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The two-fermion two-time correlation function in the pairing channel is discussed within the equation of
motion framework. Starting from the bare two-fermion interaction, we derive the equation of motion for the
two-fermion pair propagator in a strongly correlated medium. The resulting equation is of the Dyson type with
the kernel having static and one-frequency dependent components and, thus, can be regarded as a Dyson Bethe-
Salpeter equation (Dyson-BSE). The many-body hierarchy generated by the dynamical interaction kernel is
truncated on the level of two-body correlation functions, thus neglecting the explicit three-body and higher-
rank correlations. The truncation is performed via a cluster expansion of the intermediate three-particle-one-
hole correlation function irreducible in the particle-particle channel, that leads to the coupling between single
fermions and emergent bosonic quasibound states (phonons). The latter couplings are, thus, derived in terms
of the exact mapping of the in-medium two-fermion correlation functions onto the domain of phonons without
introducing new parameters. The approach is applied to calculations of the pairing gaps in medium-mass nuclear
systems, that include calcium, nickel and tin isotopic chains.
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I. INTRODUCTION

Theoretical description of strongly interacting many-body
systems remains one of the most difficult areas of physical
sciences and, despite the many years of effort, still requires
more elaborate modeling. An accurate treatment of many-
body correlations is the key to unraveling the mechanisms of
emergent phenomena in strongly coupled systems at various
scales of physics; however, it is very difficult in the nonpertur-
bative regimes.

Atomic nuclei are among the systems, where not only the
many-body correlations are extremely difficult to treat in an
accurate and systematic way, but even the underlying nucleon-
nucleon forces are not known precisely. Being rooted in
quantum chromodynamics (QCD) on the fundamental level,
the nucleon-nucleon interaction still can not be consistently
derived from QCD in the form of potentials. The latter can
be, instead, modeled by the meson-nucleon dynamics and
parametrized by scattering data [1,2]. However, the use of
such potentials in the standard many-body frameworks does
not yet lead to an accurate description of nuclear phenomena.
Thus, both the nucleon-nucleon interactions and the strongly
coupled many-body models require further refinement.

One of the most interesting problems is the understanding
and predictive description of phenomena related to nuclear
superfluidity. It was noticed shortly after the appearance of the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity [3] that atomic nuclei behave in some respects similarly to
superconducting metals [4]. Indeed, the reduction of nuclear

moments of inertia, compared to the case of rigid rotation,
the odd-even mass differences, low-lying vibrational states,
nuclear shapes and level densities can only be reproduced
under the assumption of the presence of an interaction acting
between particles with equal and opposite momenta (super-
fluid pairing, or pairing). Thus, over decades the BCS and
the more general Bogoliubov’s theory are widely used for the
description of open-shell nuclei [5–7].

It has become clear quite early that the underlying mecha-
nism of nuclear pairing can be more complex than it is implied
in the BCS and Bogoliubov’s approaches. For instance, the
coupling between the single-particle and emergent degrees
of freedom (phonons), which plays a significant role in the
formation of the nuclear ground and excited states [8–14],
may also affect nuclear pairing. This idea was investigated
in various phenomenological frameworks [15–20] that con-
cluded, in particular, that coupling between nucleons and
collective surface vibrations (particle-vibration coupling, or
PVC) can be responsible for a large fraction of the nuclear
pairing. The PVC effects are widely known to be of prime
importance in electronic condensed matter systems, where
they can even reverse the sign of the repulsive Coulomb
interaction to give rise to superconductivity [21,22].

The common deficiency of the state-of-the-art approaches
to nuclear structure, which may also affect the current under-
standing of nuclear superfluidity, is that they tend to com-
bining different techniques for approaching the static and
dynamical parts of the in-medium interaction. This, however,
may lead to uncontrollable inconsistencies, double counting
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and missing effects, especially those of collective charac-
ter. Indeed, the exact equations of motion (EOM) for the
many-body fermionic correlation functions, which are known
across the many areas of quantum physics from condensed
matter to quantum chemistry [23–26], show that the static
and dynamical kernels of these equations are derivable within
the EOM framework on equal grounds from the same un-
derlying bare interaction. A consistent treatment of both
kernels in a unified framework is, therefore, necessary for
reproducing the collective emergent phenomena from first
principles. This has been justified to be a feasible while
yet a highly accurate approach, if the infinite EOM hier-
archies are truncated by cluster expansions of the dynami-
cal kernels in terms of the many-body correlation functions
corresponding to the relevant degrees of freedom [26,27].
For instance, in the low- and intermediate-energy regimes
of nuclear physics truncations on the level of two-body or
three-body correlation functions should be sufficient for a
highly accurate approach applicable to a wide range of nuclear
phenomena.

The model-independent EOM method [27–31] was shown
to produce a hierarchy of approximations to the dynamical
kernels of the equations for one-fermion and two-time two-
fermion propagators. As we discussed in our recent study
of Ref. [32], the nonperturbative versions of those kernels,
approximated by cluster expansions in terms of the single-
particle, particle-hole, and particle-particle correlation func-
tions, can be mapped to the kernels of the phenomenological
nuclear field theories (NFT) [9–13,33,34] and quasiparticle-
phonon models (QPM) [14,35–37]. This mapping provides
an understanding of the emergent collective phenomena and
a microscopic foundation for the effective Hamiltonians used
in these models, connecting the bare nucleon-nucleon inter-
action and its modification in the strongly coupled medium.
Moreover, such insights allow for considerable extensions of
this type of theories to more complex correlations, which
are necessary for achieving spectroscopic accuracy in the
description of atomic nuclei in a wide energy range.

In Ref. [32] such an extension was presented and im-
plemented numerically on the base of the covariant density
functional theory, thus advancing the previously developed
relativistic version of the NFT [38–43]. Although the latter
demonstrated a noticeable progress in implementing the PVC
models within the covariant self-consistent framework and
described satisfactorily some low-energy nuclear phenom-
ena [44–48], it was still lacking the spectroscopic accuracy
because of the absence of more complex correlations than
those included in the conventional NFT. In Ref. [32] we have
shown, in particular, that the higher-order correlations beyond
the two-quasiparticle-plus-phonon (2q ⊗ phonon) ones, for
instance, 2q ⊗ 2phonon configurations can introduce some
further improvements in the description of the nuclear spectra
at both low and high energies. Other types of correlations,
which are rarely addressed in the literature on the NFT and
other PVC models, such as the PVC-induced ground-state
correlations [33,49–51] and the coupling to charge-exchange
phonons [52,53] were also shown to be important for spectro-
scopically accurate theories. Recent finite-temperature exten-
sions can be found in Refs. [54–57].

In this article we continue to elaborate on the EOM method
for fermionic correlation functions and its connections to the
phenomenological NFT’s. While Ref. [32] was focused on the
single-particle and two-time particle-hole fermionic propaga-
tors, here we discuss the two-time two-fermion propagator
and the associated pairing gap equation. Some of the closely
related ideas on the theory of correlated fermion pairs and
ab-initio particle-vibration coupling approach were discussed
recently in Ref. [58]. The formalism starts along the lines of
Refs. [31,58] and then advances to nonperturbative approxi-
mations for the dynamical interaction kernel. In the theoretical
sections we discuss fermionic Hamiltonians with unspecified
interactions, while the equations of motion are confined by the
two-body interactions. The theory can be naturally extended
to multiparticle forces and bosonic degrees of freedom.

II. FERMIONIC PROPAGATORS IN A
CORRELATED MEDIUM

The formalism of correlation functions, such as the Green
functions, or propagators, is one of the most convenient and
powerful ones in the description of phenomena that occur in
strongly coupled media. The propagators are directly related
to observed excitation spectra and ground-state properties of
the many-body systems.

The single-fermion propagator is commonly defined as

G(1, 1′) ≡ G11′ (t − t ′) = −i〈T ψ (1)ψ†(1′)〉, (1)

where T is the operator of the chronological ordering and
ψ (1), ψ†(1) are the one-fermion fields in the Heisenberg
picture:

ψ (1) = eiHt1ψ1e−iHt1 , ψ†(1) = eiHt1ψ†
1e−iHt1 , (2)

while the subscript “1” stands for the full set of the single-
particle quantum numbers in a given representation. In the
present work the fermionic degrees of freedom are associated
with nucleons which compose a many-nucleon system. The
averaging in Eq. (1) and in the following is performed over
the formally exact correlated ground state, while the time
evolution is determined by the many-body Hamiltonian

H = H (1) + V (2) + W (3) + ... (3)

Here the operator H (1) is the one-body contribution to the
Hamiltonian:

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑
12

v
(MF )
12 ψ

†
1 ψ2 ≡

∑
12

h12ψ
†
1 ψ2, (4)

with the matrix elements h12 which, in general, combine
the kinetic energy t and the mean-field v(MF) part of the
interaction. The operator V (2) describes the two-body sector
associated with the two-fermion interaction

V (2) = 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3, (5)

and the operator W (3) generates the three-body forces

W (3) = 1

36

∑
123456

w̄123456ψ
†

1ψ
†

2ψ
†

3ψ6ψ5ψ4, (6)
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with the antisymmetrized matrix elements v̄1234 and w̄123456,
respectively. The ellipsis in Eq. (3) stands for further multipar-
ticle forces which can be, in principle, included in the theory.
We will make an explicit derivation of the equations of motion
assuming that the Hamiltonian is confined by the two-body
interaction; however, the theory can be naturally extended to
multiparticle forces.

We will work in the basis, which diagonalizes the one-
body (also named single-particle or mean-field) part of the
Hamiltonian Eq. (4): h12 = δ12ε1. We will see, however, that
on the way to the final equations of motion this basis should
be redefined as soon as the one-body part of the Hamiltonian
absorbs additional contributions from the two-body sector.

The fermionic field operators satisfy the anticommutation
relations:

[ψ1, ψ
†

1′ ]+ ≡ ψ1ψ
†

1′ + ψ†
1′ψ1 = δ11′ ,

[ψ1, ψ1′ ]+ = [
ψ†

1, ψ
†

1′
]
+ = 0. (7)

The Fourier transform of the single-particle propagator
Eq. (1), which depends explicitly on the time difference τ =
t − t ′, is known as the spectral (Lehmann) representation:

G11′ (ε) =
∑

n

ηn
1η

n∗
1′

ε − ε+
n + iδ

+
∑

m

χm
1 χm∗

1′

ε + ε−
m − iδ

, (8)

with the poles ε+
n = E (N+1)

n − E (N )
0 and −ε−

m = −(E (N−1)
m −

E (N )
0 ) at the energies of the states in (N + 1)- and (N − 1)-

particle systems related to the ground state of the initial
(reference) N-particle system. The residues of Eq. (8) are,
in turn, composed of matrix elements of the field operators
between the ground state |0(N )〉 of the N-particle system and
the states |n(N+1)〉 and |m(N−1)〉 of the (N + 1)- and (N − 1)-
particle systems, respectively:

ηn
1 = 〈0(N )|ψ1|n(N+1)〉, χm

1 = 〈m(N−1)|ψ1|0(N )〉. (9)

These matrix elements represent the weights of the given
single-particle (single-hole) configuration on top of the
ground state |0(N )〉 in the formally exact nth (mth) state of
the systems with (N + 1) and (N − 1) particles. The residues
correspond to the observed occupation probabilities of the
corresponding states and related to the spectroscopic factors.

In analogy to Eq. (1) the two-fermion, three-fermion, and,
in general, n-fermion propagators are defined as follows:

G(12, 1′2′) = (−i)2〈T ψ (1)ψ (2)ψ†(2′)ψ†(1′)〉,(10)

G(123, 1′2′3′) = (−i)3〈T ψ (1)ψ (2)ψ (3)ψ†

× (3′)ψ†(2′)ψ†(1′)〉,
G(12...n, 1′2′...n′) = (−i)n〈T ψ (1)ψ (2)...

×ψ (n)ψ†(n′)...ψ†(2′)ψ†(1′)〉. (11)

In this work we will focus on the two-time two-fermion
Green function Eq. (10) with t1 = t2 = t, t1′ = t2′ = t ′, which
depends on the single time difference t − t ′. In this case, with
the help of Eqs. (7), Eq. (10) can be transformed to the energy

(frequency) domain as

iG12,1′2′ (ω) =
∑

μ

α
μ
21α

μ∗
2′1′

ω − ω
(++)
μ + iδ

−
∑
κ

βκ∗
12 βκ

1′2′

ω + ω
(−−)
κ − iδ

,

(12)
where the poles ω(++)

μ = E (N+2)
μ − E (N )

0 and ω(−−)
κ

=
E (N−2)
κ

− E (N )
0 are the formally exact states of the systems

with (N + 2) and (N − 2) particles, respectively, and the
residues are the products of the matrix elements:

α
μ
12 = 〈0(N )|ψ2ψ1|μ(N+2)〉, βκ

12 = 〈0(N )|ψ†
2 ψ

†
1 |κ(N−2)〉.

(13)
As they connect the states of the (N + 2)- and (N − 2)-
particle systems to the ground state of the initial N-particle
system, the two-body propagator of Eq. (12) describes the
response to the probes with pair transfer (addition and re-
moval of two fermions, respectively). For further analysis it
is convenient to include the phase factor “i” into the two-body
propagator, so that here we start to use the modified definition:

G(12, 1′2′) = −i〈T ψ (1)ψ (2)ψ†(2′)ψ†(1′)〉, (14)

i.e., replace iG(12, 1′2′) → G(12, 1′2′).
Earlier in Ref. [32] we have considered the two-time two-

fermion propagator in the particle-hole channel. It was shown,
in particular, that an accurate description of this response
function leads to an EOM with the dynamical kernel, where
the particle-hole (ph) and particle-particle (pp) channels are
coupled. Similarly, we will see below that the EOM for the pp-
channel, which describes the propagator of Eqs. (10) and (12),
will require the knowledge about the particle-hole response
function:

R(12, 1′2′) = −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉, (15)

which also depends on two times as t1 = t2 = t, t1′ = t2′ = t ′
and whose spectral image, or Fourier transform, reads

R12,1′2′ (ω) =
∑
ν>0

[ ρν
21ρ

ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
. (16)

Similar to the ones for the one-fermion and two-fermion prop-
agator Eqs. (8) and (12), it satisfies the general quantum field
theory requirements of locality and unitarity with the residues
composed of the properly normalized matrix elements of the
transition densities:

ρν
12 = 〈0|ψ†

2 ψ1|ν〉. (17)

They describe the weights of the pure particle-hole configura-
tions on top of the ground state |0〉 in the model (ideally, exact)
excited states |ν〉 of the (even-even) N-particle system. The
corresponding poles are the excitation energies of this system
ων = Eν − E0.

Obviously, the spectral representation of the propagators
given by Eqs. (8), (12), and (16) are model independent: they
are valid regardless how the many-body states |n〉, |m〉, |ν〉,
|μ〉, and |κ〉 are modeled. The sums in Eqs. (8), (12), and
(16) run over both the discrete and continual sectors of the
excitation spectra, i.e., formally complete.

Summarizing, because of their simple relations to the key
observables, fermionic propagators are important character-
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istics of strongly coupled many-fermion systems, in particu-
lar, of atomic nuclei. In Ref. [32] we have investigated the
propagators of Eqs. (1) and (15) by generating the equations
of motion for them. In the present work we will focus on
the particle-particle Green function of Eqs. (10) and (12) by
considering its time evolution and investigating its potential
of describing nuclear pairing properties.

III. EQUATION OF MOTION FOR THE TWO-TIME PAIR
CORRELATION FUNCTION

A. The model-independent EOM

The time evolution of the correlation function of a
fermionic pair can be investigated by the differentiation with
respect to the time variable applied to Eq. (14):

∂t G12,1′2′ (t − t ′) = −iδ(t − t ′)〈[ψ1ψ2, ψ
†

2′ψ†
1′ ]〉

+ 〈T [H, ψ1ψ2](t )(ψ†
2′ψ†

1′ )(t ′)〉, (18)

where we defined

[H, A](t ) = eiHt [H, A]e−iHt (19)

for an arbitrary operator A and adopted the notation
G12,1′2′ (t − t ′) = G(12, 1′2′) for the two-time particle-particle
propagator with t1 = t2 = t, t1′ = t2′ = t ′. The commutators
can be computed straightforwardly:

[ψ1ψ2, ψ
†

2′ψ
†
1′ ] = δ22′ψ1ψ

†
1′ − δ11′ψ

†
2′ψ2

− δ12′ψ2ψ
†
1′ + δ21′ψ

†
2′ψ1, (20)

[H, ψ1ψ2] = −(ε1 + ε2)ψ1ψ2 + [V, ψ1ψ2], (21)

so that the first EOM takes the form

(i∂t − ε1 − ε2)G12,1′2′ (t − t ′)

= δ(t − t ′)N121′2′ + i〈T [V, ψ1ψ2](t )(ψ†
2′ψ†

1′ )(t ′)〉, (22)

where we introduced the norm matrix in the pp-channel as the
ground-state average of the commutator of Eq. (20):

N121′2′ = 〈[ψ1ψ2, ψ
†

2′ψ
†
1′ ]〉. (23)

In the basis diagonalizing the one-body density matrix ρi j =
〈ψ†

j ψi〉 = δi jni the norm matrix reads

N121′2′ = δ121′2′ (1 − n1 − n2) = δ121′2′n12, (24)

with the antisymmetrized Kronecker symbol δ121′2′ =
δ11′δ22′ − δ21′δ12′ and n12 = 1 − n1 − n2. The antisym-
metrized Kronecker symbol and the norm matrix satisfy the
obvious relationships, which will be useful in the following
context:

δ121′2′ = −δ211′2′ = −δ122′1′ = δ212′1′ = δ1′2′12,

N121′2′ = −N211′2′ = −N122′1′ = N212′1′ = N1′2′12,

1

2

∑
34

δ1234δ341′2′ = δ121′2′ ,
1

2

∑
34

N1234N−1
341′2′ = δ121′2′ ,

(25)

with the inverse norm defined as

N−1
121′2′ = δ121′2′

1 − n1 − n2
= δ121′2′n−1

12 . (26)

At this stage it is convenient to generate the second EOM.
This can be done by differentiating the last term on the
right-hand side of the first EOM Eq. (22) with respect
to the second time argument t ′. Setting F121′2′ (t − t ′) =
i〈T [V, ψ1ψ2](t )(ψ†

2′ψ†
1′ )(t ′)〉, we come to the following

equation:

(−i∂t ′ − ε1′ − ε2′ )F121′2′ (t − t ′)

= −δ(t − t ′)〈[[V, ψ1ψ2], ψ†
2′ψ

†
1′ ]〉

+ i〈T [V, ψ1ψ2](t )[V, ψ†
2′ψ†

1′](t ′)〉. (27)

The equation for the spectral image of the two-fermion prop-
agator can be then obtained by combining Eqs. (22) and (27)
and subsequent Fourier transformation to the energy domain.
We define the spectral image G12,1′2′ (ω) as

G12,1′2′ (t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ )G12,1′2′ (ω) (28)

and, thus, obtain

G12,1′2′ (ω) = G(0)
12,1′2′ (ω)

+ 1

4

∑
343′4′

G(0)
12,34(ω)T343′4′ (ω)G(0)

3′4′,1′2′ (ω), (29)

with the free pp-propagator introduced as

G(0)
12,1′2′ (ω) = N121′2′

ω − ε1 − ε2
(30)

and the renormalized kernel

T121′2′ (ω) = 1

4

∑
343′4′

N−1
1234

(
T (0)

343′4′ + T (r)
343′4′ (ω)

)N−1
3′4′1′2′ , (31)

where T (0)
343′4′ and T (r)

343′4′ (ω) are the Fourier images of the two
last terms on the right-hand side of Eq. (27), i.e.,

T (0)
121′2′ (t − t ′) = −δ(t − t ′)〈[[V, ψ1ψ2], ψ†

2′ψ†
1′]〉,

T (r)
121′2′ (t − t ′) = i〈T [V, ψ1ψ2](t )[V, ψ†

2′ψ†
1′ ](t ′)〉, (32)

so that we have explicitly isolated the static part T (0) of
the interaction kernel T from its dynamical part T (r). In
full analogy with the case of the particle-hole response [32],
Eq. (29) can be transformed to an equation of the Dyson type

G12,1′2′ (ω) = G(0)
12,1′2′ (ω)

+ 1

4

∑
343′4′

G(0)
12,34(ω)K343′4′ (ω)G3′4′,1′2′ (ω), (33)

by introducing the new kernel K (ω) which can be obtained
from T (ω) by retaining only the terms irreducible with respect
to the uncorrelated pp-propagator Eq. (30):

T121′2′ (ω) = K121′2′ (ω)+1

4

∑
343′4′

K1234(ω)G(0)
34,3′4′ (ω)T3′4′1′2′ (ω)

(34)
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or K (ω) = T (irr)(ω). Obviously, the removal of the reducible
contributions affects only the dynamical part of T . Remark-
ably, as in the case of the particle-hole response, Eq. (33) has
the form of the Dyson equation. Its interaction kernel contains
a static and a one frequency dependent parts, in full analogy
to the Dyson equation for the one-body propagator. In other
words, the Bethe-Salpeter equation for the two-time two-body
Green functions can be regarded as Dyson Bethe-Salpeter
equation (Dyson-BSE) [58].

In the next two subsections we consider the static and
dynamical parts of the kernel T defined in Eq. (32) in the
explicit form.

B. The static kernel

The static part requires evaluating the commutator:

[V, ψ1ψ2] = 1

4

∑
i jkl

v̄i jkl [ψ
†

iψ
†

jψlψk, ψ1ψ2]

= 1

2

∑
i jkl

v̄i jkl (δ1 jψ
†
i ψ2 + δ2 jψ1ψ

†
i )ψlψk

= 1

2

∑
i jkl

v̄i jkl (δ1 jψ
†
i ψ2 + δ2 jδ1i − δ2 jψ

†
i ψ1)ψlψk,

(35)

so that

−T (0)
121′2′ = 〈[[V, ψ1ψ2], ψ†

2′ψ†
1′ ]〉 = 1

2

∑
kl

v̄12klNlk,1′2′

+
〈 ∑

ikl

v̄i1kl (δ2′kψ
†
i ψ2ψlψ

†
1′ + δ1′kψ

†
2′ψ

†
i ψ2ψl

+ 1

2
δ22′ψ

†
i ψlψkψ

†
1′ + 1

2
δ21′ψ

†
2′ψ

†
i ψlψk )

− (1 ↔ 2)

〉
. (36)

By reorganizing the fermionic field operators into the two-
body densities,

ρi jkl = 〈ψ†
k ψ

†
l ψ jψi〉 = ρikρ jl − ρilρ jk + σ

(2)
i jkl , (37)

and introducing the mean-field single-particle energies,

�̃11′ =
∑

l

v̄1l1′l nl , �̃11′ = δ11′�̃1, (38)

Eq. (36) can be written as follows:

T (0)
121′2′ = δ121′2′n12(�̃1 + �̃2) + K (0)

121′2′ , (39)

K (0)
121′2′ = v̄121′2′n12n1′2′

−
[( ∑

il

v̄i12′lσ
(2)
l2i1′ + δ22′

2

∑
ikl

v̄i1klσ
(2)
kli1′

)

− (1′ ↔ 2′)
]

− [1 ↔ 2], (40)

which are consistent with the obvious antisymmetry proper-
ties of the static kernel: T (0)

121′2′ = −T (0)
211′2′ = −T (0)

122′1′ = T (0)
212′1′ .

+=

1’1

2 2 ’

K (0) − AS

v−

2’2

1 1 ’

l i

(2)
v−

2 ’2

1 ’1

1_
2

l

i
k

(2)

+v
1 1 ’

2 ’2

FIG. 1. Diagrammatic form of the static part K (0) of the inter-
action kernel given by Eq. (40). Lines with arrows represent one-
fermion propagators. Rectangular blocks v and v̄ stand for the nonan-
tisymmetrized and antisymmetrized bare two-fermion interaction
and those marked with σ (2), together with the attached long fermionic
lines, for the fully correlated part of the two-body density. The
abbreviation “AS” denotes antisymmetrizations implied in Eq. (40).
The cross stands for the Kronecker delta symbol δ22′ . Phases in front
of each diagram are omitted.

The first term on the right-hand side of Eq. (39) contains the
mean-field single-particle energies which can be absorbed in
the uncorrelated propagator, so that

G12,1′2′ (ω) = G̃(0)
12,1′2′ (ω)

+ 1

4

∑
343′4′

G̃(0)
12,34(ω)K343′4′ (ω)G3′4′,1′2′ (ω), (41)

where

G̃(0)
12,1′2′ (ω) = N121′2′

ω − ε̃1 − ε̃2
, ε̃1 = ε1 + �̃1, (42)

and the kernel K does not contain the mean-field term in
its static part while the dynamical part remains unchanged:
K = N−1(K (0) + K (r) )N−1. The obtained static part of the in-
teraction kernel K (0)

121′2′ is shown in Fig. 1 in the diagrammatic
representation. The form of Eq. (40) for the static kernel is
consistent with Ref. [31], where it was derived in a similar
way. As one sees, the static kernel is composed, besides
the bare interaction term, of an instantaneous exchange of
a particle-hole (ph) correlation function between the two
particles (often called screening) and a renormalization of the
single-particle energies by the same ph correlation function.
In applications it is important to treat both contributions on
the same footing, since often quite important cancellations
between the two contributions occur.

In the simplest approximation, the EOM (41) for the
particle-particle propagator can be considered with only the
static part K (0) of the kernel neglecting completely the con-
tribution from K (r). In analogy to the case of the particle-
hole response function, such an approach is equivalent to the
self-consistent particle-particle random phase approximation.
In the description of superfluid systems, both the particle-
hole and particle-particle response functions are coupled in
the framework of the self-consistent quasiparticle random
phase approximation, or SCQRPA, which demonstrates great
success in applications to the two-level pairing model [59].
The part K (r) of the kernel is associated with dynamical
processes induced by the medium, which produce an interplay
of screening and antiscreening effects on the pairing gaps
[60,61].
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C. The dynamical kernel

The dynamical part of the interaction kernel can be calculated with the aid of the commutator:

[V, ψ
†
2′ψ

†
1′ ] = 1

4

∑
i jkl

v̄i jkl [ψ
†

iψ
†

jψlψk, ψ
†
2′ψ

†
1′ ]

= 1

2

∑
i jkl

ψ
†
i ψ

†
j (δk2′ψlψ

†
1′ + δk1′ψ

†
2′ψl )v̄i jkl

= 1

2

∑
i jkl

ψ
†
i ψ

†
j (δk2′δl1′ − δk2′ψ

†
1′ψl + δk1′ψ

†
2′ψl )v̄i jkl , (43)

so that

T (r)
121′2′ (t − t ′) = i

4

∑
i jkl

∑
mnpq

v̄i jkl〈T [(δ1 jψ
†
i ψ2 + δ2 jψ1ψ

†
i )ψlψk](t )[ψ†

mψ†
n (δp2′ψqψ

†
1′ + δp1′ψ

†
2′ψq)](t ′)〉v̄mnpq (44)

or

T (r)
121′2′ (t − t ′) = i

4

∑
ikl

∑
mnq

[v̄i1kl〈T (ψ†
i ψ2ψlψk )(t )(ψ†

mψ†
n ψ

†
2′ψq)(t ′)〉v̄mn1′q + v̄i1kl〈T (ψ†

i ψ2ψlψk )(t )(ψ†
mψ†

n ψqψ
†
1′ )(t ′)〉v̄mn2′q

+v̄i2kl〈T (ψ1ψ
†
i ψlψk )(t )(ψ†

mψ†
n ψ

†
2′ψq)(t ′)〉v̄mn1′q + v̄i2kl〈T (ψ1ψ

†
i ψlψk )(t )(ψ†

mψ†
n ψqψ

†
1′ )(t ′)〉v̄mn2′q]. (45)

Thus, in complete analogy to the case of the particle-hole response [32], the dynamical kernel of the EOM for the particle-
particle propagator is determined by the irreducible four-fermion correlation functions. The nature of these correlation functions
is, however, different. Namely, each term of Eq. (45) contains a propagator of three particles and one hole (3p − 1h). Therefore,
an approximate cluster expansion truncated on the two-body level should contain all possible products of the particle-particle
and particle-hole correlation functions. For instance, the internal propagator in the first term of Eq. (45) can be factorized as
follows:

G(11)irr
2lkq,2′nmi(t − t ′) = 〈T (ψ†

i ψ2ψlψk )(t )(ψ†
mψ†

n ψ
†
2′ψq)(t ′)〉irr ≈ 〈T (ψ†

i ψ2)(t )(ψ†
2′ψq)(t ′)〉〈T (ψlψk )(t )(ψ†

mψ†
n )(t ′)〉

+〈T (ψ†
i ψk )(t )(ψ†

n ψq)(t ′)〉〈T (ψlψ2)(t )(ψ†
mψ

†
2′ )(t ′)〉 + 〈T (ψ†

i ψl )(t )(ψ†
mψq)(t ′)〉〈T (ψkψ2)(t )(ψ†

n ψ
†
2′ )(t ′)〉

−AS, (46)

if the fully correlated three-body and four-body terms are neglected. Using the definitions Eqs. (14) and (15), the 3p − 1h
propagator of Eq. (46) can be rewritten as

G(11)irr
2lkq,2′nmi(t − t ′) ≈ −Ri2,q2′ (t − t ′)Glk,nm(t − t ′)

− Rik,qn(t − t ′)Gl2,2′m(t − t ′) − Ril,qm(t − t ′)Gk2,2′n(t − t ′) − AS. (47)

The other three 3p − 1h correlation functions can be factorized similarly, so that

G(12)irr
2lkq,1′nmi(t − t ′) ≈ Ri2,qn(t − t ′)Glk,m1′ (t − t ′)

+ Ril,q1′ (t − t ′)Gk2,nm(t − t ′) + Rik,qm(t − t ′)Gl2,n1′ (t − t ′) − AS, (48)

G(21)irr
1lkq,2′nmi(t − t ′) ≈ Ri1,qm(t − t ′)Gkl,n2′ (t − t ′)

+ Rik,q2′ (t − t ′)Gl1,mn(t − t ′) + Ril,qn(t − t ′)G1k,2′m(t − t ′) − AS, (49)

G(22)irr
1lkq,1′nmi(t − t ′) ≈ −Ri1,q1′ (t − t ′)Glk,nm(t − t ′)

−Ril,qm(t − t ′)G1k,n1′ (t − t ′) − Rik,qn(t − t ′)G1l,m1′ (t − t ′) − AS, (50)

with AS being the remaining antisymmetrizations, and the irreducible kernel takes the form:

K (r)
121′2′ (t − t ′) = i

4

∑
ikl

∑
mnq

[v̄i1kl G
(11)irr
2lkq,2′nmi(t − t ′)v̄mn1′q + v̄i1kl G

(12)irr
2lkq,1′nmi(t − t ′)v̄mn2′q

+ v̄i2kl G
(21)irr
1lkq,2′nmi(t − t ′)v̄mn1′q + v̄i2kl G

(22)irr
1lkq,1′nmi(t − t ′)v̄mn2′q]

= K (r;11)
121′2′ (t − t ′) + K (r;12)

121′2′ (t − t ′) + K (r;21)
121′2′ (t − t ′) + K (r;22)

121′2′ (t − t ′). (51)

The cluster expansion of Eq. (46), thereby, shows how the
many-body problem can be truncated on the level of two-body

correlations in the pairing, or particle-particle, channel. The
presence of the particle-hole propagators in the dynamical
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(r;12) v−
v−

2
2 ’

l

i

k

1
1 ’

m

q

n

121’2’ G(12)irr

qiK       =(r;11) v− v−

n

m

2 2 ’

1 1 ’

l

k121’2’ G(11)irr

m

K       =(r;22)
v−v−2 2 ’

1 1 ’
l

i

k

q

n

121’2’ G(22)irr

v−
v−K       =(r;21)

2
2 ’

1
1 ’l

k

m

q

ni121’2’ G(21)irr

FIG. 2. Diagrammatic representation of the dynamical part
K (r)(ω) = T (r)irr(ω) of the interaction kernel. The rectangular blocks
G(ab)irr, together with the long fermionic lines, denote the four-
fermion correlation functions irreducible in the particle-particle
channel. Factor i/4 in front of each diagram is omitted.

kernel of the pair propagator expresses explicitly the coupling
of the particle-hole and particle-particle channels in the many-
body systems. This points to the formulation of the truncated
EOM’s for fermionic correlation functions in a closed form
[26,32,62].

Alternatively to the symmetric form of the dynamical
kernel K (r), which is obvious from Eq. (51) and Fig. 2, it
can be expressed via the three-fermion propagator, if only
the first EOM (22) is generated. More generally, the EOM
for the n-fermion Green function in the nonsymmetric form

v vR=

v v= G

FIG. 3. The exact mapping of the phonon vertices (circles) and
propagators (wavy lines and double lines) onto the bare interaction
and the particle-hole (R) and particle-particle (G) correlation func-
tions. Top: normal (particle-hole) phonon, bottom: pairing (particle-
particle) phonon, as introduced in Eqs. (58) and (60), respectively.

contains (n − 1)- and (n + 1)-fermion Green functions, thus,
generating an infinite hierarchy of coupled equations. This
hierarchy can be truncated at any level, and truncation on
the n-body level would mean that the dynamical kernels of
the EOM’s for the n-body and higher-rank propagators are
approximated by the cluster expansions that involve up to
n-fermion correlation functions.

As far as the present example and the pairing correlations
are concerned, one may notice that the theory truncated on the
two-body level does not involve the anomalous one-fermion
Green functions of the Gorkov’s type [63]. Instead, the pairing
correlations influence the one-fermion propagator via the two-
fermion Green functions of the particle-particle type, which
enter the dynamical kernel of the one-body equation of motion
[32]. This fact has been noted already in Ref. [64] and briefly
discussed there in a different context. On the one hand, the
approach with the two-fermion particle-particle correlation
functions may look more complicated because it requires a
solution of the coupled one-fermion and two-fermion EOM’s.
But, on the other hand, it avoids working in the doubled
quasiparticle space, that can be technically quite demanding in
the models with explicit dynamical kernels. Besides that, the
present approach overcomes problems related to the particle
number violation, which are inherent in the BCS and Bogoli-
ubov’s theories.

IV. EMERGENT PHONONS AND MAPPING TO THE PARTICLE-PHONON COUPLING

The EOM for the fermionic pair propagator Eq. (33) in the energy (frequency) domain contains the Fourier transform of the
dynamical kernel Eq. (51). As all the terms of its propagators’ expansion Eqs. (47)–(50) consist of noncontracted products of
one particle-particle and one particle-hole propagators, they can be treated with the aid of the following generic transformation:

[R12,1′2′G34,3′4′](ω) =
∫ ∞

−∞
dτeiωτ R12,1′2′ (τ )G34,3′4′ (τ )

= −i
[∑

νμ

ρν
21ρ

ν∗
2′1′α

μ
43α

μ∗
4′3′

ω − ων − ω
(++)
μ + iδ

−
∑
νκ

ρν∗
12 ρν

1′2′β
κ∗
34 βκ

3′4′

ω + ων + ω
(−−)
κ − iδ

]
. (52)

Then, each product should be contracted with two matrix elements of the two-fermion interaction v̄, as given by Eq. (51), so that
the components of the dynamical kernel take the form:

K (r;11)
121′2′ (ω) = − i

4

∑
ikl

∑
mnq

v̄i1kl ([Ri2,q2′Glk,nm](ω) + [Rik,qnGl2,2′m](ω) + [Ril,qmGk2,2′n](ω) − AS)v̄mn1′q, (53)

K (r;12)
121′2′ (ω) = i

4

∑
ikl

∑
mnq

v̄i1kl ([Ri2,qnGlk,m1′ ](ω) + [Ril,q1′Gk2,nm](ω) + [Rik,qmGl2,n1′ ](ω) − AS)v̄mn2′q, (54)
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K (r;21)
121′2′ (ω) = K (r;12)

212′1′ (ω), (55)

K (r;22)
121′2′ (ω) = K (r;11)

212′1′ (ω). (56)

The second and the third terms in Eq. (53) are already symmetric, but we have retained both of them to keep the analogy with
Eq. (54). As one can see in the following, these two terms form the contribution of the self-energy type with the normal phonon,
that is expressed by the first line of Eq. (61). Similarly to Ref. [32], one can introduce the vertices gν(±) and propagators D(±)

ν (ω)
of the normal phonons:

gν(σ )
13 = δσ,+gν

13 + δσ,−gν∗
31, gν

13 =
∑

34

v̄1234ρ
ν
42, D(σ )

ν (ω) = σ

ω − σ (ων − iδ)
, (57)

as well as the particle-phonon coupling amplitude

�
(ph)
13′,1′3 =

∑
242′4′

v̄1234R(ph)
24,2′4′ (ω)v̄4′3′2′1′ =

∑
ν,σ=±

gν(σ )
13 D(σ )

ν (ω)gν(σ )∗
1′3′ . (58)

Analogously, the vertices γ μ(±) and propagators �(±)
μ (ω) of the pairing, or superfluid, phonons are

γ
μ(+)
12 =

∑
34

v1234α
μ
34, γ

κ(−)
12 =

∑
34

βκ

34v3412, �(σ )
μ (ω) = σ

ω − σ (ω(σσ )
μ − iδ)

, (59)

with the corresponding coupling amplitude �
(pp)
12,1′2′ (ω):

�
(pp)
12,1′2′ (ω) =

∑
343′4′

v1234G(pp)
43,3′4′ (ω)v4′3′2′1′

=
∑

μ,σ=±1

γ
μ(σ )
12 �(σ )

μ (ω)γ μ(σ )∗
1′2′ , (60)

where the index μ runs over both addition and removal modes. The mapping to emergent particle-hole and particle-particle
(pairing) phonons is depicted in Fig. 3 in the diagrammatic form.

With the notions of these emergent phonons, the first component of the dynamical kernel associated with the self-energy
graph (the upper line of Fig. 2) takes the following form:

K (r;11)
121′2′ (ω) =

⎡
⎣∑

kn;νμ

gν
1kα

μ

2kα
μ∗
2′ngν∗

1′n

ω − ων − ω
(++)
μ + iδ

−
∑

kn;νκ

gν∗
k1β

κ∗
k2 βκ

n2′gν
n1′

ω + ων + ω
(−−)
κ − iδ

⎤
⎦

+
⎡
⎣∑

iq;νμ

γ
μ(+)
1i ρν

2iρ
ν∗
2′qγ

μ(+)∗
1′q

ω − ων − ω
(++)
μ + iδ

−
∑
iq;νκ

γ
κ(−)∗
i1 ρν∗

i2 ρν
q2′γ

κ(−)
q1′

ω + ων + ω
(−−)
κ − iδ

⎤
⎦, (61)

while the second component represented by the “twisted” graph in the second line of Fig. 2 reads

K (r;12)
121′2′ (ω) = −

⎡
⎣ ∑

im;νμ

γ
μ(+)
1i ρν

2iα
μ∗
1′mgν∗

2′m

ω − ων − ω
(++)
μ + iδ

−
∑

im;νκ

γ
κ(−)∗
i1 ρν∗

i2 βκ

m1′gν
m2′

ω + ων + ω
(−−)
κ − iδ

⎤
⎦

−
⎡
⎣ ∑

kq;νμ

gν
1kα

μ

2kρ
ν∗
1′qγ

μ(+)∗
2′q

ω − ων − ω
(++)
μ + iδ

−
∑

kq;νκ

gν∗
k1β

κ∗
k2 ρν

q1′γ
κ(−)
q2′

ω + ων + ω
(−−)
κ − iδ

⎤
⎦

−
⎡
⎣∑

ln;νμ

gν
1lα

μ

2lα
μ∗
1′ngν∗

2′n

ω − ων − ω
(++)
μ + iδ

−
∑
ln;νκ

gν∗
l1 βκ∗

l2 βκ

n1′gν
n2′

ω + ων + ω
(−−)
κ − iδ

⎤
⎦. (62)

The two remaining components K (r;21)
121′2′ (ω) and K (r;22)

121′2′ (ω) can be found from Eqs. (61) and (62) with the help of the symmetry
relations of Eqs. (55) and (56).

The diagrammatic representation of the components K (r;11)
121′2′ (ω) and K (r;12)

121′2′ (ω) of the dynamical kernel are shown in Figs. 4
and 5, respectively. In the case of K (r;11)

121′2′ (ω), the mapping to the PVC leads to two topologically similar terms of the self-energy
type with the pairing and normal phonons. The “twisted” component K (r;12)

121′2′ (ω) contains a typical phonon-exchange term [the
third term in Eq. (62) and in Fig. 5] with the normal phonon, however, its counterpart with the single pairing phonon would
violate the particle number conservation and, therefore, is absent in this component. Instead, mixed contributions of the normal
and pairing phonons appear, as it is clear from the graphical form of the first two terms of Eq. (62) in Fig. 5.
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FIG. 4. The K (r;11) component of the dynamical interaction kernel. The diagrammatic conventions of Fig. 3 are employed.

V. A STATIC LIMIT AND THE PAIRING GAP EQUATION

From Eq. (33) it is easy to obtain the equations for the pairing transition densities αμ and βκ . Indeed, considering the
frequency argument of G12,1′2′ (ω) in the vicinity of a pole in the (N + 2)-particle system ω = ωs, leads to the following equation
for αμ:

αs
21 = 1 − n1 − n2

ωs − ε̃1 − ε̃2

1

4

∑
343′4′

δ1234K343′4′ (ωs)αs
4′3′ (63)

and a similar equation for βκ . Furthermore, if the ground state of the reference nucleus is approximated by the BCS-like
approach, where [65]

n1 = v2
1 = E1 − (ε̃1 − λ)

2E1
, E1 =

√
(ε̃1 − λ)2 + �2

1, (64)

and λ being the chemical potential, the pairing gap �1 can be related to the pairing transition density as

�1 = 2E1α
s
1̄1, (65)

and at ωs = 2λ Eq. (63) takes the form of the well-known pairing gap equation:

�1 = −
∑

2

V11̄22̄
�2

2E2
, (66)

where the bar denotes the conjugate or the time-reversed state [7] and the interaction matrix elements read

V121′2′ = 1

4

∑
34

δ1234K341′2′ (2λ) = 1

2

[
K (0)

121′2′ + K (r)
121′2′ (2λ)

]
. (67)

The integral part of the gap Eq. (66), thus, contains all the microscopic effects of the kernel K “on shell,” regardless of the
approximations made for its static K (0) and dynamical K (r) parts.
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FIG. 5. The K (r;12) component of the dynamical interaction kernel. The same diagrammatic conventions as in the previous figures are used.
The additional little empty and filled triangles stand for the normal ρν and pairing αμ transition densities, respectively.
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FIG. 6. The state-dependent pairing gaps in 66Ni and 68Ni calculated in the purely static constant-gap approximation with a phenomeno-
logical kernel (blue symbols) and taking into account the dynamical PVC effects (red symbols). The vertical dashed lines mark the Fermi
energy.

VI. CALCULATIONS: DETAILS, RESULTS, AND
DISCUSSION

To test the developed approach in realistic conditions, we
have performed some illustrative calculations for finite nuclei.
As in Ref. [32], in these calculations we were focused mainly
on the dynamical kernel, but now for the propagator of the
fermion pair in the static limit, that is determined by the
nuclear pairing gaps. Thus, we solved Eq. (66) with the kernel
of Eq. (67) that includes both the static and dynamical parts,
together with the usual BCS constraint on the average particle
number [22]. In this first study we approximated the static part
of the interaction by the phenomenological “monopole force”
which is detailed, for instance, in Ref. [39]. Consistently, we
used the basis of the relativistic mean field (RMF) with NL3
parametrization [66] to approximate the one-body part of the
Hamiltonian.

In this first study of the PVC effects on the pairing gaps
in a relativistic framework, the dynamical kernel K (r)(ω) was
computed in the leading approximation that (i) omits the
exchange of the pairing phonons, thus, keeping only the last
terms shown in Figs. 4 and 5 and (ii) neglects the particle-
particle correlations in the “G” parts of those terms. This
form of the dynamical kernel corresponds to the leading “two-
quasiparticle plus phonon” (2q ⊗ phonon) approximation,
which is commonly employed in the nuclear field theories.
Although more sophisticated approaches are already available
for the particle-hole response from Refs. [32,51,67], here we
investigated only the major PVC effect on the nuclear pairing
gaps. The latter are known to be linked to the observed odd-
even mass differences as discussed, for instance, in Ref. [68],
and can thus be extracted from the nuclear mass tables [69].

Since we do not address an ab initio calculation of the pair-
ing gaps, but rather keep the static part of the interaction ker-
nel purely phenomenological, the calculations have, besides
the six RMF parameters, one free parameter which is adjusted

to reproduce the average pairing gap in a ≈20 MeV energy
window around the Fermi energy, or chemical potential. In
this way, it is possible to determine the relative contributions
of the static and dynamical kernels. Based on the RMF for the
given nucleus, the phonon vertices gν and their frequencies
ων were extracted from the relativistic quasiparticle random
phase approximation (RQRPA) [70] calculations with the
empirical pairing gap (see below). The latter were performed
for the angular momenta and parities Jπν

ν = 2+, 3−, 4+, 5−, 6+
forming the phonon model space commonly used in the PVC
applications. This model space was slightly truncated to select
the modes which provide the most important contributions. In
particular, in this work we used the same truncation criteria as
in Ref. [32]. After that, Eq. (66) with the kernel of Eq. (67)
and the BCS particle number constraint were solved in a
self-consistent cycle, where the value of the state-dependent
pairing gaps and the chemical potential were determined with
a 10−3 MeV accuracy.

Figure 6 illustrates the results of calculations of the neutron
pairing gaps in the two open-shell nickel isotopes 66Ni and
68Ni. First we performed the calculation with both the static
phenomenological and the PVC kernels, where the strength
parameter in front of the static kernel is tuned in a way that
the resulting averaged pairing gaps reproduce the empirical
value extracted from Ref. [69] with the help of the three-point
formula [68]. The results of these calculations are shown by
the red symbols and marked as “Static+PVC” on the legends.
After that, the PVC, or dynamical, part of the interaction
kernel was turned off and the calculations were repeated with
the same static kernel. These results are shown by the blue
symbols and marked as “Static.” Thus, we isolated the PVC
effects of the dynamical kernel K (r) that can be assessed
quantitatively by the difference between the two results.

The first observation from Fig. 6 is that the calculations
with the PVC contribution produce larger average pairing
gaps. The latter contribution is a result of an interplay between
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FIG. 7. Same as described in the caption of Fig. 6 but for 44Ca and 46Ca.

the self-energy terms of the type shown in Fig. 4, their
exchange counterparts shown in Fig. 5 as well as the remain-
ing K (r;22) and K (r;21) components with analogous structure.
As in the case of the dynamical kernel of the particle-hole
response [34,39], the exchange contributions contain phase
factors varying from state to state, while the self-energy terms
add up coherently. This results in a partial cancellation of
the self-energy and exchange contributions, which is known,
in particular, to moderate the effect of broadening of the
giant resonances caused by the PVC mechanism. This kind
of cancellation is also known to be more pronounced in the
monopole channel [34], which is the case for the singlet
pairing that we consider here. Nevertheless, the net average
pairing gaps obtained with the PVC for 66Ni and 68Ni are
considerably larger than corresponding gaps of the purely
static character. Another observation is that the PVC mech-
anism brings a sizable state dependence of the pairing gap
as compared to the calculations with nearly constant static
kernel. In all the cases investigated in the present work, which
include nickel, calcium and tin isotopic chains, we found
a remarkable state dependence of the neutron pairing gaps
obtained with the PVC kernel. In particular, an enhancement
of the gaps is found for the single-particle states at or near the
Fermi surface. Our calculations show 153% (1g9/2) and 200%
(2p1/2) enhancement of the peak values of the neutron pairing
gap in these nickel isotopes, as compared to their “static”
values while the average pairing gap increases by factors 1.77
and 1.69, respectively.

Figure 7 shows the results of similar calculations for two
calcium isotopes, 44Ca and 46Ca. In these two open-shell
nuclei as well as in 42Ca which we also investigated, the
enhancement of the average pairing gap due to the PVC
effects is less pronounced than in nickel isotopes adding
up to the factors of 1.06 and 1.25, respectively. This may
indicate a stronger cancellation between the self-energy and
exchange PVC terms in these nuclei. However, one can still
notice a remarkable state dependence of �k . In both 44Ca
and 46Ca it peaks at the 2s1/2 and 1d3/2 hole states located

next to the Fermi surface. The peak values of the neutron
pairing gaps exhibit about 20% and 60% enhancement with
respect to their “static” values in the two calcium isotopes,
respectively.

In heavier systems the trends are similar. The left panel
of Fig. 8 illustrates the behavior of the pairing gaps in 120Sn.
Again, we find that the PVC contribution to the interaction
kernel brings a noticeable state dependence, especially at the
Fermi surface. The average value, however, remains nearly
unchanged. In the right panel of Fig. 8 we plot the average
pairing gaps in some stable tin isotopes obtained with and
without the PVC effects. One can see that the PVC enhance-
ment of the average value varies and can reach 50% as it
occurs, for instance, in 112Sn. The peak values of the pairing
gaps at the Fermi surface obtained in the “Static+PVC”
calculation are also plotted and show a soft minimum in the
middle of the shell.

While calculations for all nuclei under study show maxima
for the pairing gap value around the Fermi energy due to the
PVC, for the deep hole states the effect of the PVC varies
from nucleus to nucleus. In some systems like 66,68Ni and
112,116Sn the pairing gap values for the deeply bound states
are noticeably enhanced by the PVC. In other systems, such
as 44,46Ca and 114,120Sn, a relatively weak effect of the PVC
on the pairing gap values for the deeply bound states is
observed. We have found a correlation between this effect
and the pairing gap enhancement at its peak value relative to
the gap values for the deep hole states in the “static + PVC”
calculations: The more pronounced peaks are associated with
the larger increments of the pairing gap for the deeply bound
states above its “static” values. In general, the resulting values
of the pairing gap are determined by a complex interplay of
the PVC matrix elements and the shell structure around the
Fermi energy. However, the particular choice of constraining
the average pairing gap values by the experimental odd-even
mass differences may also play a role. For instance, one may
choose to identify the pairing gap at the Fermi surface with
the experimental pairing gap instead, and in this case the
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trends for the deeply bound states may also vary. Consistent
calculations based on a bare nucleon-nucleon interaction are
needed for more definite conclusions.

The behavior of the pairing gaps around the Fermi surface
is in a qualitative agreement with Refs. [18,64] and may
occur due to the specific structure of the PVC contributions
to the interaction kernel. Nevertheless, our attempts to per-
form calculations with only the dynamical PVC kernel did
not result in the realistic pairing gaps even for the states
around the Fermi energy, in contrast to the latter two studies.
The calculations of Refs. [18,22] employed the nuclear field
theory with the effective particle-phonon Hamiltonian and
the Bloch-Horowitz second-order perturbation theory for the
pairing interaction induced by the particle-phonon coupling,
while in Refs. [16,64] a generalized Dyson equation was
solved for the single-quasiparticle propagator in the doubled
quasiparticle space, which treats pairing and PVC effects on
the equal footing. The latter method is still based on the
Gorkov factorization and on the use of the anomalous one-
fermion Green functions. As a consequence, these approaches
commonly contain the dynamical kernel with only coherent
PVC contributions, that may explain the overall stronger PVC
effects.

The more recent study of Ref. [71] is based on the formal-
ism of Ref. [15]. The latter postulates the excitation operator
in the particle-phonon coupling form, which is equivalent to
introducing the interaction of Eq. (58) between the nucleons,
in addition to the mean field, and generates the equation
of motion for this operator. This strategy allows for a con-
sistent calculation scheme for both the single-quasiparticle
strength distributions and the state-dependent pairing gaps.
In Ref. [71], the Argonne v14 and Vlow k potentials were
employed for the static part of the nucleon-nucleon interac-
tion, Skyrme SLy4 parametrization for the mean field and
phenomenological separable interaction for determining the
PVC coupling vertices and phonon frequencies. In this hy-

brid approach, both the state-dependent pairing gaps and the
single-quasiparticle strength distributions in tin isotopes were
investigated. The PVC effects on the pairing gaps were stipu-
lated by the explicit phonon-exchange term and the so-called
Z factors, which are analogous to the K (r;12) and K (r;11) parts
of our dynamical kernel, respectively. The numerical results
are also quantitatively closer to those obtained in the present
work, namely the dynamical effects caused by the PVC in-
duces additional ∼20–40% contributions to the pairing gaps,
as compared to the calculations without PVC. A comparison
with Ref. [72], which investigated the role of the self-energy
contributions responsible for the reduction of the quasiparticle
strength at the Fermi surface in neutron matter, is also in
agreement with our findings: overall, the self-energy contri-
butions introduce the reduction while the phonon-exchange
terms produce the screening or antiscreening of the pairing
gaps.

The present implementation is considered as only the ini-
tial step towards a consistent microscopic theory of nuclear
superfluidity beyond the standard BCS approximation. After
quantifying the contribution of the dynamical kernel K (r) to
the observed pairing gaps, the next natural move would be
considering an accurate calculation of the static kernel K (0).
Instead of employing the simple monopole-force ansatz, the
static kernel should be computed based on more realistic ef-
fective or bare interactions, that can use the insights from both
the relativistic [22,73–77] and nonrelativistic [22,71,78,79]
studies. Finding a convenient auxiliary mean field and the
associated basis is crucial for such calculations. Many groups
use the harmonic oscillator basis, some employ the basis of
the Woods-Saxon potential. A mean field of the contempo-
rary energy density functionals can be chosen as well. After
generating the mean-field basis, the RPA calculations with
the corresponding effective interaction can be performed for
the response functions in various channels. The response
functions and two-body densities extracted from these cal-
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culations can serve as ingredients for initiating the iterative
procedure. The procedure would start with the calculation of
both static and dynamical kernels using the bare interaction
contracted with the phenomenological two-body correlation
functions, where the latter include both the response functions
and the two-body densities. The outcome of the first as
well as of the subsequent iterations are the single-fermion
and the two-fermion correlation functions. In the second
iteration, these correlation functions should replace the phe-
nomenological ones used in the dynamical kernels in the
first iteration and, thus, the procedure of recycling the one-
body and two-body propagators can be continued until the
convergence is achieved. Fast RPA solvers, for instance,
the finite-amplitude method (FAM), can be engaged in such
calculations to facilitate them after the FAM is upgraded
with the dynamical kernels. Adding the knowledge about
the treatment of two-fermion propagators with particles in
the continuum, as outlined in Refs. [80,81], would be also
very instructive for applications to loosely bound and light
nuclei.

For the nuclear matter and neutron matter, one of the main
objectives at the moment is to get screening in the different
spin-isospin channels under control. For instance, in the recent
Ref. [61] calculations for the triplet pairing gap with both
the static and dynamical kernels in the BCS equation have
been performed. The calculations were based on the G matrix
interaction obtained from the Argonne AV18 potential and
the meson-exchange three-body force. The G matrix was
used as the static kernel while RPA solutions obtained in
the Landau limit with the same G matrix were employed for
calculating the dynamical kernel, or the induced interaction.
The self-energy modification due to the medium polarization
was taken into account via the Z factors. Thus, as compared to
the present paper, the calculations of Ref. [61] were done in a
more advanced manner for the static kernel, but somewhat less
accurate for the dynamical one. The obtained results allowed
for important conclusions regarding the competition between
the singlet and triplet pairing, where the latter typically occurs
at high densities and the former dominates in the low-density
regime.

In Ref. [82] finite-temperature calculations of the singlet
pairing gap in dilute neutron matter were performed. The au-
thors investigated the pairing gaps and the critical temperature
of the superfluid phase transition using the Vlow k interaction
derived from AV18 for the static kernel of the pairing gap
equation and Skyrme interaction for the RPA vertices entering
the dynamical kernel. They showed, in particular, that at
higher densities the full RPA leads to stronger screening than
the Landau approximation. It was noted, in general, that the
pairing gap and the phase transition temperature are sensitive
to the approximation used to describe the medium polarization
effects. Therefore, in the long term, more complete and con-
sistent calculations are desirable also for nuclear and neutron
matters.

VII. SUMMARY AND OUTLOOK

We introduce a many-body approach to the pairing corre-
lation function in fermionic systems. The equation of motion
method is formulated for the two-time two-fermion propa-
gator in the particle-particle channel in a strongly coupled
medium. The EOM for this propagator takes the form of
the Dyson Bethe-Salpeter equation, where both the static
and dynamical interaction kernels are derived from the un-
derlying bare two-fermion interaction. The exact symmetric
dynamical kernel, which contains a four-fermion propagator,
is approximated by a cluster decomposition into the two-
fermion propagators of both particle-particle and particle-hole
type. In this way, the nuclear many-body problem is truncated
at the level of two-body correlation functions whose EOM’s,
together with those for the one-fermion particle-hole correla-
tion function discussed in Ref. [32] form a closed system of
integral equations.

Although a complete solution of such a system is not yet
available for finite nuclei, some aspects of the formulated
approach can be studied for these systems. For instance, the
resulting particle-particle correlation function appears to be
related to the observables associated with the nuclear super-
fluidity. The equation for the pairing gap, which is directly re-
lated to a residue of the two-time particle-particle propagator,
is therefore formulated as a static limit of the EOM for this
propagator. Assuming the ground-state wave function of the
BCS type, a BCS-like equation for the pairing gap is obtained.
The interaction kernel of this equation, as the one of the
corresponding EOM, has the purely static part as well as the
dynamical part taken in the static limit. The latter contribution
thus represents an extension of the BCS approximation to the
inclusion of higher complexity correlations.

We investigated the effects of this additional term on pair-
ing gaps in medium-light and medium-heavy nuclei. Namely,
the neutron pairing gaps were calculated for calcium, nickel
and tin isotopes. The developed method was implemented
numerically on the base of quantum hadrodynamics and rela-
tivistic mean field. The beyond-mean-field effects on the pair-
ing gaps are found quite pronounced. They lead to a sizable
state dependence of the pairing gaps with the tendency to an
enhancement around the Fermi surface, in a qualitative agree-
ment with existing NFT calculations. We found, however,
that the static part of the interaction gives a relatively large
contribution to the pairing gap values. Thus, we conclude
that this part should be also accurately determined from the
underlying microscopic interaction. This is recognized as the
most natural further advancement that will be addressed by
future effort.
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