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Background: Several collective low-lying states are observed in 96Zr whose properties, which include excitation
energies and E2, E0, and M1 transition probabilities, indicate that some of them belong to the spherical state and
the other to deformed states. A consideration of these data in the full framework of the geometrical collective
Model with both intrinsic shape variables, β and γ , and rotational degrees of freedom is necessary for 96Zr.
Purpose: We investigate the properties of the low-lying collective states of 96Zr based on the five-dimensional
geometrical collective model including triaxiality as an active degree of freedom.
Method: The quadrupole-collective Bohr Hamiltonian, depending on both β and γ shape variables with a
potential having spherical and deformed minima, is applied. The relative depth of two minima, height and width
of the barrier, and rigidity of the potential near both minima are determined so as to achieve a satisfactory
description of the observed properties of the low-lying collective quadrupole states of 96Zr.
Results: It is shown that the low-energy structure of 96Zr can be described in a satisfactory way within the
geometrical collective model with a potential function supporting shape coexistence without other restrictions
on its shape. It is shown that a correct determination of the β dependence of the collective potential from the
experimental data requires a consideration in the framework of the full Bohr collective Hamiltonian. It is shown
also that the excitation energy of the 2+

2 state can be reproduced only if the rotation inertia coefficient is taken to
be four times smaller than the vibrational one in the region of the deformed well. It is shown also that shell effects
are important for the description of the B(M1; 2+

2 → 2+
1 ) and B(M1; 3+

1 → 2+
1 ) transition probabilities. An

indication of the influence of the pairing vibrational mode on the 0+
2 → 0+

1 transition is confirmed, in agreement
with the previous result.
Conclusion: Qualitative agreement with the experimental data on the excitation energies and B(E2) and
B(M1; 2+

2 → 2+
1 ) reduced transition probabilities is obtained.

DOI: 10.1103/PhysRevC.102.034308

I. INTRODUCTION

It has been well known for a long time that nuclei can
exhibit both spherical and deformed shapes, including the
intermediate region of nuclei transitional from spherical to
deformed. What is more interesting is the phenomenon that
a given nucleus can exhibit different shapes depending on the
excitation energy. This phenomenon of shape coexistence has
in recent years become the subject of many investigations in
nuclear physics. Even more, shape coexistence is coming to
be considered a near-universal property of nuclei [1]. A large
number of papers, including reviews [1–4], are devoted to
investigation of shape coexistence [5–20]. Various approaches
have been employed to study this phenomenon [21–27].

Among different examples of shape coexistence, evidence
of Zr isotopes’ change of shape with excitation energy is es-
pecially interesting. Shape evolution can be characterized by a
smooth or abrupt transition from spherical to deformed shape,
and a significant or suppressed mixing of configurations with

different shapes can take place. Such information is contained
in electromagnetic transition probabilities, and a high purity
of coexisting shapes has been established in 96Zr [28].

In this paper we apply the geometrical collective-
quadrupole model to a description of the properties of the
low-lying states of 96Zr including the shape coexistence phe-
nomenon. Although an explanation of shape coexistence is
a subject of microscopic nuclear modeling, the geometrical
collective model deals directly with shape dynamical vari-
ables and, thus, may be capable of describing the dynamical
consequences of shape coexistence and the properties of the
collective low-lying states in general.

It is an open question whether a potential function in terms
of shape variables can exist which allows for a reproduction
of the data on the coexisting quadrupole collective structures
of 96Zr. The aim of the present paper is to investigate a
possibility to describe, in principle, the properties of the low-
lying collective states of 96Zr and the amount of mixing of
the configurations characterized by spherical and deformed
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shapes based on the quadrupole collective Bohr Hamiltonian.
It is also interesting in terms of what characteristics of the
collective states shell effects are most pronounced.

II. HAMILTONIAN

The quadrupole-collective Bohr Hamiltonian can be writ-
ten as [29]

H = − h̄2
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where ω = BββBγ γ − B2
βγ is the determinant of the vibra-

tional inertia tensor

Bvib =
(

Bββ βBβγ

βBβγ β2Bγ γ

)
. (2)

The moments of inertia �k with respect to the body-fixed axes
are expressed as

�k = 4Bk (β )β2 sin2

(
γ − 2πk

3

)
(3)

and r = B1B2B3. The components of the angular momentum
in the body-fixed frame are denoted as Ĵk and can be expressed
in terms of the Euler angles. The potential energy is denoted
as V (β, γ ). The Hamiltonian of Eq. (1) is a general case of
the conventional Bohr Hamiltonian [30] allowing for nonzero
value of Bβγ .

In the present work we aim to investigate whether it is
possible to construct a potential energy in such a way that all
existing data on the energies of the lowest angular momentum
excited states and the transitions between these states will be
described. Thus, it is not our task to minimize the number
of parameters used to describe a potential function. Rather
we want to find out how good, in principle, a description
can be within the framework of the geometrical collective
model of the nucleus with such an interesting structure as 96Zr,
in which both collective and shell effects are manifested. If
such a potential can be constructed, will it describe the shape
coexistence by having two minima, spherical and deformed?
Previously in Ref. [31], this problem was solved under the
assumption that the γ degrees of freedom can be separated
from β in the potential and the value of γ is stabilized around
γ = 0◦. This is obviously a rather crude approximation at
least in the region of small values of β. In the present paper
we avoid this assumption.

To simplify consideration, we make the following assump-
tions for the inertia coefficients:

Bββ = Bγ γ = B0, Bβγ = 0,

B1(β ) = B2(β ) = B3(β ) = brot (β )B0, (4)

where B0 is the parameter scaling vibrational and rotational
masses. Thus, the B0 coefficient plays the role of the inertia
parameter for vibrational modes throughout the β variation
region. We accept this assumption, since the available exper-
imental data on 96Zr are not enough to extract from them
information on the dependence of B0 on the variables of the

nuclear shape. Note, however, that such work was done, for
example, for nuclei of the beginning of the rare earth region:
150Nd, 152Sm, and 154Gd [32], where there are enough experi-
mental data.

With respect to the value of the coefficient of inertia for ro-
tational motion, however, it is known [33,34] that in deformed
nuclei the rotational mass coefficient is 4–10 times smaller
than the vibrational mass coefficients. For our consideration
this means that in the region of the deformation minimum
brot is much less than 1. In a complete correspondence with
this result, it is shown below that in order to explain the
excitation energy of the 2+

2 state it is necessary to take brot

several times less than unity. The average value of β2 is about
20 times larger in the deformed states than in the spherical
states. However, the level spacing between the 2+ and the
0+ states is only a factor of about 3 smaller in the deformed
structure than in the spherical structure. This is the reason why
we have to consider the reduction of brot from unity at van-
ishing deformation to a value of about 0.25 in the deformed
minimum of the potential. Note, however, that since there is
no experimental information on vibrational states whose wave
functions are localized in the deformed minimum, it cannot
be ruled out that not only the rotational, but also the total
mass coefficient depends on deformation. Such a case was
considered in [35–37]. Moreover, a question of the value of
brot in the region of the spherical minimum remains open. The
answer is given by the following consideration.

The collective Hamiltonian given in (1) is written in the
internal coordinates. We can rewrite this Hamiltonian in term
of the laboratory variables

α2μ = D2
μ0(�θ )β cos γ

+ 1√
2

(
D2

μ2(�θ ) + D2
μ−2(�θ )

)
β sin γ , (5)

where D2
μk (�θ ) is a Wigner function and �θ are Euler angles that

characterize orientation of the internal coordinate system rel-
ative to the laboratory system. In the general case, the inertia
tensor written in term of α2μ contains not only monopole, but
also quadrupole and hexadecapole components [32]. Due to
the presence of the last two components in the inertia tensor
a difference between vibration and rotation coefficients of
inertia arises in the deformed region. However, in the region
of the spherical minimum the quadrupole and hexadecapole
components are small because they are proportional to α2μ,
(αα)2μ, and (αα)4μ and can be neglected, while the monopole
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component contains a deformation-independent term. If only
the monopole component of the inertia tensor is retained, the
difference between vibrational and rotational inertia coeffi-
cients disappears. Therefore, we accept that in the region of
the spherical minimum, where only vibrations with respect
to the spherical shape are realized, brot = 1. Note that the
rotational moment of inertia �rot is equal to 3brotB0β

2, i.e.,
it is an increasing function of β.

Under the assumptions of Eq. (4), the Hamiltonian (1)
takes the form

Ĥ = − h̄2
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∂

∂γ
sin 3γ

)

+ 1

2

3∑
k=1

Ĵ2
k

�k (β )
+ V (β, γ ). (6)

The potential energy V (β, γ ) is assumed to have two min-
ima, spherical and deformed, separated by a barrier. This is in
correspondence with the considerations [5,20] in the interact-
ing boson model with configuration mixing (IBM-CM) where
two configurations with different total number of bosons have
been taken into account in order to include the effect of shape
coexistence. We expect that the wave functions of the lowest
excited states are localized in these minima while the weight
of the function inside the barrier region is strongly suppressed.
Therefore, it is reasonable to assume that the quantity brot has
constant (but different) values in the regions of the spherical
and deformed minima and the change from one value to an-
other takes place in the region of the barrier. In this case, we
can neglect a derivative of brot over β which is presented, in
principle, in the kinetic part of the Hamiltonian (6), as it gives
a nonzero contribution to the matrix elements of the Hamil-
tonian only in the barrier region where the wave functions

are close to zero. Thus, we obtain finally the following model
Hamiltonian:

H = − h̄2
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3
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)

+ V (β, γ ), (7)

where

brot =
{

1 if β � βm,
bdef < 1 if β > βm. (8)

The magnitude of the brot inside the deformed minimum is
obtained by fitting the excitation energy of the 2+

2 state. The
change from the spherical to deformed value of brot occurs
at β = βm which is taken around the maximum of the barrier
separating spherical and deformed potential wells. Our calcu-
lations show that the precise value of βm does not affect the
qualitative results of the calculations.

To solve the eigenvalue problem with the Hamiltonian (7)
we expand the eigenfunctions in terms of a complete set of
basis functions that depend on the deformation variables β

and γ and the Euler angles. These functions are well known
and their construction is described in the literature. See, for
instance, [38,39] and references below. For completeness of
presentation we give some details here.

For each value of angular momentum I , the basis functions
are written as

	
nβvα

IM = R(nβ ,v)(β )ϒvαIM (γ ,�), (9)

where ϒvαIM is the SO(5) ⊃ SO(3) spherical harmonics,
which are the eigenfunctions of the operator �̂2:

�̂2ϒvαIM =
[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

∑
k

Ĵ2
k
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(
γ − 2πk

3

)
]
ϒvαIM = v(v + 3)ϒvαIM . (10)

In addition to the angular momentum I and its projection M,
each function ϒvαIM is labeled by the SO(5) seniority quan-
tum number v and a multiplicity index α, which is required
for v � 6.

The ϒvαIM can be explicitly constructed as a sum over the
states with explicit value of the projection K of the angular
momentum on the intrinsic axis [40,41]:

ϒvαIM (γ ,�) =
I∑

K=0,even

FvαI,K (γ )ξ I
KM (�), (11)

where

ξ I
KM (�) = 1√

2(1 + δK0)

[
DI

M K (�) (12)

+ (−1)I DI
M −K (�)

]
(13)

and the FvαI,K (γ ) are polynomials constructed from the
trigonometrical functions of γ [42].

The basis wave functions R(nβ ,v) are chosen as the eigen-
functions of the harmonic oscillator Hamiltonian in β:

hh.o. = 1

2
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− 1

β4

∂
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β4 ∂
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+ v(v + 3)

β2
+ β2

β4
0

)
. (14)

The eigenfunctions of hh.o. have the following analytical
form:

Rnβ ,v (β ) = Nβ

(
β

β0

)v

Lv+3/2
nβ

(
β2

β2
0

)
exp

(
− β2

2β2
0

)
, (15)

where β0 is an oscillator length and the normalization constant
Nβ is given as

Nβ =
√

2nβ!

�(nβ + v + 5/2)
. (16)

The basis functions Rnβ ,v are completely specified by the
choice of the oscillator length β0. Our calculations have shown
that the fastest convergence of the results is obtained when
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FIG. 1. Potential energy V (β, γ ) obtained in the calculations.

β0 is chosen to be equal to the value at the region of the
barrier separating spherical and deformed minima so that the
oscillator potential coincides with the potential V (β, γ = 0)
at the top of the barrier. For such a choice of β0, (nβ )max = 30
is enough to provide a convergence.

Diagonalization of the Hamiltonian (7) is realized in the
basis of SO(5)-SO(3) spherical harmonics ϒvαIM (γ ,�) trun-
cated to some maximum seniority vmax. As shown in [43],
taking vmax = 50 is sufficient to provide a convergence of
the calculation. A concrete realization of the construction of
ϒvαIM (γ ,�) performed in [40,41] is used in the present work.
These functions were first constructed in analytic form in [38]
for I � 6.

The potential energy V (β, γ ) in (7) is chosen in the form

V (β, γ ) = U (β ) + Cγ β3(1 − cos 3γ ). (17)

In (17), the deformed minimum of the potential energy is
localized around γ = 0 for positive Cγ as assumed in our
previous paper [31]. At the same time, this form of γ de-
pendence of V (β, γ ) provides very weak γ dependence of
V (β, γ ) at small β because of the factor β3. The form of
the potential energy at γ = 0 [U (β )] and the parameter Cγ

which determines the stiffness of the potential with respect
to γ in the deformed minimum are fitted to reproduce the
experimental data. As the first step, we have taken U (β ) as it
was numerically determined in [31], B0 = 0.004 MeV−1, and
brot = 0.2 and performed calculations with different values of
Cγ . We have found that Cγ = 50 MeV produces a reasonable
value of the frequency of γ vibrations close to 1.5 MeV.
No significant changes were found in the calculation results
for the excitation energies and the E2 transition probabilities
when Cγ was varied around 50 MeV.

As before in [31], to describe the shape of the axially sym-
metric part of the potential we defined several points fixing the
positions of the spherical and deformed minima, the rigidity of
the potential near its minima, and the height and width of the
barrier separating two minima. The deformation at the second
minimum has been taken to be β = 0.24 in agreement with the
experimental value of B(E2; 2+

2 → 0+
2 ). The potential energy

as a function of β is determined by using a spline interpola-
tion between selected points. Then we solve numerically the
Schrödinger equation with Hamiltonian (7), varying positions

(a)

(b)

FIG. 2. The squares of the wave functions of the 0+
1 (a) and 0+

2

(b) states, multiplied by the volume element.

of the selected points in order to get a satisfactory description
of the energies of the 2+

1 and 2+
2 states and the following

transition probabilities: B(E2; 2+
2 → 0+

2 ), B(E2; 2+
1 → 0+

1 ),
and B(E2; 2+

2 → 0+
1 ). The number of points is taken to be 16

to provide a smooth change of the potential. However, not all
the points are of the same physical importance. In principle,
the number of points can be minimized as, obviously, only
the relative depths of the minima and the height and width of
the barrier lead to physically meaningful changes. The mass
parameter has been taken finally as B0 = 0.005 MeV−1 to fix
the energy of the 0+

2 state.
The resulting potential V (β, γ ) is presented in Fig. 1. It

is interesting that the inclusion of γ as a dynamical variable
leads to a significant change of the shape of the potential in
comparison to the case when γ was treated as a constant and
not as a variable. The most important change occurs at the
region of small β where the potential becomes shallower. In
this region, the resulting potential is practically independent of
γ and the wave function of the 0+

1 state becomes independent
of γ as well. This is not the case if γ is treated as a constant.
This lack of the phase space results in the necessity to take a
much deeper potential at small values of β to hold the wave
function of 0+

1 state inside the spherical minimum when γ is
not considered dynamic.

034308-4



DESCRIPTION OF THE LOW-LYING COLLECTIVE … PHYSICAL REVIEW C 102, 034308 (2020)

FIG. 3. Distribution over β of the squares of the wave functions
of the 0+

1 (solid line), 0+
2 (dashed line), and 0+

3 (dotted line) states
calculated according (19).

III. RESULTS

The Hamiltonian eigenfunctions 	InM , where I is the an-
gular momentum, M is its projection and n is a multiplicity
index, are obtained in calculations as a series expansions in
the basic functions (9). However, for discussions below it is
more convenient to present them in the basis of functions ξ I

KM
(12):

	InM =
∑

K

ψInK (β, γ )
1√

2(1 + δK0)

(
DI

MK (�)

+ (−1)I DI
M−K (�)

)
. (18)

We are using below the one-dimensional probability distribu-
tions over β which are obtained by integration of |	InM |2 over
γ and Euler angles,

�In(β ) = β4
∫ π/3

0
sin 3γ dγ

∫
d�|	InM |2, (19)

and the weights of the wave functions in the spherical mini-
mum WIn are determined as

WIn =
∫ βm

0
dβ �In(β ), (20)

where βm is the position of the maximum of the barrier for
γ = 0.

The calculated squares of the wave functions of the 0+
1

and 0+
2 states multiplied by the β- and γ -dependent volume

element are presented in Fig. 2. One can see that the wave
function of the 0+

1 state is strongly localized in the spherical
minimum. The wave function of the 0+

2 state is mainly local-
ized in the deformed minimum. Their spherical weights are
W01 = 0.985 and W02 = 0.136 for 0+

1 and 0+
2 states, respec-

tively. The fact that in Fig. 2 the squares of the wave functions
are multiplied by the volume element that contains sin 3γ

explains the shift of the maximum of the 0+
2 wave function

density to nonzero value of γ . The one-dimensional probabil-
ity distribution over β which can be obtained by integrating

(a)

(b)

FIG. 4. The squares of the components of the wave function of
the 2+

1 state with K = 0 (a) and K = 2 (b) multiplied by the volume
element.

|	nβvα

IM |2 over γ and the Euler angles are presented in Fig. 3
for the 0+

1 and 0+
2 states.

For the lowest 2+ states the situation is similar. The 2+
1

state is localized in the spherical minimum with the weight
W (2+

1 ) = 0.928, while the second excited 2+ state is only
weakly presented there with W (2+

2 ) = 0.144.
The wave functions of the 2+ states have components with

K = 0 and K = 2 determined by the expansion (18). The
squares of the functions ψ2+nK for K = 0 and K = 2 multi-
plied by the volume element are presented in Fig. 4 for the 2+

1
state and in Fig. 5 for the 2+

2 state.
Using these wave functions the matrix elements of an arbi-

trary operator F̂ can be calculated as

〈 f |F̂ |i〉 =
∫ ∞

0
β4dβ

∫ π/3

0
sin 3γ dγ

∫
d�	∗

f F̂	i. (21)

We are particularly interested in calculations of the E2, E0,
and M1 transition probabilities. The collective quadrupole
operator responsible for E2 transitions is taken in the form

Qcoll
2μ = 3Ze

4π
R2

0

(
β cos γ D2

μ0(�)

+ 1√
2
β sin γ

[
D2

μ2(�) + D2
μ−2(�)

])
, (22)
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(a)

(b)

FIG. 5. The squares of the components of the wave function of
the 2+

2 state with K = 0 (a) and K = 2 (b) multiplied by the volume
element.

where R0 is the equivalent volume-conserving spherical ra-
dius of the nucleus and Z is the nuclear charge number. The
E0 transition strength ρ2(0+

2 → 0+
1 ) is calculated using the

expression

ρ2(0+
2 → 0+

1 ) =
(

3Ze

4π

)2

|〈0+
2 |β2|0+

1 〉|2. (23)

For the M1 transition operator we use the same expression as
in [31]:

(M1)μ = μN

√
3

4π
gR(β )Iμ, (24)

where μN is the nuclear magneton and gR(β ) is the
deformation-dependent collective g factor.

The results of calculations for the energies of the low-
lying states and the electromagnetic transition probabilities
are presented in Tables I and II together with the available
experimental data. The root-mean-square deviation factor for
the excitation energies (RMSD) is also presented in Table I.

Let us consider the results for the 0+
3 , 0+

4 , 2+
3 , and 4+

1
excited states. The calculated energy of the 2+

3 state exceeds
the experimental value by 300 keV which is 10% of the
total excitation energy of this state. The calculated value of
B(E2; 2+

3 → 2+
1 ) = 10.6 W.u. is quite collective, as is the

TABLE I. The calculated and the experimental energies of the
low-lying 0+, 2+, 3+, and 4+ states. The experimental data are taken
from [5,45].

State Ecalc (MeV) Eexp (MeV)

E (0+
2 ) 1.582 1.582

E (0+
3 ) 2.443 2.695

E (0+
4 ) 3.049 2.926

E (2+
1 ) 1.724 1.750

E (2+
2 ) 2.236 2.226

E (2+
3 ) 2.974 2.669

E (2+
4 ) 3.338 3.249

E (3+
1 ) 2.653 2.439

E (4+
1 ) 2.983 2.857

E (4+
2 ) 3.447 3.082

RMSD (MeV) 0.194

experimental result. The experimental value [45] can vary
between 0 and 120 W.u. depending on the quite uncertain
lifetime of this level and on the unknown multipolarity of its
decay transition to the 2+

1 state. A distribution of the wave
function of the 2+

3 state over β, determined by (19), is pre-
sented in Fig. 6. It is seen that the component with K = 0

TABLE II. The calculated and the experimental values of the
electromagnetic transition probabilities in 96Zr. B(E2) values are
given in W.u., B(M1) in nuclear magnetons. The value of Q(2+

2 )
is given in e b (electron barn). Experimental data are taken from
[44,45].

Transition Calc. Expt.

B(E2; 2+
1 → 0+

1 ) 5.23 2.3(3)
B(E2; 2+

2 → 0+
1 ) 0.39 0.26(8)

B(E2; 2+
2 → 0+

2 ) 26.0 36(11)
B(E2; 2+

2 → 2+
1 ) 6.49 2.8+1.5

−1.0

B(E2; 3+
1 → 2+

1 ) 0.22 0.1+0.3
−0.1

B(E2; 3+
1 → 2+

2 ) 4.26
B(E2; 0+

3 → 2+
1 ) 1.14

B(E2; 0+
3 → 2+

2 ) 69.8 34(9)
B(E2; 2+

3 → 2+
1 ) 10.6 50(70)

B(E2; 2+
3 → 2+

2 ) 1.85 <400
B(E2; 4+

1 → 2+
1 ) 16.7 16+5

−13

B(E2; 4+
1 → 2+

2 ) 43.0 56(44)
B(E2; 4+

1 → 3+
1 ) 7.59

B(E2; 0+
4 → 2+

1 ) 0.36 0.3(3)
B(E2; 0+

4 → 2+
2 ) 2.02 1.8(14)

B(E2; 4+
2 → 2+

1 ) 4.82
B(E2; 4+

2 → 2+
2 ) 16.6

B(E2; 4+
2 → 3+

1 ) 0.07
B(E2; 2+

4 → 2+
1 ) 2.53

ρ2(0+
2 → 0+

1 ) 0.0023 0.0075
ρ2(0+

3 → 0+
1 ) 0.001 0.004

ρ2(0+
3 → 0+

2 ) 0.038 0.0035
B(M1; 2+

2 → 2+
1 ) 0.071 0.14(5)

B(M1; 3+
1 → 2+

1 ) 0.0002 0.3(1)
Q(2+

2 ) −0.5
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FIG. 6. Distribution over β of the squares of the components
of the 2+

3 state with K = 0 (solid line) and K = 2 (dashed line)
calculated according to (19).

is almost equally distributed between the spherical and de-
formed minima. The component with K = 2 is predominantly
located in the deformed minimum.

The experimental value of the excitation energy of the 3+
1

state and the value of B(E2; 3+
1 → 2+

1 ) are reproduced by the
calculations quite well. However, the experimental value of
B(M1; 3+

1 → 2+
1 ) = 0.3μ2

N is too large to be reproduced in
the framework of the collective model. For instance, the value
of B(M1; 3+

γ → 2+
γ ) for transition between the states of the

γ band in 168Er is equal to 0.003μ2
N only, i.e., two orders of

magnitude less than the value for 96Zr. It could mean that the
3+

1 state of 96Zr has a large component of the shell model
neutron configuration (s1

1/2d−1
5/2)3 or even that its structure

is almost exhausted by this configuration [44]. We mention,
however, that the experimental value of B(E2; 3+

1 → 2+
1 ) can

be reproduced only if both states have a collective admixture,
since for the explanation of the experimental B(E2; 3+

1 → 2+
1 )

value the shell model neutron configurations (s1
1/2d−1

5/2)2,3 re-
quires a neutron E2 effective charge equal to 1. The calculated
wave function of the 3+

1 state is almost completely localized
in the deformed minimum: W31 = 0.96.

The strong E2 transition between the 0+
3 and the deformed

2+
2 states is reproduced by our calculations because a signif-

icant part of the wave function of the 0+
3 state is localized in

the deformed minimum of the potential (see Fig. 3).
It is indicated in [44] that the 4+ states at 2750 and

2781 keV presented in [45] have been observed in one ex-
periment each only and were never confirmed. For this reason
we disregard these states and compare the calculated charac-
teristics of the 4+

1 state with the experimental data for the 4+
state observed at 2857 keV.

Our calculations reproduce the value of the very collective
E2 transition 4+

1 → 2+
2 , which shows that the significant part

of the wave function of the 4+
1 state is localized in the de-

formed minimum. This fact is confirmed by the distribution
of the wave function of the 4+

1 state shown in Fig. 7. It is
seen also that the wave function of the 4+

1 state is exhausted

FIG. 7. Distribution over β of the squares of the components of
the 4+

1 state with K = 0 (solid), 2, and 4 (dot-dashed) calculated
according to (19).

by the K = 0 component. The calculated ratio B(E2; 4+
1 →

2+
2 )/B(E2; 2+

2 → 0+
2 ) = 1.65 is close to the Alaga value 1.43

for axially deformed nuclei. A distribution of the K = 0,
2, and 4 components of the wave function of the 4+

1 state
indicates that the large part of the total wave function is
indeed located in the deformed minimum. At the same time
the calculated B(E2; 4+

1 → 2+
1 ) value agrees within the limit

of the experimental error with the observed value. The cal-
culated ratio [E (4+

1 ) − E (0+
2 )]/[E (2+

2 ) − E (0+
2 )] is equal to

2.14, which is close to the spherical limit. The experimental
value of this ratio 1.98 practically coincides with the value for
the spherical harmonic oscillator.

This astonishing apparent correspondence of the 4+
1 state’s

properties to contradicting limits of the collective model can
be understood from the following consideration. The domi-
nant parts of the wave functions of the 2+

2 and 4+
1 states are

located in the deformed minimum. However, smaller parts of
the wave functions of these states are spread over the spherical
minimum. This fact allows us to consider the 2+

2 and 4+
1 states

as a mixture of the two dominant, lowest-lying spherical and
deformed components, each. As a result of this mixing, the
4+

1 state with dominantly deformed character is shifted down
in energy because it is the lowest 4+ state. At the same time,
the predominantly deformed 2+

2 state is shifted up in energy
since it is the second excited 2+ state. This lowering of the
excitation energy of the 4+ state and this increase of the
2+ state’s energy in the deformed well lead to the observed
significant reduction of the R4/2 ratio from the value of 10/3
expected for axially deformed nuclei towards a smaller value
closer to 2.

Let us analyze the result obtained for ρ2(0+
2 → 0+

1 ), which
is by factor 3 smaller than the experimental value. The defini-
tion of the ρ2(0+

2 → 0+
1 ) value is given in (23). In order to get

an expression for 〈0+
2 |β2|01〉 in terms of the quantities whose

values are known from other experiments, let us calculate the
double commutator [[H, β2], β2] using the Hamiltonian (6).
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(a) (b)

FIG. 8. Experimental (a) [44,45] and calculated (b) low-energy level schemes of positive-parity states of 96Zr. Excitation energies are given
in keV, B(E2) transitions are given in W.u.

The result is

[[H, β2], β2] = 4h̄2

B0
β2. (25)

Taking the average of (25) over the ground state 0+
1 and as-

suming that the ground state is mainly related by E0 transition
to the 0+

2 state, we obtain

|〈0+
2 |β2|0+

1 〉|2 � 2h̄2

B0
〈0+

1 |β2|0+
1 〉 1

E (0+
2 )

, (26)

where E (0+
2 ) is the excitation energy of the second 0+ state.

The sign of inequality in (26) appears because we neglect a
contribution into the value of 〈0+

1 |β2Hβ2|0+
1 〉 of the other 0+

states higher in energy than 0+
2 . The quantity 〈0+

1 |β2|0+
1 〉 can

be expressed with good accuracy through the B(E2; 2+
1 →

0+
1 ) value using the collective model definition of the E2

transition operator:

〈0+
1 |β2|0+

1 〉 = 5B(E2; 2+
1 → 0+

1 )(
3

4π
ZeR2

)2 . (27)

Substituting (26) and (27) into (23), we obtain

ρ2(0+
2 → 0+

1 ) � h̄2

B0

1

E (0+
2 )

10B(E2; 2+
1 → 0+

1 )

e2R4
. (28)

TABLE III. The calculated weights WIn in the spherical mini-
mum of the considered states of 96Zr.

State WIn State WIn State WIn

0+
1 0.985 0+

2 0.136 0+
3 0.292

2+
1 0.772 2+

2 0.182 2+
3 0.289

4+
2 0.636 4+

1 0.139 0+
4 0.202

3+
1 0.042 2+

4 0.464

In our calculations the value of h̄2

B0
was fixed as 5 keV in order

to reproduce the experimental value of E (0+
2 ). Substituting

this value and the calculated values of E (0+
2 ) and B(E2; 2+

1 →
0+

1 ) into (28), we obtain that

ρ2(0+
2 → 0+

1 ) � 0.005, (29)

in correspondence with the result given in Table I.
This result means that we cannot exclude that the pairing

vibrational or some other modes play an important role in the
description of the E0 transitions [46].

All experimental data on low-lying excited states of 96Zr
are presented in Fig. 8(a) and the corresponding calculation
results are shown in Fig. 8(b). In both figures, states having
very large spherical or deformed components are highlighted
in two separate columns on the left. In Fig. 8(b) the division is
based on the results of wave function weights WIn calculation
which are shown in Table III. In contrast to the results [44]
presented in Fig. 8(a) we placed the 4+

2 state among the
spherical and 3+

1 state among the deformed ones based on the
results shown in Table III.

IV. CONCLUSION

We have studied a possibility to describe the properties
of the low-lying collective quadrupole states of 96Zr basing
on the Bohr collective Hamiltonian. Both β and γ shape
collective variables are considered. The β dependence of the
potential energy is fixed to describe the experimental data in
the best possible way. However, the γ dependence of the po-
tential is introduced in a simple way favoring axial symmetry
at large β. The resulting potential has two minima, spherical
and deformed, separated by a barrier.

Comparison of the β dependence of the potential defined
in this paper with the potential defined in [31] shows how
important it is to determine the potential from the analysis
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of the experimental data based on the full Bohr collective
Hamiltonian containing all five quadrupole dynamical vari-
ables. This consideration allows one also to obtain a more
complete understanding of the wave functions of collective
states, including the weights of the components with different
K and their distribution in β-γ plane.

A degree of agreement of the results of calculations of
excitation energies with experimental data is characterized
by the root-mean-square deviation factor given in Table I.
The results obtained for the reduced transition probabili-
ties are mainly qualitatively consistent with the experimental
data.

The 0+
1 , 2+

1 , and 4+
2 states are calculated as rather pure

vibrational states in a spherical or at most weakly deformed
minimum, while the 0+

2 , 2+
2 , 3+

1 , and 4+
1 states are dominated

by prolate components with a little, although not vanishing,
triaxiality. The experimental decay properties of the 3+

1 state
are, however, at variance with this solely geometrical inter-
pretation. The calculations show that the wave function of
the 3+

1 state is located mainly in the deformed minimum.
However, the experimental value of B(M1; 3+

1 → 2+
1 ) indi-

cates the presence of the significant spherical component in
the wave function of the 3+

1 state. Thus, our calculations
indicate a problem in description of the properties of the 3+

1

state of 96Zr in the framework of the geometrical collective
model.

The calculated value of ρ2(0+
2 → 0+

1 ) is around three times
smaller than the measured value. This indicates an influence
of the other degrees of freedom that is not included in the
present consideration.

The rotational inertia coefficient is taken to be four times
smaller than the vibrational one in order to reproduce the
excitation energy of the 2+

2 state. This is in accordance with
the previously obtained indication that in deformed nuclei the
vibrational and rotational inertia coefficients can differ bys
several times.
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