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We address the connection between the saturating behavior of infinite nuclear matter and the description of
finite nuclei based on state-of-the-art chiral two- and three-nucleon forces. We observe that chiral two- and
three-nucleon interactions (at N2LO and at N3LO), which have been found to predict realistic binding energies
and radii for a wide range of finite nuclei (from p-shell nuclei up to nickel isotopes) are unable to saturate infinite
nuclear matter. On the other hand, it has been shown that, when the fits of the cD and cE couplings of the chiral
three-nucleon interactions include the constraint of nuclear matter saturation in addition to, as is typically the
case, the triton binding energy, medium-mass nuclei are underbound and their radii are systematically too large.
We discuss this apparent inconsistency and perform test calculations for various scenarios to shed light on the
issue.
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I. INTRODUCTION

Understanding the interaction of hadrons in nuclei is one
of the most fundamental problems in nuclear physics. Our
present knowledge of the nuclear force in vacuum is still
incomplete, although decades of efforts have been devoted to
this problem. The study of nuclear forces in many-body sys-
tems is even more challenging because additional aspects are
involved beyond those that can be constrained by free-space
nucleon-nucleon (NN) scattering. Predictive power with re-
spect to the properties of nuclei is the true test for a successful
microscopic theory.

Traditionally, the system known as infinite nuclear matter
has been considered to be the test bench for nuclear many-
body theories. Nuclear matter is defined as an infinite system
of nucleons interacting via nuclear forces in the absence of
electromagnetic interactions. Nuclear matter is characterized
by its equation of state (EoS), namely the energy per particle
as a function of density (and other quantities as appropri-
ate, such as isospin asymmetry). The idealized nature of
this system, which implies translational invariance, simplifies
theoretical calculations. Furthermore, via the local density
approximation (LDA), one can utilize the EoS directly in
calculations of actual nuclei. (We recall that LDA amounts to
the assumption that the properties at a point in a nucleus with
density ρ are the same as they are in infinite nuclear matter of
the same density.)

As nuclear matter is the result of an extrapolation from
finite nuclei, the saturation properties of symmetric nuclear
matter (SNM), that is, the minimum of the EoS at the appro-
priate equilibrium density, should be naturally related to the
energy and density distributions of nucleons in nuclei. Typ-
ically, the extrapolation from finite nuclei to SNM has been
done with phenomenological density-dependent forces, such

as Skyrme or Gogny forces [1–3]. Applying such forces, it
has been observed that a good phenomenological description
of nuclei extrapolates to a saturation density in nuclear matter
of about 0.16 fm−3 and energy per particle of approximately
−16 MeV.

Alternatively, one may ask the question: what do micro-
scopic approaches predict with regard to such relationship?
It is the main purpose of this paper to address this question
and examine the connection between the EoS of SNM and the
description of finite nuclei for microscopic approaches. We
will consider ab initio calculations, which employ chiral two-
and three-nucleon forces. Also, we will perform approximate
calculations of finite nuclei based on a mass formula apply-
ing an EoS microscopically obtained from chiral interactions.
This will give us the opportunity to explore the aforemen-
tioned connection from another angle. We also note the work
of Ref. [4], where the relationship between nuclear matter and
finite nuclei is investigated using a dispersive optical model
and self-consistent Green’s functions.

Over the past several years, chiral effective field theory
(EFT) has evolved into the most favorable approach for con-
structing nuclear interactions. It provides for a systematic
way to construct nuclear many-body forces, which emerge
on an equal footing [5] with two-body forces, and to as-
sess theoretical uncertainties through an expansion controlled
by an organizational scheme known as power counting [6].
Furthermore, chiral EFT maintains consistency with the un-
derlying fundamental theory of strong interactions, quantum
chromodynamics (QCD), through symmetries and symmetry-
breaking patterns.

This paper is organized as follows. First, we review the
main aspects of our calculations of SNM, which include
chiral three-nucleon forces (3NFs) up to next-to-next-to-next-
to-leading order (N3LO), see Sec. II. In Sec. III, we present
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and discuss results for the EoS and turn to the literature for
ab initio predictions of finite nuclei with similar few-nucleon
forces. In Sec. IV, we explore further the relation between the
saturation of SNM and the properties of some selected nuclei.
Our observations and conclusions are summarized in Sec. V.

II. DESCRIPTION OF THE CALCULATIONS

We perform microscopic calculations of nuclear matter
using the nonperturbative particle-particle ladder approxi-
mation, which generates the leading-order contributions in
the traditional hole-line expansion. We compute the single-
particle spectrum for the intermediate state also in the
particle-particle ladder approximation, keeping only the real
part. For a recent review of our nuclear matter calculations,
see Ref. [7]. The input two-nucleon forces (2NFs) and 3NFs
are described next.

A. Two-nucleon forces

The NN potentials employed in this work are part of a
set that spans five orders in the chiral EFT expansion, from
leading order (LO) to fifth order (N4LO) [8]. For the con-
struction of these potentials, the same power counting scheme
and regularization procedures are applied through all orders,
making this set of interactions more consistent than previous
ones. Another novel and important aspect in the construction
of these new potentials is the fact that the long-range part
of the interaction is fixed by the πN low-energy constants
(LECs) as determined in the recent and very accurate analysis
of Ref. [9]. In fact, for all practical purposes, errors in the
πN LECs are no longer an issue with regard to uncertainty
quantification. Furthermore, at the fifth (and highest) order,
the NN data below pion production threshold are reproduced
with excellent precision (χ2/datum = 1.15).

Iteration of the potential in the Lippmann-Schwinger
equation requires cutting off high-momentum components,
consistent with the fact that chiral perturbation theory
amounts to building a low-momentum expansion. This is ac-
complished through the application of a regulator function for
which the nonlocal form is chosen:

f (p′, p) = exp[−(p′/�)2n − (p/�)2n] , (1)

where p′ ≡ | �p ′| and p ≡ | �p | denote the final and initial nu-
cleon momenta in the two-nucleon center-of-mass system,
respectively. In the present applications, we will consider
values for the cutoff parameter � � 500 MeV. The potentials
are relatively soft as confirmed by the Weinberg eigenvalue
analysis of Ref. [10] and in the context of the perturbative
calculations of infinite matter of Ref. [11].

B. Three-nucleon forces

Three-nucleon forces first appear at the third order of the
chiral expansion (N2LO). At this order, the 3NF consists of
three contributions [12]: the long-range two-pion-exchange
(2PE) graph, the medium-range one-pion exchange (1PE) di-
agram, and a short-range contact term.

For nuclear matter calculations, these 3NFs can be
expressed as density-dependent effective two-nucleon interac-
tions as derived in Refs. [13,14]. They are represented in terms
of the well-known nonrelativistic two-body nuclear force op-
erators and, therefore, can be conveniently incorporated in
the usual NN partial wave formalism and the particle-particle
ladder approximation for computing the EoS.

The effective density-dependent two-nucleon interactions
at N2LO consist of six one-loop topologies. Three of them are
generated from the 2PE graph of the chiral 3NF and depend
on the LECs c1,3,4, which are already present in the 2PE part
of the NN interaction. Two one-loop diagrams are generated
from the 1PE diagram, and depend on the low-energy constant
cD. Finally, there is the one-loop diagram that involves the
3NF contact diagram, with LEC cE .

The complete 3NF beyond N2LO is very complex and was
neglected in nuclear structure studies of the past. However,
in recent years, the 3NF at N3LO has been derived [15,16]
and applied in some nuclear many-body systems [11,17–19].
The contributions to the subleading chiral 3NF include: the
2PE topology, which is the longest-range component of the
subleading 3NF, the two-pion-one-pion exchange topology,
and the ring topology, generated by a circulating pion, which
is absorbed and reemitted from each of the three nucleons.

Direct inclusion of the subleading chiral 3NF is very chal-
lenging for many-body calculations. However, similar to the
leading 3NF, the contributions of the 3NF at N3LO can be
conveniently expressed in the form of density-dependent ef-
fective two-nucleon interactions, as derived in Refs. [20,21]
and implemented in Ref. [22]. Here, we retain all the long-
range components [21].

The in-medium NN potentials corresponding to the short-
range subleading 3NFs have been calculated in Ref. [20],
and include the two-pion-exchange-contact topology and the
relativistic corrections, proportional to 1/M, where M is the
nucleon mass. Both have been shown to be negligible [18,19]
and are therefore left out in this study.

III. RESULTS FOR THE EQUATION OF STATE

With the tools described above, we proceed to calculate the
EoS of SNM. We begin with discussing Fig. 1, where we show
the EoS at N2LO including the 3NF at N2LO (left side), and
the EoS at N3LO including the 3NF at N2LO plus the long-
range 3NF at N3LO (right side). In both the left and the right
frames, for the two top (red) curves, the low-energy constants
(LECs) cE , cD of Ref. [11] are used, see Table I. Those values
were obtained as follows. First, the authors performed fits to
the 3H binding energy, which leads to a relation between cD

and cE . For both values of the cutoff, they found cE couplings
of natural size within a wide range of cD. Following these
trajectories, they then identified acceptable (cD, cE ) pairs from
calculations of nuclear matter, where they obtained the satu-
ration point as a function of cD. The final choices are those
most consistent with both the empirical saturation energy and
density calculated at fourth order of many-body perturbation
theory (MBPT). For more details, see Supplemental Material
cited in Ref. [11]. The same procedures and considerations
were applied both at N2LO and N3LO.
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FIG. 1. Energy per particle in SNM as a function of density. Left: All calculations include the 2NF and the 3NF at N2LO. The top (red)
curves apply the cD, cE from Ref. [11] [case (b)], whereas the bottom (green) curves use the cD, cE from Ref. [23]. Right: same as left side, but
with the 2NF and the 3NF at N3LO. Concerning the values for the cD, cE LECs applied in the 3NF, see Table I.

We find good agreement between our predictions with
� = 450 MeV, which is our standard choice, and the corre-
sponding EoS predictions of Ref. [11], especially considering
that we use a different many-body method [nonperturbative
Brueckner-Hartree-Fock (BHF) instead of MBPT] and we
calculate the 3NF contribution by way of a density-dependent
2NF, see Sec. II B. At saturation, we estimate the differences
to be in the order of 2 and 3% at N3LO and N2LO, respec-
tively. The differences for � = 500 MeV are considerably
larger, which could be attributed, in part, to a less desirable
perturbative behavior for the larger cutoff.

Moving to the green curves of Fig. 1, the scenario is dra-
matically different. Those EoS were obtained with the 3NF
LECs from Ref. [23], which were fitted using 3H and 16O
ground-state energies. In that way, an excellent reproduction

TABLE I. Values of the LECs used for the 3NFs applied in this
work.

Source Chiral order � (MeV) cD cE

Ref. [11] N2LO 450 (a) 2.25 0.07
(b) 2.50 0.1
(c) 2.75 0.13

500 (a) −1.75 −0.64
(b) −1.50 −0.61
(c) −1.25 −0.59

N3LO 450 0.0 −1.32
0.25 −1.28
0.50 −1.25

500 −3.00 −2.22
−2.75 −2.19
−2.50 −2.15

Ref. [23] N2LO 450 10.0 0.909
500 5.0 −0.159

N3LO 450 9.0 −0.152
500 4.0 −1.492

of both experimental energies and radii from p-shell nuclei
up to the nickel isotopes was achieved. However, the EoS we
obtain with those couplings are clearly overly attractive and
show no sign of saturation. On the other hand, the interactions
constructed in Ref. [11], corresponding to the red curves in
both frames of Fig. 1, lead to underbound ground-state ener-
gies for finite nuclei and radii, which are systematically too
large [24].

In Fig. 2, we present in more detail the calculations of
Ref. [11] at N2LO. We compare the EoS at N2LO using, for
each cutoff, all three different (cD, cE ) combinations found in
Ref. [11] (cf. Table I). Case (c) of � = 450 MeV displays the
best saturating behavior.

FIG. 2. Energy per particle in SNM as a function of density at
N2LO for � = 450 MeV and � = 500 MeV. See Table I for the
various values of the cD, cE applied in the 3NF.
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FIG. 3. Energy per particle in SNM as a function of density
demonstrating the individual contributions from the 3NF. All calcu-
lations are performed at N2LO with cutoff equal to 450 MeV. Curve
(1): no 3NF included (i.e., 2NF only); curves (2), (3), (4) include
3NF contributions proportional to c1, c3, and c4, respectively, added
up successively. Curve (5) includes, in addition, the contributions
proportional to cD. All contributions are contained in curve (6) (in-
cluding the cE contribution). For curves (5) and (6), the couplings
(b) from Ref. [11] are used (cf. Table I), whereas for curves (7) and
(8) those from Ref. [23] are adopted.

The above observations constitute the problem we wish
to address in this paper. Constraints from the few-nucleon
system and a relatively light nucleus such as 16O [23] pro-
duce chiral interactions, which are excessively attractive when
applied in nuclear matter. On the other hand, simultaneous
constraints from both the few-nucleon system and the SNM
saturation point produce underbound medium-mass nuclei
and an EoS that is mostly on the repulsive side. If the triton
binding energy constraint is removed, changes in the 3NF
couplings (especially the short-range one) allowed an im-
proved description of medium-mass nuclei while substantially
overbinding the triton [24].

It appears that the 3NF behaves very differently in infinite
matter as compared to finite nuclei. Note that this puzzling
scenario is independent of whether the 3NF is applied in the
form of a density-dependent effective two-body potentials as
we do, or in MBPT as done by Drischler et al. [11].

The large sensitivity of the cD, cE LECs to the sys-
tems/properties used to constrain their values, apparent from
Table I, is just another way to state the same puzzle. In an
effort to shed more light on this interesting question, we cal-
culate the EoS for the individual 3NF contributions, shown in
Fig. 3. Since the problem we are discussing is apparently inde-
pendent of whether the calculations are conducted at third or
fourth order of the chiral expansion or the value of the cutoff,
we choose N2LO with � = 450 MeV as our demonstration
case.

In Fig. 3, we start from a baseline EoS with only the
2NF, curve (1), and then add 3NF contributions one by one.

FIG. 4. Energy per particle in SNM as a function of density
demonstrating the individual contributions from the 3NF at N2LO
and N3LO. All calculations are performed with cutoff equal to 450
MeV. Solid black: only the 2NF at N3LO is included; solid red: total
3NF at N3LO is included; dashed red: only the N2LO part of the 3NF
at N3LO is included.

Curves (2) to (4) are obtained by including the contributions
proportional to c1 [curve (2)], c1 and c3 [curve (3)], c1, c3,
and c4 [curve (4)]. The curve labeled (5) includes, in addition,
the contributions proportional to cD, while curve (6) contains
all 3NF contributions at N2LO (i.e., also the cE contribution).
Contributions are added up successively. For (5) and (6), the
values for (cD, cE ) are those of Ref. [11] [case (b)]. The
curves labeled (7) and (8) are obtained with the (cD, cE ) 3NF
couplings used in Ref. [23] (solid green curve in Fig. 1, left
side).

From Fig. 3, we see that the term proportional to c1 is small
and repulsive, and that the c3 contribution provides a hint of
saturation. The c4 term is instrumental for saturation, while
both cD and cE add attraction.

The figure also confirms that the large value of cD applied
for curve (7) is responsible for the nonsaturating behavior. As
both sets of 3NF couplings applied in curves (5) and (6) vs. (7)
and (8) are consistent with the triton binding energy, one may
conclude that cD has a much larger impact in nuclear matter
than in the three-nucleon system, confirming the observation
in Ref. [24].

Before closing this section, we wish to identify the contri-
bution from the N3LO portion of the 3NF at N3LO, see Fig. 4.
In this figure, the solid black curve is the result when only
the 2NF at N3LO (with cutoff equal to 450 MeV) is applied.
The solid red curve includes the entire N3LO 3NF, while the
red dashed curve includes only the N2LO part of the N3LO
3NF. Thus, the difference between the red dashed and the red
solid curves represents the N3LO portion of the 3NF, which is
moderately attractive. Note that the N3LO contribution to the
3NF is parameter free [15,21] and, therefore, this is a general
result. It is consistent with the findings of Ref. [19].
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TABLE II. Energy per nucleon and charge radii for selected nuclei. The last two columns show experimental values for the energy per
nucleon and the charge radius. Calculations are performed at N2LO. See text for details.

Nucleus � (MeV) (cD, cE ) E/A (MeV) rch (fm) E/A (expt.) rch (expt.)

16O 450 (a) −6.8315 2.8897 −7.98 2.73
(b) −6.9196 2.8767
(c) −7.0125 2.8635

40Ca 450 (a) −7.6019 3.5736 −8.55 3.49
(b) −7.7277 3.5537
(c) −7.8610 3.5330

48Ca 450 (a) −7.7565 3.6343 −8.67 3.48
(b) −7.8844 3.6142
(c) −8.0197 3.5930

208Pb 450 (a) −6.8680 5.5842 −7.87 5.50
(b) −7.0254 5.5430
(c) −7.1930 5.5005

IV. ELUCIDATING THE CONNECTION BETWEEN
NUCLEAR MATTER AND FINITE NUCLEI

In the previous section, we have confirmed that, when
cD, cE are determined through the ground-state energy of a
nucleus such as 16O, the resulting values produce way too
much attraction in saturated SNM, a system with density
approximately equal to 0.16 fm−3. Vice versa, values con-
strained by the saturation properties of SNM underbind 16O.
This mismatch [23], while not understood, may be seen as an
indication that the chiral 3NF operates differently for systems
with different densities or density distributions.

An intuitive picture, established in nuclear physics since
decades, describes a nucleus in terms of a mass formula,
whose extrapolation to an infinite electrically neutral system is
known as nuclear matter. Although simple, this model should
not be fundamentally wrong, especially for bulk properties
such as energies and r.m.s. radii, namely averaged values
rather than quantum structures.

In the following, we will perform some pedagogical
demonstrations using a density functional inspired by a mass
formula. We write the energy of a nucleus as

E (Z, A) =
∫

d3r ρ(r) e(ρ(r), α(r))

+
∫

d3r f0 |∇ρ(r)|2 + EC, (2)

where the second term represents a phenomenological de-
scription of surface effects, and the Coulomb contribution, EC ,
is given by

EC = e2

ε0

∫ ∞

0
dr′

(
r′ρp(r′)

∫ r′

0
d3r ρp(r)

)
. (3)

The parameter f0 is a fitted constant for which we use a
value of 65 MeV fm5, consistent with the range determined
in Ref. [25].

We use the two-parameter Thomas-Fermi distribution
function to describe the nucleon density:

ρ(r) = ρa

1 + e(r−rb)/c
. (4)

The radius rb and the diffuseness c are themselves evaluated
through minimization of the energy per nucleon, Eq. (2),
while ρa is a normalization constant. In Eq. (2), e(ρ(r), α(r))
is the energy per particle in isospin asymmetric matter at some
density ρ = ρn + ρp (in terms of neutron and proton densi-
ties) and isospin asymmetry α = ρn−ρp

ρ
. The main contribution

in Eq. (2) is of course the energy per particle in asymmetric
matter, for which we use the expansion quadratic in α:

e(ρ, α) ≈ e0(ρ) + esym(ρ) α2, (5)

where e0(ρ) = e(ρ, α = 0), that is, the SNM EoS (E/A in our
figures). As the EoS is a direct input of the functional, we hope
to obtain some insight into the degree to which the energy per
nucleon in a nucleus is sensitive to the energy per particle in
specific density regions.

Table II shows the energy per nucleon and the charge radius
for 16O and 40Ca, which we obtain using in Eq. (2) the various
EoS shown in Fig. 2, along with experimental values. First,
we note that our simple intuitive method provides reason-
able results, which are consistent with those from Ref. [24],
namely the nuclei are underbound. In Fig. 5, we show the
Thomas-Fermi distributions we obtain for some of the cases
of Table II, which indicates considerably lower central density
in 16O as compared to 40Ca.

As apparent from the EoS discussion, the value of cD

obtained with constraints from 16O [23] has the effect of
lowering the EoS at all densities, as seen from the green
curves in Fig. 1 [as well as curve (7) of Fig. 3], obviously
preventing a proper saturating behavior. This suggests that the
ideal combination of the cD, cE -dependent 3NFs should allow
for sufficient attraction at densities below saturation, while
still enabling saturation.

As a demonstration, we take (from Fig. 2) the EoS, which
has a saturating behavior closest to the empirical one, [namely
450(c)]. We then apply ad hoc modifications in the density
region just below saturation, leaving the regions at or above
saturation essentially untouched, until the energy/particle in
16O shows sufficient binding. The corresponding EoS and
results for 16O and 40Ca are shown in Fig. 6 and Table III,
respectively.
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FIG. 5. Total matter density distributions as a function of the radial coordinate. Left: ρ(r) for 16O obtained as explained in the text, at
N2LO, with � = 450 MeV and the three (cD, cE ) combinations indicated as (a), (b), and (c) in Table II. Right: same as left, but for 40Ca.

The 16O constraint requires more attraction at the lower
densities, which is probably why cD, cE values corresponding
to the green curves in Fig. 1 give good results for binding en-
ergies and radii. However, those same values do dramatically
lower the EoS of nuclear matter at higher densities.

We note that, although the binding energy increases, radii
become larger. This can be understood as follows: as the
binding energy per nucleon increases at the lower (rather than
central) densities, the energy minimization (or binding energy
maximization) process that we use allows more nucleons to
reside outwards, thus enhancing the radius. One must keep in
mind that the red curve in Fig. 6 is just one ad hoc EoS. An
EoS obtained with realistic forces and a cD, cE combination
consistent with three-nucleon system and nuclear matter con-
straints might alleviate this problem.

The question is then whether one can simulate the red curve
in Fig. 6 with combinations of realistic 2NFs and 3NFs. One
way might be to employ a very soft 2NF and combine it with
a repulsive 3NF.

FIG. 6. Black curve: EoS 450 (c) of Fig. 2. Red: ad hoc modifi-
cations below saturation density as described in the text.

In this context, it is interesting to consider the low-
momentum interactions presented in Ref. [26], based on chiral
2NF and 3NF. Starting from the N3LO 2NF of Ref. [27],
the authors perform SRG evolution to obtain a (very soft)
low-momentum 2NF, which is then supplemented by a 3NF
fit to the triton binding energy and the point proton radius
of 4He. We focus here on the interaction that is denoted by
1.8/2.0 (EM) in Ref. [26]. Predictions for finite nuclei are
found in Refs. [28,29] and show that the ground-state energies
of closed-shell nuclei are well reproduced all the way up to
nickel and even the tin isotopes. However, SRG evolution im-
plies induced 3NFs, which are not included in the interactions
of Ref. [26]. Thus, this case has some inconsistencies, but
might point to the direction of what the 2NF should look like.

So the issue seems to be whether there are (soft) realistic,
bare (not SRG evolved) 2NFs that have similar properties as
the 2NF of the 1.8/2.0 (EM) interaction of Ref. [26]. For this
purpose, we display in Fig. 7 the EoS predicted by the 2NF
and 2NF + 3NF of the 1.8/2.0 (EM) interaction. In addition,
we show in that figure the nuclear matter predictions for the
softest 2NFs constructed by the authors of Ref. [8] at orders
N2LO to N4LO with � = 400 MeV. As can be seen in Fig. 7,
none of these 2NFs are able to generate the attraction in the
2NF of the 1.8/2.0 (EM) interaction of Ref. [26].

In Ref. [30], chiral nuclear interactions with explicit
�(1232) degrees of freedom have been constructed at N2LO.
The authors conclude that refined �-full interactions have the
potential to alleviate the nuclear binding energies vs. nuclear
matter saturation problem also at higher chiral orders. On

TABLE III. Energy per nucleon and charge radii for 16O and 40Ca
obtained with modifications of the EoS as demonstrated in Fig. 6 by
the red curve.

E/A rch E/A rch

Nucleus (MeV) (fm) (expt.) (expt.)

16O −7.99 3.03 −7.98 2.73
40Ca −8.51 3.64 −8.55 3.49
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FIG. 7. The EoS from Ref. [26] for the 1.8/2.0 (EM) interaction
for 2NF only (dash-dot green) and for 2NF + 3NF (dashed green).
Furthermore, we show the EoS obtained from the softest (unpub-
lished) 2NFs from the authors of Ref. [8] at third to fifth order and
with � = 400 MeV.

the other hand, while predictions for the radii are satisfac-
tory, binding energies are still underestimated, cf. Table V of
Ref. [30]. Also, from Fig. 7 of Ref. [30], SNM is underbound.

V. CONCLUSIONS AND OUTLOOK

We performed BHF calculations of the nuclear matter EoS
with 2N + 3N chiral interactions for which ab initio predic-
tions of finite nuclei have been reported. We performed the
calculations both at N2LO and at N3LO, and cutoffs of 450
and 500 MeV.

Large differences exist among the values of cD, cE fitted
through different systems/observables. However, simultane-
ously optimal cD, cE (especially cD) for few-nucleon systems,
medium-mass nuclei, and nuclear matter have so far not been
found. It has been the purpose of this paper to shed light on
this apparently inherent incompatibility. For this purpose, we
investigated the impact on the EoS of the individual contribu-
tions of the leading 3NF and confirmed that the contribution
proportional to cD is the problematic one. Further, we deter-
mine that the N3LO part of the long-range 3NF is attractive, a
result that is parameter independent.

In an effort to gain additional insight on the connection
between SNM and nuclei in relation to the fitted values of
cD, cE , we proceeded to calculations of finite nuclei using a

mass formula. This simple method, fed directly by the EoS,
allowed us to explore the sensitivity of nuclear energies to
specific density regions, addressing the question of which
densities are mostly probed within a given nucleus.

From these model calculations, we learned that we need
a combination of 2NFs plus 3NFs, which allow for sufficient
attraction at the lower densities (ρ ≈ 0.07–0.12 fm−3) while
still enabling saturation. To achieve this, we can think of two
possible scenarios.

Scenario 1. The 2NF is extremely soft and then combined
with a repulsive, strongly density-dependent 3NF contribu-
tion. This scenario has been realized by the 1.8/2.0 (EM)
force of Ref. [26] and is the reason for the success of this
force. However, as discussed, there are inconsistencies asso-
ciated with this force and, thus, it does not represent a true
solution of the problem. What is needed is a bare 2NF of
extremely soft character that has so far not been constructed,
in spite of vigorous attempts. The degree of softness should
be such that the resulting EoS has a trend comparable to the
red curve in Fig. 6. The authors of Ref. [8] have tried to
accomplish this by lowering the cutoff to 400 MeV and using
nonlocal cutoffs, but were not successful (cf. Fig. 7).

Scenario 2. A 2NF of semisoft character is combined with a
3NF, which is attractive at lower densities but repulsive around
and above saturation. Since the c1,3,4 parameters are fixed
from πN scattering, the only free parameters to construct such
a 3NF are cD and cE . As demonstrated in Fig. 3, for positive
values of these parameters, their contributions are attractive in
SNM. The cD contribution is particularly unfortunate because,
while it is repulsive in the triton [19] and slightly repulsive in
SNM at low density, it is very attractive at the higher densities.
Therefore, if this contribution is employed to reduce overbind-
ing in the triton, it leads to a disaster in SNM, as demonstrated
in Fig. 3. However, as it turns out, for negative values of
cD, this contribution is also attractive in SNM and increases
strongly with density. This implies that the cD contribution
brings in large off-shell effects. In any case, because of the
peculiar nature of the cD-dependent 3NF, it is recommended to
keep its parameter small. On the other hand, the cE parameter
acts more regularly, with positive values leading to attraction
and negative values causing repulsion, both in the triton and
in SNM of any density. There are no off-shell distortions
associated with the cE contribution.
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