin-
uation of the well-known high-K isomers into the neutron-rich
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region [1,8,15], and this is an active area of experimental
investigation [16,17].

The purpose of the present work is to describe and analyze
the features of the isomeric states of even-even hafnium iso-
topes within the unpaired Cranked Nilsson-Strutinsky (CNS)
[18–20] and paired cranked Nilsson-Strutinsky-Bogoliubov
(CNSB) [21,22] theoretical formalisms. The results pre-
sented here aim to reproduce and complement the current
information on the structure of hafnium isomers. However,
specifically at low and medium spins, the CNS formalism
suffers from the absence of pairing. This problem is over-
come with the CNSB method, where the calculations are
done in a mesh covering both the deformation space and the
pairing space. In the present work, shapes and energies are
calculated and compared with total Routhian surface (TRS)
and configuration-constrained Woods-Saxon-Strutinsky cal-
culations, as well as with existing data. The overall success
establishes the CNSB method as being good for such calcu-
lations, and will lead on to further work. This formalism is
based on the ultimate cranker method [23] that was applied
to the hindrance factor calculation in the decay of the K = 25
isomer in 182Os [24].

The paper is organized as follows. The theoretical frame-
works of the cranked Nilsson-Strutinsky (CNS) and cranked
Nilsson-Strutinsky-Bogoliubov (CNSB) approaches are pre-
sented in Sec. II. The results of the calculations of the isomeric
states in 178Hf obtained within these two approaches as well
as a detailed comparison of these results with experiment are
reported in Sec. III. The results for heavier even-even hafnium
isotopes are presented in Sec. IV. The shape evolution, with
increasing angular momentum as well as with neutron num-
ber, is discussed in Sec. V. Finally, all results are summarized
in Sec. VI.

II. THEORETICAL FRAMEWORKS

In this section we give a brief introduction to the paired
and unpaired cranked Nilsson-Strutinsky approaches. Note
that the cranking method discussed is based on the one-
dimensional cranking approximation. In the cranking model,
the rotation degree of freedom enters in the same way as the
deformation degree of freedom. In this system, the nucleons
move independently in a rotating nuclear potential [25]. In the
unpaired cranked Nilsson-Strutinsky (CNS) formalism, the
mean-field Hamiltonian is taken as [19]

H = HMHO(ε2, γ , ε4) − ω jx, (1)

where HMHO is the modified harmonic-oscillator Hamilto-
nian and ω jx describes the cranking around the principal x
axis with rotational frequency ω. The diagonalization of the
Hamiltonian of Eq. (1) in the rotating basis (see Ref. [25])
gives the eigenvalues, i.e., the single-particle energies, in the
rotating frame as a function of axial and triaxial quadrupole
and hexadecapole deformation parameters, eω

i (ε2, γ , ε4) for
each ω value. The total single-particle energies are calculated
by summing the proton and neutron single-particle energies.
The total energy of a configuration consists of a macro-
scopic part which is obtained from the Lublin-Strasbourg drop
(LSD) model [26] and a microscopic part calculated with the

Strutinsky shell-correction model [27]. As pointed out above,
the calculations are performed in the lattice of deformation
(ε2, γ , ε4).

The cranked Nilsson-Strutinsky-Bogoliubov (CNSB)
model uses the same modified oscillator potential as the CNS
model, plus a monopole pairing term as in [21]

H = HMHO(ε2, γ , ε4) − ω jx − �(P† + P) − λN̂, (2)

where the two last terms denote the pairing Hamiltonian, and
P† (P) and N̂ are the pair creation (annihilation) and the
particle number operators. In this procedure, the microscopic
energy, after particle number projection, is minimized rela-
tive to the pairing parameters, Fermi energy λ, and pairing
gap �, as well as the deformation parameters. Because the
particle-number projection is employed, the pairing strength
G is reduced by a factor of 0.95 for the pairing self-consistent
calculation [28]. The standard parameters [19] are used in
both paired and unpaired calculations.

As seen in Eq. (1), pairing correlations are neglected in
the CNS calculations. The absence of the pairing in addi-
tion to the simplicity of the modified oscillator potential (see
Ref. [29]) makes it possible to fix the structure of configura-
tions. However, it turns out to be questionable to use the CNS
formalism at low spins where neglecting the pairing reveals
somewhat high discrepancies. However, the CNSB formalism
including the pairing correlations is successful in reproducing
more properties of isomers which are often observed at low
spins. Therefore, we use the paired and unpaired formalisms
in parallel to compensate for the deficiencies.

In the CNS and CNSB formalisms, a “diabatic” technique
to obtain wave functions with a smooth dependence on the
Hamiltonian parameters is employed [23]. The primary ad-
vantage of the use of such a method is that it becomes feasible
to display the results as function of spin rather than rotational
frequency [28]. This is an advantage over the TRS model
where the results are presented as function of the rotational
frequency which is not a measurable parameter experimen-
tally.

In the present work, to get the gyromagnetic factors, we
use the following formula in the CNSB model,

g(I ) = 〈μ̂x〉
〈Îx〉

= [gl,π 〈 ĵπ,x〉 + (gs,π − gl,π )〈Ŝπ,x〉

+ gs,ν〈Ŝν,x〉]/I, (3)

where 〈 ĵπ,x〉, 〈Ŝπ,x〉, and 〈Ŝν,x〉 are expectation values of the
total spin or intrinsic spin projections on the cranking axis
of protons and neutrons. Throughout this work we have used
gs = 0.7gfree

s .

III. ISOMERIC STATES IN 178Hf

The CNSB potential energy surfaces (PESs) for the ground
and isomeric states of 178Hf are displayed in Fig. 1. At the
ground state with Kπ = 0+ and also at Kπ = 6+, a collective
main minimum appears at ε2 ≈ 0.26 and γ ≈ 0◦. However, it
is shown in Ref. [30] that the Kπ = 6+ state is not an yrast
state and decays to the 6+ member of the ground-state band
(6+

GSB) with Eγ = 0.922 MeV. Note that in the calculation a
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FIG. 1. Calculated CNSB potential-energy surfaces versus
quadrupole deformation ε2 and the triaxiality parameter γ of 178Hf
for the I = 0 ground state, I = 6+ states (see text), I = 8− proton
isomer (left), I = 8− neutron isomer (right), and also I = 14− and
16+ isomers. Contour lines are separated by 0.25 MeV and the γ

plane is marked at 15◦ intervals. Dark regions represent low energy
and absolute minima are labeled with dots.

-5 0 5
Spin projection, m

i
 [h-]

5.4

5.6

5.8

6

6.2

6.4

e i [
h- ω

ο]

I=0
+

I=6
+

I=8
-

Z=72

ε2 = 0.24
γ = −120
ε4 = 0.065

(a)

5/2[402]

9/2[514]

7/2[404]

d
5/2

g
7/2

d
3/2s

1/2
h

11/2

64

80

-5 0 5
Spin projection, m

i
 [h-]

6.4

6.6

6.8

7

7.2

7.4

e i [
h- ω

ο]
I=0

+

I=8
-

N=106 (b)

7/2[514]

9/2[624]

f
7/2

h
9/2

f
5/2

p
3/2

i
13/2

114

FIG. 2. Single-particle energies ei for a prolate shape, ε2 =
0.240, γ = −120◦, ε4 = 0.065, versus spin projection on the sym-
metry axis mi, for (a) protons and (b) neutrons in 178Hf. Energies (y
axis) are in oscillator units. Tilted Fermi surfaces indicate the filling
of the orbitals in the aligned Ip = 6+ and 8− and also In = 8− states.

noncollective state with γ = −120◦ represents the Kπ = 6+
state and coexists with the collective GSB state, which is at
slightly lower energy (by about 0.8 MeV). The calculations
show that the 6+ isomer, just as other isomers in 178Hf, ap-
pears as a multiquasiparticle prolate mode with γ = −120◦,
as presented in Table I.

The calculations for the Kπ = 8− state show the yrast
state at ε2 ≈ 0.26 and γ ≈ −120◦, indicating a noncollec-
tive prolate shape corresponding to a two-quasineutron and
two-quasiproton structure. A less favored prolate minimum
is also observed at ε2 ≈ 0.26 and γ ≈ 0◦. Similar PESs are
also obtained for the Kπ = 14− and Kπ = 16+ states. The
calculations indicate significant hexadecapole deformations
with ε4 in the range 0.05–0.06.

A more quantitative comparison between different aligned
configurations is obtained from the CNS single-particle en-
ergies, ei versus mi diagrams drawn at the appropriate
deformation. The most favored states are selected by filling
the pure CNS orbitals below the straight line tilted Fermi
surfaces illustrated in Fig. 2 forZ = 72 and N = 106. Spins
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TABLE I. Calculated and experimental values of excitation energies and g factors, and calculated pairing energies and isomeric state
configurations in 178Hf. Energies are in MeV. Experimental data are taken from Ref. [34].

Kπ ε2 γ ε4 Ethe Eexp Ethe[8] gthe gexp Epair Ip/I Proton configuration Neutron configuration

0+ 0.255 −120◦ 0.050 0 0 0 – – 2.717 0 GS GS
6+ 0.255 −120◦ 0.050 1.439 1.554 – 1.032 0.97 1.395 1

[
5
2

+
[402] 7

2

+
[404]

]
6+ –

8− 0.256 −120◦ 0.055 1.151 1.147 1.348 0.344 0.39 1.550 1
[

7
2

+
[404] 9

2

−
[514]

]
8− –

8− 0.261 −120◦ 0.054 1.317 1.479 – 0.635 – 2.039 0 –
[

7
2

−
[514] 9

2

+
[624]

]
8−

14− 0.253 −120◦ 0.049 2.916 2.572 – 0.428 0.60 1.284 0.429
[

5
2

+
[402] 7

2

+
[404]

]
6+

[
7
2

−
[514] 9

2

+
[624]

]
8−

16+ 0.261 −120◦ 0.058 2.541 2.446 2.401 0.490 0.51 1.213 0.50
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
7
2

−
[514] 9

2

+
[624]

]
8−

can be obtained from particle-hole excitations relative to the
tilted Fermi surface [18]. For 178Hf, ei versus mi diagrams are
plotted at the deformation (ε2, γ , ε4) ≈ (0.24,−120◦, 0.065)
for protons and neutrons in Figs. 2(a) and 2(b), respec-
tively, where the corresponding isomer structures are shown
schematically. The single-particle energies are drawn at a
moderate deformation because one can use the diagrams also
for other isotopes.

As seen in Fig. 2(b), the Kπ = 8− state can be built by
moving a neutron from the f7/2 orbital with m = −7/2, above
the tilted Fermi level, to the i13/2 orbital with m = 9/2, be-
low the tilted Fermi level. Similarly, in Fig. 2(a), the 8−
state can be made by transferring a proton from the h11/2

orbital (m = 9/2), to the g7/2 orbital (m = 7/2). Therefore,
it may be concluded that the structure of the 8− isomeric
state has the π 7

2
+

[404], 9
2

−
[514] or the ν 7

2
−

[514], 9
2

+
[624]

two-quasiparticle configuration. Experiments have revealed
that the 8− state is a mixture of these two structure types with
a dominant two-quasineutron admixture in the isomer band
[30].

For making the Kπ = 6+ state, it is necessary to transfer a
proton from the g7/2 orbital with m = 7/2 to m = 5/2, form-

ing the two-quasiproton configuration π 5
2

+
[402], 7

2
+

[404].
The configuration obtained for the 6+ state is consistent
with the result in Ref. [30], while it is in contrast to the
result in Ref. [31] where the 6+ state is described as a two-
quasineutron configuration ν 5

2
−

[512], 7
2

−
[514] within the the

projected shell model [32]. As seen in Fig. 2, our calcula-
tions show that moving a neutron from the h11/2 orbital with
m = 5/2 to m = 7/2 needs more energy than moving a proton
from the g7/2 orbital with m = 7/2 to m = 5/2. On the other
hand, the 6+ state was suggested to have a combined structure
with 69% π 7

2
+

[404], 5
2

+
[402] plus 31% ν 7

2
−

[514], 5
2

−
[512]

[33]. However, it is concluded in Ref. [30] that the 6+ state is
predominantly of two-quasiproton character, which is consis-
tent with our results.

The isomeric Kπ = 14− state includes the proton
spin Iπ

p = 6+ with the configuration π 5
2

+
[402], 7

2
+

[404]
and the neutron spin Iπ

n = 8− with the configura-
tion ν 7

2
−

[514], 9
2

+
[624]. Also, Fig. 2 shows that

the isomeric Kπ = 16+ state is built by combining
the two suggested configurations for the 8− state,
π 7

2
+

[404], 9
2

−
[514], ν 7

2
−

[514], 9
2

+
[624]. Therefore the 14−

and 16+ isomers are built on four-quasiparticle configurations.

It is possible also to check the number of quasiparti-
cles in the CNSB procedure. Our calculations for the yrast
8−, 14−, and 16+ isomers confirm that the 8− isomer is a
two-quasiparticle state and the 14− and 16+ isomers are four-
quasiparticle states. The calculations reveal that there are no
quasiparticles in the 6+ yrast state with the (πp, αp)(πn, αn) =
(+, 0)(+, 0) configuration, where π is the parity and α is the
signature. Therefore, we have to put two quasiprotons in the
configuration (+, 0)(+, 0) to get an isomeric Kπ = 6+ state
with two quasiparticles. Our calculations predict for 6+

isomer →
6+

GSB a transition energy of about 0.668 MeV which is not far
from the experimental value of 0.922 MeV [30].

Table I shows the configuration assigned for each isomer
in 178Hf. We have also calculated the excitation energies for
the isomeric states and compared them with the experimental
values and theoretical ones obtained from the TRS model [8]
in Table I. For the 8− isomer, the g factor of the mixture of the
two 8− configurations is calculated assuming 36% and 64%
of the pure proton and neutron states, respectively [30]. The
pure values are 1.01 and −0.03 for the proton and neutron
8− configurations, respectively. We have also determined the
g factors, and the proportion of the spin from protons for each
state, in the CNSB calculations which are listed in Table I.
Comparison of the experimental and calculated values in Ta-
ble I shows that the present formalism is able to reproduce the
major features of the isomers.

For better understanding of the isomer structures, we have
calculated the pairing energy Epair for each isomeric state as
the difference of the unpaired CNS and paired CNSB energies.
They are included in Table I, where it is seen that the pair-
ing energy decreases with increasing quasiparticle number,
as we expect. It also shows that the pairing energy for the
8− state with two quasineutrons is more than that of the 8−
state with two quasiprotons. This is because the quasineutrons
occupy orbitals with larger l and j values in comparison with
the occupied orbitals in the two-quasiproton state. The value
Ip

I = 1 for the 6+ and 8− two-quasiproton states confirms they
are built on pure quasiproton structures with no quasineutron
contributions. Also the proton spin proportion of the 16+ state
equals 0.5, which indicates it is built on two quasiprotons and
two quasineutrons with the same spin proportions, while for
the 14− state, it equals 0.429 which is consistent with Ip = 6
and In = 8.

The results show that the present model can capture the im-
portant properties of the isomeric states in 178Hf. The model
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TABLE II. Calculated and experimental values of the deformation, excitation energy, and the structure of the multiquasiparticle states in
180,182,184,186Hf. Energies are in MeV. Experimental data for the excitation energies are taken from Refs. [34,35].

Isotopes Kπ ε2 γ ε4 Ethe Eexp Ethe[8] Proton configuration Neutron configuration

180Hf 0+ 0.251 −120◦ 0.063 0 0 0 GS GS
4− 0.249 −120◦ 0.062 1.143 1.374 – –

[
1
2

−
[521] 9

2

+
[624]

]
4−

6+ 0.249 −120◦ 0.064 1.574 1.702 –
[

5
2

+
[402] 7

2

+
[404]

]
6+ –

8− 0.252 −120◦ 0.066 1.077 1.143 1.303
[

7
2

+
[404] 9

2

−
[514]

]
8− –

10+ 0.248 −120◦ 0.064 2.109 2.424 – –
[

9
2

+
[624] 11

2

+
[615]

]
10+

12+ 0.251 −120◦ 0.064 2.298 2.484 2.462
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
9
2

+
[624] 1

2

−
[521]

]
4−

14+ 0.251 −120◦ 0.066 2.513 2.805 –
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
9
2

+
[624] 3

2

−
[512]

]
6−

18− 0.246 −120◦ 0.064 3.696 3.595 –
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
9
2

+
[624] 11

2

+
[615]

]
10+

182Hf 0+ 0.241 −120◦ 0.067 0 0 0 GS GS

8− 0.243 −120◦ 0.070 1.057 1.173 1.268
[

7
2

+
[404] 9

2

−
[514]

]
8− –

13+ 0.241 −120◦ 0.070 2.862 2.573 2.652
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
11
2

+
[615] 1

2

−
[510]

]
5−

184Hf 0+ 0.228 −120◦ 0.069 0 0 0 GS GS

8− 0.234 −120◦ 0.076 1.058 1.264 1.232
[

7
2

+
[404] 9

2

−
[514]

]
8− –

15+ 0.233 −120◦ 0.081 2.668 2.477 2.266
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
3
2

−
[512] 11

2

+
[615]

]
7−

186Hf 0+ 0.200 −120◦ 0.060 0 0 0 GS GS

8− 0.209 −120◦ 0.063 1.170 – 1.170
[

7
2

+
[404] 9

2

−
[514]

]
8− –

10− 0.193 −120◦ 0.059 1.658 – – –
[

9
2

−
[505] 11

2

+
[615]

]
10−

17+ 0.213 −120◦ 0.079 2.479 2.968 2.088
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
11
2

+
[615] 7

2

−
[503]

]
9−

18+ 0.207 −120◦ 0.071 3.020 – 2.686
[

7
2

+
[404] 9

2

−
[514]

]
8−

[
9
2

−
[505] 11

2

+
[615]

]
10−

can be generalized to determine also the features of other
isomers. In the following, we extend the calculations to the
heavier hafnium isotopes.

IV. ISOMERIC STATES IN 180,182,184,186Hf

Here, we have studied the isomeric state properties in four
even-even neutron-rich hafnium isotopes, 180,182,184,186H by
the same procedure as for 178Hf described in the previous
section. Seven multiquasiparticle states are experimentally
observed in 180Hf, with Kπ = 4−, 6+, 8−, 10+, 12+, 14+, and
18− [34,35], two isomeric states in 182Hf, with Kπ = 8−
and 13+ [34,36], two isomeric states in 184Hf, with Kπ =
8− and 15+ [16,34], and one isomeric state in 186Hf, with
Kπ = 17+ [16,34]. The calculated deformations and excita-
tion energies of the isomeric states are presented in Table II.
They are found to have prolate shape with ε2 ≈ 0.25 − 0.21,
γ = −120◦, and ε4 ≈ 0.06 − 0.08. As expected, all isomers
are built from multiquasiparticle prolate orbitals.

In 180Hf, just as in 178Hf, the two-quasiparticle 6+ isomer
is not an yrast state, and it decays to the GSB 6+ state with
a transition energy of 1.062 MeV [35]. The 4− and 8− two-
quasiparticle isomers form negative-parity yrast states. There
are four-quasiparticle isomers with Kπ = 12+ and 18− [35].

Our findings on the energies of multiquasiparticle states
are compared with experimental data [34,35] in Table II and
also with the theoretical results reported in Ref. [8], where
the calculations are done within the macroscopic-microscopic
model based on the deformed Woods-Saxon potential plus
the Lipkin-Nogami (LN) treatment of pairing [37]. They have

investigated the two-quasiproton 8− isomers and some four-
quasiparticle isomers in even-even hafnium isotopes [8]. The
isomeric Kπ = 8− state is predicted in all the neutron-rich
hafnium isotopes with the configuration π 7

2
+

[404], 9
2

−
[514],

as is evident in Fig. 2(a).
The quasiparticle structures of the isomeric states are de-

termined by drawing the single-particle energies ei versus
spin projection on the symmetry axis mi as shown in Fig. 3,
that lead us to the single-particle contributions of the neu-
trons, while the protons are shown in Fig. 2(a). The Kπ = 6+
and 8− states in 180Hf have the same proton structures as
those discussed in 178Hf, as indicated in Fig. 2(a) (though,
as discussed, there is proton-neutron mixing in the 8− state of
178Hf). As seen in Fig. 3(a), the i13/2 neutron with m = 9/2
contributes to creating the spin In = 4−, 6−, and 10+ states by
promoting a neutron to the p3/2(m = −1/2), f5/2(m = 3/2),
and i13/2(m = 11/2) orbitals, respectively. They can also com-
bine with the Ip = 8− configuration [see Fig. 2(a)] to form the
Kπ = 12+, 14+, and 18− states in 180Hf.

Figure 3(b) indicates that the 11
2

+
[615] member of the

i13/2 neutron orbitals is responsible for forming the neutron
spins In = 5−, 7−, and 9− when occupied by an aligned
neutron from the p3/2 (m = −1/2), f5/2 (m = 3/2), and h9/2

(m = 7/2) orbitals, respectively. They can combine with the
proton Ip = 8− state to form the Kπ = 13+, 15+, and 17+
four-quasiparticle states with neutron numbers N = 110, 112,
and 114, respectively.

Experimental energies and structures of the isomers in
180,182,184,186Hf are listed in Table II. One can see that
the present model reproduces quite well the experimental
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FIG. 3. Single-neutron energies ei for a prolate shape, ε2 =
0.240, γ = −120◦, ε4 = 0.065, versus spin projection on the sym-
metry axis mi. Energies (y axis) are in oscillator units. (a) For N =
108, the tilted Fermi surfaces indicate the filling of the orbitals in the
aligned In = 4−, 6−, and 10+ states. (b) For N = 110, 112, and 114,
the arrows show which neutron is promoted to the 11

2

+
[615] orbital

to create In = 5−, 7−, and 9− configurations.

observations, as well as the results given by other calculations
[16,35,38].

Based on the favored 8− state for Z = 72, we predict an 8−
isomer also in 186Hf, with the energy 1.170 MeV in a good
agreement with Ref. [8]. Also observed theoretically is a 10−
state formed by moving two neutrons from the orbital h9/2

(m = ±7/2) to the h9/2 (m = 9/2) and i13/2 (m = 11/2), which
is only about 0.49 MeV higher than the two-quasiproton 8−
state in energy. One can also predict a four-quasiparticle 18+
state with the energy 3.020 MeV in 186Hf. These isomers
which have not yet been identified experimentally, are pre-
sented in Table II.

V. HIGH-SPIN SHAPE COEXISTENCE

To predict the existence of the isomers at high spin, it is
necessary to see whether the multiquasiparticle states are yrast
also in the high-spin region. It was shown that hafnium high-K
multiquasiparticle excitations can be lower in energy than the

prolate collective states over a range of angular momentum
[39]. On the other hand, a collective prolate-oblate shape
change is predicted in the neutron-rich hafnium isotopes, with
lower energy for the oblate collective mode in the high-spin
region [15,40]. Here, we have studied the CNSB PESs of
neutron-rich hafnium isotopes at high spins to find the favored
states with increasing angular momentum within the present
method.

Figure 4 demonstrates the PESs of the (π, α)p(π, α)n =
(+, 0)(+, 0) configuration in 180Hf at I = 0, 14, 28, and
36. Our studies show that the general behavior, as seen in
Fig. 4, is representative of the neutron-rich hafnium isotopes.
In the low-spin region, the collective and multiquasiparticle
(noncollective) prolate minima are favored. With increasing
spin, the noncollective prolate mode becomes energetically
lower than the collective prolate mode so that multiquasi-
particle states with γ = −120◦ become yrast. However, at
high spin, a well-deformed oblate rotation minimum appears
which becomes yrast with increasing spin at about I = 36.
The spin at the transition between the noncollective prolate
and collective oblate modes depends on the neutron number
as well as the (π, α)p(π, α)n configuration. This transition
occurs at I ≈ 40 for the (+, 0)(−, 0) configuration in 180Hf
and 182Hf, while it occurs at I ≈ 34 for the (+, 0)(+, 0) con-
figuration in 186Hf. Figure 4 indicates also some local minima
around γ ≈ 0◦. As mentioned, a similar trend is observed in
the PESs of a range of heavy hafnium isotopes (A � 178)
with increasing spin. The present calculations show that the
oblate, or approximately oblate, rotational mode at γ ≈ −60◦
gradually appears with increasing spin and competes strongly
with the noncollective prolate states, becoming yrast at higher
spins, I = 30−40. The observed shape evolution and transi-
tion from collective to noncollective modes agree with the
findings in Ref. [15], where the favored states are investigated
with increasing rotational frequency in 182,186Hf. A different
trend is revealed in the lighter isotopes, such as 168Hf, where
prolate rotation with ε2 ≈ 0.23 at low and medium spins
becomes triaxial with increasing spin, as seen in Fig. 5 of
Ref. [29].

We note that, for prolate shapes in the neutron-rich hafnium
isotopes, both proton and neutron Fermi surfaces are close to
high-�, high- j orbitals, favoring deformation-aligned high-K
isomers (γ = −120◦), whereas for oblate shapes both Fermi
surfaces are amongst low-�, high- j orbitals, so that angular
momentum can be efficiently generated by rotational align-
ment with the oblate shape (γ = −60◦). It is these two modes
that compete for yrast status at high spin.

In the CNSB method, it is possible to limit the minimiza-
tion around selected deformations. In such a way, we have
investigated the prolate-oblate competition in the hafnium
isotopes with A = 178–188 to see how these modes compete
over a wide range of spin. The energies of yrast and near-yrast
states for the prolate collective, prolate noncollective, and
oblate collective modes are plotted for the 178−188Hf isotopes
in Fig. 5, shown by the black, red, and blue lines, respec-
tively, for spins I = 0 − 40. Yrast status was found for all
(π, α)p(π, α)n configurations, as a function of spin. Note that
Fig. 4 is drawn for only one (π, α) configuration, hence, one
can expect to see differences between this figure and Fig. 5.
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FIG. 4. Calculated CNSB potential-energy surfaces versus quadrupole deformation ε2 and the triaxiality parameter γ of 180Hf with
(π, α) = (+, 0) for spins I = 0, 14, 28, and 36. Contour lines are separated by 0.25 MeV and the γ plane is marked at 15◦ intervals. Dark
regions represent low energy with absolute minima shown as dots.

As seen in Fig. 5, in all illustrated hafnium isotopes, the yrast
states are prolate collective at low spin, and multiquasiparticle
prolate noncollective at intermediate spin. The oblate collec-
tive structure competes strongly with the prolate noncollective
structure at high spins. For example, in 186Hf at I = 38 the
prolate noncollective yrast state is lower energetically than the
oblate-collective state by only about 0.02 MeV. We note that,
in 180Hf, experimental evidence was found for the oblate col-
lective mode becoming energetically favored over the prolate
collective mode at Iπ = 20+ [41].

In Fig. 5, we have also drawn the energy of the ground-state
bands (GSB) and the isomer states relative to the rotating
liquid drop energy for the available isotopes. It is seen that the
experimental GSB and isomer states compare well with the
collective (γ = 0◦) and the noncollective (γ = 120◦) prolate
states, respectively, as explained in Secs. III and IV. Note
that the present formalism is based on principal axis crank-
ing where the total spin is counted along the rotation axis.
Therefore, comparing the CNSB yrast lines with the rotational
bands built on the high-K isomers can be doubtful, and instead
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the calculation may be done within a tilted axis cranking
(TAC) model [45].

VI. SUMMARY

We have interpreted the isomer structures in even-even
hafnium isotopes with A = 178–186 based on the unpaired
CNS and the paired CNSB formalisms. The calculated
excitation energies as well as the configurations of the
isomers have been compared with the experimental find-
ings and also the TRS model, and good agreements are
observed.

The calculations reveal that the collective prolate and non-
collective prolate states are favored at low and medium spins,
respectively, in hafnium isotopes. At I � 35, collective oblate
rotation leads to a deep potential minimum, and it strongly
competes with the noncollective prolate states to become
yrast.

The present study is the first attempt to describe the struc-
ture of multiquasiparticle isomers using the CNS and CNSB
methods. Our results show that the present method can be
employed successfully to analyze the experimental findings,
opening the way to further investigation of this neutron-rich
region of high-spin, long-lived isomers.
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