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n + 3H, p + 3He, p + 3H, and n + 3He scattering with the hyperspherical harmonic method
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The n + 3H, p + 3He, p + 3H, and n + 3He elastic and charge exchange reactions at low energies are studied
by means of the hyperspherical harmonic method. The considered nuclear Hamiltonians include modern two-
and three-nucleon interactions, and in particular results are reported in case of chiral two-nucleon potentials,
with and without the inclusion of chiral three-nucleon (3N) interactions. A detailed study of the convergence
and numerical stability of the method is presented. We have found that the effect the 3N force is in general tiny
except for p + 3H scattering below the opening of the n + 3He channel. In such a case, the effect of 3N forces is
appreciable and a clear dependence on the cutoff used to regularize the high-momentum tail of the interactions
is observed. Such a dependence is related to the presence of the poorly known sharp 0+ resonance, considered
to be the first excited state of 4He.

DOI: 10.1103/PhysRevC.102.034007

I. INTRODUCTION

The four nucleon (4N) system has been object of intense
studies in recent years. First, this system is particularly inter-
esting as a “theoretical laboratory” to test the accuracy of our
present knowledge of the nucleon-nucleon (NN) and three-
nucleon (3N) interactions. In particular, the effects of the NN
P waves and of the 3N forces are believed to be larger than
in the A = 2 or 3 systems. Moreover, it is the simplest system
where the 3N interaction can be studied in channels of total
isospin T = 3/2. There is a number of reactions involving
4Ns which are of extreme importance for astrophysics, energy
production, and studies of fundamental symmetries. As an
example, the p + 3H → 4He + e+ + e− reaction is currently
exploited as a tool for the discovery of an unknown particle
[1].

Nowadays, the 4N bound-state problem can be numeri-
cally solved with good accuracy. For example, in Ref. [2] the
binding energies and other properties of the α particle were
studied using the AV8′ [3] NN interaction; several different
techniques produced results in very close agreement with each
other (at the level of, or less than, 1%). More recently, the
same agreement has also been obtained considering different
realistic NN + 3N interactions [4–7].

In recent years, there has been a rapid advance in solving
the 4N scattering problem with realistic Hamiltonians. Ac-
curate calculations of four-body scattering observables have
been achieved in the framework of the Faddeev-Yakubovsky
(FY) equations [8–13], solved in momentum space, where
the long-range Coulomb interaction is treated using the
screening-renormalization method [14,15]. Solutions of the
FY equations in configuration space [16–20] and several cal-
culations using the resonating group model (RGM) [21–24]

were also reported. The application of the RGM together with
the no-core shell model (NCSM) technique is being vigor-
ously pursued [25,26], and the possibility of calculations of
scattering observables using the Green-function Monte Carlo
method has been explored, too [27].

In this contribution, the four-body scattering problem is
solved using the Kohn variational principle and expanding
the “core” part of the wave function (namely, the part which
describes the system where the particles are close to each
other) in terms of the hyperspherical harmonic (HH) functions
(for a review, see Refs. [28,29]). Preliminary applications
of this method were reported in Refs. [17,30,31] for local
potentials, as the Argonne v18 (AV18) [32] NN potential,
and in Refs. [33–35] for nonlocal potentials. Accurate bench-
marks between FY (solved in momentum and configuration
space) and HH results were reported in Ref. [36] for n + 3H
and p + 3He elastic scattering and in Ref. [37] for p + 3H
and n + 3He elastic scattering and charge-exchange reac-
tions. These calculations were limited to energies below the
threshold for three-body breakup. The good agreement found
between the results obtained by the different methods attested
the high accuracy reached in solving the 4N scattering prob-
lem.

In the present paper, the application of the HH method to
study these reactions is presented in full detail, focusing in
particular on the selection of the basis and the techniques
used to evaluate the matrix elements. A discussion of the
convergence of the calculated observables is also reported.
Finally, we critically compare the results of this first campaign
of calculations with the available experimental data.

The potentials used in this study are the chiral interac-
tions derived at next-to-next-to-next-to-leading order (N3LO)
by Entem and Machleidt [38,39], with cutoff � = 500 and
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600 MeV. In some selected cases, we have also performed
calculations using the new interactions derived at next-to-
next-to-next-to-next-to-leading order (N4LO) in Ref. [40]. In
this case, the adopted values of the cutoff parameter are � =
450, 500, and 550 MeV. The calculations performed using
one of these chiral potentials are labeled as N3LO500, and
so on, i.e., specifying the value of the cutoff. We present the
convergence of the calculated phase shifts for the case of the
AV18 interaction, too.

We have also performed calculations including the chi-
ral 3N interaction derived at next-to-next-to leading order
(N2LO) in Refs. [41,42]. The two free parameters in this
N2LO 3N potential, denoted usually as cD and cE , have
been fixed in order to reproduce the experimental values of
the A = 3 binding energies and the Gamow-Teller matrix
element (GTME) of the tritium β decay [43,44]. Note that
these parameters have been recently redetermined [45–47]
after finding (and correcting) an inconsistency in the relation
between the 3N parameter cD and the axial current used so far
[48].

The cutoff in the 3N interaction has been chosen to be
consistent with the corresponding value of the NN interac-
tion. The development of a 3N interaction including N3LO
and N4LO contributions is still in progress [49–51]. In some
cases, we have considered the Urbana IX (UIX) and Illinois
7 (IL7) 3N potentials [52,53], used with the AV18 potential.
The calculation including both NN and 3N interactions have
been labeled as N3LO500/N2LO500, AV18/IL7, and so on.

The four-body studies performed so far have highlighted
several discrepancies between the theoretical predictions and
experimental data. Let us consider first the n + 3H elastic
scattering. Calculations based on NN interactions disagree
[8,16,17,22,30,54] rather sizably with the measured total cross
section [55], both at zero energy and in the “peak” region
(En ≈ 3.5 MeV). Such an observable is found to be very
sensitive to the NN interaction model [8]. At low energy, the
discrepancy is removed by including a 3N force fixed to re-
produce the triton binding energy [16,22,30], but it remains in
the peak region. In Ref. [35], in a preliminary calculation, we
observed that this disagreement is noticeably reduced using
the N3LO500/N2LO500 interaction. In the present paper, we
will report the results of more refined calculations performed
with the N3LO500/N2LO500 and N3LO600/N2LO600 in-
teractions, confirming the results of Ref. [35].

Regarding the p + 3He elastic scattering, several accurate
measurements of both the unpolarized cross section [56–58]
and the proton analyzing power Ay0 [31,58,59] can be found
in the literature, allowing for a detailed study. The calcula-
tions performed so far with a variety of NN interactions have
shown a glaring discrepancy between theory and experiment
for Ay0 [8,22,31,54,58]. This discrepancy is very similar to the
well-known “Ay puzzle” in N + d scattering. This is a fairly
old problem, already reported about 30 years ago [60,61] in
the case of n + d and later confirmed also in the p + d case
[62]. The inclusion of usual models of the 3N force has little
effect on these A = 3 observables. To solve this puzzle, specu-
lations about the deficiency of the NN potentials in 3PJ waves
(where the spectroscopic notation 2S+1LJ has been adopted)
have been advanced. More recently, the effects of the contact

terms appearing at N4LO in the 3N force have been explored
in order to explain this puzzle [63,64]. The situation of other
p + 3He observables (the 3He analyzing power A0y and some
spin correlation observables as Ayy, Axx, etc.) is less clear due
to the lack of equally accurate measurements. In the early
2000s [65], at the Triangle University National Laboratory
(TUNL), a new set of accurate measurements of various spin
correlation coefficients were obtained at Ep = 1.60, 2.25, 4,
and 5.54 MeV, allowing for a phase-shift analysis (PSA). The
aim of this paper is to compare the results of the theoretical
calculations to these data. The effect of the inclusion of the
chiral 3N force in p + 3He has been already reported in
Ref. [66], where we have shown that the inclusion of the chiral
3N interaction improves the agreement with the experimental
data, in particular, for the proton vector analyzing power. This
result is confirmed by the present study.

Regarding p + 3H and n + 3He below the d + d thresh-
old, only a few accurate calculations exist [8,9,12,18]. From
the experimental point of view, for this range of energies there
exist several measurements of the p + 3H elastic differential
cross section [67–74], n + 3He elastic cross section [75,76]
and total cross section [75–78], and various n + 3He elastic
polarization observables [79–83]. Regarding the n + 3He →
p + 3H charge exchange reaction, there exist measurements
of the total cross section [76,78,84–90], the differential cross
section [91–94], and polarization observables [95–99]. Pre-
liminary results obtained for these observables with the HH
method were already presented in Ref. [37].

Here we complete those previous studies and, in particular,
we study the effect of the inclusion of the 3N interaction in the
low-energy 1S0 phase shifts in order to extract the resonance
energy and width of the first excited state of 4He. Such a
state of 4He is of particular interest. Its energy is slightly
above the threshold for p + 3H breakup but below that of
n + 3He [100]. For the description of this resonance, there-
fore, the Coulomb potential plays a very important role. The
nature of such a resonance is still a puzzle after many years of
studies. Electron scattering can give direct information on the
transition form factor [100–102],

SM(q, ω) =
∑

n

|〈n|M(q)|0〉|2δ(ω − En + E0), (1)

where |0〉, |n〉, E0, and En are eigenfunctions and eigen-
values of the 4N Hamiltonian H , respectively, M(q) is the
isoscalar monopole operator, and ω and q the energy and
three-momentum transferred by the external probe. At low
values of ω, SM(q, ω) is dominated by the contribution of the
first 0+ excited state of 4He, which therefore can be studied
theoretically and experimentally. The interpretation of this
excited state as a collective breathing mode or a particle-hole-
like excitation is still to be clarified. Recently, two theoretical
studies of SM(q, ω) were performed. In Ref. [103], SM(q, ω)
was calculated using a bound-state technique, i.e., expanding
the wave function over a Gaussian basis. In Refs. [104,105]
a calculation using the Lorentz integral transform method to
sum implicitly all the intermediate states was performed. The
calculated transition form factors differ by a factor two and
the origin of this discrepancy has not yet been clarified. In
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this contribution, we estimate the position and width of the
resonance directly from the calculated phase shifts.

This paper is organized as follows. In Sec. II, a descrip-
tion of the method is reported, while in Sec. III a detailed
discussion of the convergence and numerical stability of the
calculated phase shifts is presented. The results are reported
in Sec. IV and compared with the available experimental data.
The conclusions and the perspectives of this approach will be
given in Sec. V. Some details regarding the regularization of
the irregular Coulomb functions are given in the Appendix.

II. THE HH TECHNIQUE FOR SCATTERING STATES

This section is divided into five subsections. First, we dis-
cuss the asymptotic part of the wave function and then the HH
expansion of the core part. In Secs. II C and II D, we discuss
the application of the Kohn variational principle and then
give some details of the calculations. Finally, in Sec. II E we
discuss the choice of the subset of HH functions considered in
the calculation.

A. Asymptotic functions

In this paper we limit ourselves to consider asymptotic
states with two clusters in the initial/final states, denoted
generally as A + B. For the sake of simplicity, a specific
clusterization A + B will be denoted by the index γ . More
specifically, γ = 1, . . . , 4 will correspond to the following
clusterizations: n + 3H, p + 3He, p + 3H, and n + 3He, re-
spectively. Depending on the total charge (and on the energy),
some of these asymptotic states may enter or not in the wave
function.

Let us consider a scattering state with total angular momen-
tum quantum number JJz and parity π (the dependence on the
wave function and other quantities on JJzπ will be understood
in the following). The wave function 	γ LS describing incom-
ing clusters γ with relative orbital angular momentum L and
channel spin S can be written as

	γ LS = 	
γ LS
C + 	

γ LS
A , (2)

where the core part 	
γ LS
C vanishes in the limit of large inter-

cluster separations and hence describes the system where the
particles are close to each other and their mutual interactions
are strong. On the other hand, 	

γ LS
A describes the relative

motion of the two clusters in the asymptotic regions, where
the mutual interaction is negligible (except for the long-range
Coulomb interaction). In the asymptotic region the wave func-
tions 	γ LS reduces to 	

γ LS
A , which must therefore be the

appropriate asymptotic solution of the Schrödinger equation.
	

γ LS
A can be decomposed as a linear combination of the fol-

lowing functions:


±
γ LS = DγA

{
[YL(ŷγ ) ⊗ [φA ⊗ φB]S]JJz

×
[

G̃L(ηγ , qγ yγ )

qγ yγ

± i
FL(ηγ , qγ yγ )

qγ yγ

]}
, (3)

where Dγ are appropriate normalization factors (see below),
yγ is the distance between the center-of-mass (c.m.) of clus-
ters A and B, qγ is the magnitude of the relative momentum
between the two clusters, and φA and φB bound-state wave
functions. In the present work, the trinucleon bound-state
wave functions (for both 3He and 3H) are calculated very
accurately by means of the HH method [4,33] using the corre-
sponding A = 3 Hamiltonian. For a single nucleon, φ reduces
to the spin-isospin state. The channel spin S is obtained cou-
pling the angular momentum of the two clusters. In our case,
clearly S = 0, 1. The symbol A means that the expression
between the curly braces has to be properly antisymmetrized.

The total energy of the scattering state in the center-of-
mass system is

E = −BA − BB + Tr, (4)

where

Tr = q2
γ

2μγ

,
1

μγ

= 1

MA
+ 1

MB
, (5)

and MX (BX ) is the mass (binding energy) of the cluster X .
Clearly, in the case of a single nucleon MX = MN , where
MN is the nucleon mass and BX = 0. In the following, we
have disregarded the mass difference between protons and
neutrons. The used MN values will be specified in the sub-
sequent pages. In Eq. (3), the functions FL and G̃L describe
the asymptotic radial motion of the clusters A and B. If the two
clusters are composed of ZA and ZB protons, respectively, then
the parameter ηγ is defined as ηγ = μγ ZAZBe2/qγ , where
e2 = 1.43997 MeV fm. The function FL(η, qy) is the regular
Coulomb function, while G̃L(η, qy) is a “regularized” version
of the irregular Coulomb function GL(η, qy). In this work, we
have used two different methods of regularization, namely

(1)
G̃L(η, qy)

qy
= GL(η, qy)

qy
− fL(y)

yL+1
exp(−βy), (6)

(2)
G̃L(η, qy)

qy
= GL(η, qy)

qy
[1 − exp(−βy)]2L+1. (7)

where fL(y) is chosen so that both functions G̃L(η, qy)/qy and

GL(η, qy) =
[

d2

dy2
+ 2

y

d

dy
− L(L + 1)

y2

− 2ηq

y
+ q2

]
G̃L(η, qy)

qy
, (8)

be regular for y → 0. The functions fL are in general given as

fL(y) = a0 + a1y + a2y2 + · · · + aN yN

+ (b1y + b2y2 + · · · + bMyM ) log(2qy), (9)

where N and M are positive integers and the coefficients ai

and bi can be determined considering the analytic behavior
of functions G̃L(η, qy)/qy and GL(η, qy) for y → 0. The ex-
pressions of the functions fL(y) are given in the Appendix.
Method 1 is simpler. However, regularizing using method 2
has the following advantage: In computing (H − E )
±

γ LS , we

are left (between others) with a term proportional to GL. Note
that the Coulomb functions (both the regular and the irregular)
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are the solution of the equation[
d2

dy2
+ 2

y

d

dy
− L(L + 1)

y2
− 2ηq

y
+ q2

]
XL(η, qy)

qy
= 0,

(10)
therefore, using method 1, we have

GL = −
{

f ′′
L −

(
2β + 2L

y

)
f ′
L

+
(

β2 + 2
βL − ηq

y
+ q2

)
fL

}
e−βy

yL+1
, (11)

where f ′ = df /dy, and so on. As discussed in the Appendix,
the functions fL(y) are constructed so that GL be regular at
the origin. Therefore, the resulting function GL is a smooth
function, not having the oscillatory behavior of GL. For this
reason, using method 1, the matrix elements 〈	|H − E |
±

γ LS〉
are (slightly) less problematic from the numerical point of
view than using method 2 of regularization.

Note that using both methods, the functions GL vanish
exponentially as y → ∞. Moreover, G̃L(η, qy) → GL(η, qy)
when y 	 1/β, thus not affecting the asymptotic behavior of
	

γ LS
A , namely

G̃L(η, qy) ± iFL(η, qy) → e±i(qy−Lπ/2−η ln(2qy)+σL ), (12)

where σL is the Coulomb phase shift. Therefore, 
+
γ LS (
−

γ LS)
describes the outgoing (ingoing) relative motion of the clus-
ters specified by γ .

If one of the clusters is a neutron (cases γ = 1 or 4), then
η = 0 and the functions FL and GL reduce to

FL(η, qy)

qy
→ jL(qy),

GL(η, qy)

qy
→ −yL(qy), (13)

where jL and yL are the regular and irregular spherical Bessel
functions defined, for example, in Ref. [106]. The corre-
sponding regularizing function fL(y) defined in Eq. (9) can
be obtained by taking the expression of the coefficients ai

and bi for η → 0 (note that in this case all bi → 0, see the
Appendix).

For example, the p + 3H asymptotic states are (in our
notation, this corresponds to the clusterization γ = 3)


±
3LS = D3

4∑
l=1

[
YL(ŷl ) ⊗ [

φt
3(i jk) ⊗ χlξ

p
l

]
S

]
JJz

×
[

G̃L(η3, q3yl )

q3yl
± i

FL(η3, q3yl )

q3yl

]
, (14)

where yl is the distance between the proton (particle l) and 3H
(particles i jk), q3 is defined via Eqs. (4) and (5), and

η3 = μ3e2

q3
, μ3 ≈ 3

4
MN . (15)

Moreover, φt
3 is the 3H wave function (with the z component

of isospin Tz = − 1
2 ) and χl (ξ p

l ) the spin (isospin) state of
the free proton. Note that we do not couple the isospin states.
Therefore 
±

3LS are superpositions of states with total isospin
T = 0, 1. The antisymmetry operator A in this case reduces
simply to the sum over the four possible 1 + 3 partitions of the

particles, assuming φt
3(i jk) to be completely antisymmetric

with respect to the exchange of particles i, j, and k.
In this paper, we consider only 1 + 3 clusterizations, and

the normalization factors Dγ can be conveniently chosen to
be

Dγ =
√

1

4

√
2μγ qγ

(κγ )3
, κγ =

√
3

2
, γ = 1, . . . , 4. (16)

The parameter κγ is the coefficient of proportionality between
the Jacobi vector x1 and the distance between the two clusters
y, namely x1 = κγ y, see next subsection. Finally, the general
expression of 	

γ LS
A entering Eq. (2) is

	
γ LS
A =

∑
γ ′L′S′

[
δγ ,γ ′δLL′δSS′
−

γ ′L′S′ − Sγ ,γ ′
LS,L′S′ (E )
+

γ ′L′S′
]
, (17)

where the parameters Sγ ,γ ′
LS,L′S′ (E ) are S-matrix elements. Of

course, the sum over L′ and S′ is over all values compatible
with the given J and parity π . In particular, the sum over
L′ is limited to include either even or odd values such that
(−1)L′ = π . The sum over γ ′ is over the possible final clusters
compatible with the conservation of the total charge. Clearly,
the parameters Sγ ,γ ′

LS,L′S′ (E ) with γ 
= γ ′ are related to the cross
section of the reaction γ → γ ′, while Sγ ,γ

LS,L′S′ (E ) to an elastic
scattering process.

B. The hyperspherical harmonic functions

The core wave function 	
γ LS
C has been here expanded

using the HH basis. The superscript γ LS means that 	
γ LS
C is

the core part of the wave function given in Eq. (2) describing
a process where there are two incoming clusters specified by
γ having a relative orbital angular momentum L and channel
spin S. For four equal mass particles, a suitable choice of the
Jacobi vectors is

x1p =
√

3

2

(
rl − ri + r j + rk

3

)
,

x2p =
√

4

3

(
rk − ri + r j

2

)
, (18)

x3p = r j − ri,

where p specifies a given permutation corresponding to the
order i, j, k, and l of the particles. By definition, the permuta-
tion p = 1 is chosen to correspond to the order 1, 2, 3, and 4.
In terms of the Jacobi vectors, the kinetic energy T is written
as

T = − 1

MN

(∇2
x1p

+ ∇2
x2p

+ ∇2
x3p

)
. (19)

The other possible choice of the Jacobi vectors is

y1p = rl − rk,

y2p = 1√
2

(rl + rk − ri − r j ), (20)

y3p = r j − ri.

In the following, we are going to use only the HH functions
constructed with the Jacobi vectors given in Eq. (18). In fact,
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the HH functions are essentially harmonics polynomials and
those constructed with the Jacobi vectors given in Eq. (20)
are just linear combinations of the HH functions constructed
with the Jacobi vectors of Eq. (18). On the other hand, HH
functions constructed for different choices of the particle per-
mutation p are needed in order to construct wave functions
with the correct permutational symmetry.

For a given choice of the Jacobi vectors, the hyperspherical
coordinates are given by the so-called hyperradius ρ, defined
by

ρ =
√

x2
1p + x2

2p + x2
3p, (independent of p), (21)

and by a set of angular variables which in the Zernike and
Brinkman [107,108] representation are (i) the polar angles
x̂ip ≡ (θip, φip) of each Jacobi vector and (ii) the two addi-
tional “hyperspherical” angles ϕ2p and ϕ3p defined as

cos φ2p = x2p√
x2

1p + x2
2p

,

cos φ3p = x3p√
x2

1p + x2
2p + x2

3p

, (22)

where x j p is the modulus of the Jacobi vector x j p. The set of
angular variables x̂1p, x̂2p, x̂3p, φ2p, and φ3p is denoted here-
after as 
p. The expression of a generic HH function is

HK,�,M
�1,�2,�3,L2,n2,n3

(
p)

= N �1,�2,�3
n2,n3

[(
Y�1 (x̂1p)Y�2 (x̂2p)

)
L2

Y�3 (x̂3p)
]
�M

× (sin φ2p)�1 (cos φ2p)�2 (sin φ3p)�1+�2+2n2 (cos φ3p)�3

× P
�1+ 1

2 ,�2+ 1
2

n2 (cos 2φ2p)

× P
�1+�2+2n2+2,�3+ 1

2
n3 (cos 2φ3p), (23)

where Pa,b
n are Jacobi polynomials and the coefficients

N �1,�2,�3
n2,n3

normalization factors. The quantity K = �1 + �2 +
�3 + 2(n2 + n3) is the grand angular quantum number.
The HH functions are the eigenfunctions of the hyper-
angular part of the kinetic energy operator. Furthermore,
ρKHK,�,M

�1,�2,�3,L2,n2,n3
(
p) are homogeneous polynomials of the

particle coordinates of degree K .
A set of antisymmetric hyperangular spin-isospin states

of grand angular quantum number K , total orbital angular
momentum �, total spin �, and total isospin T (for given
values of total angular momentum J and parity π ) can be
constructed as follows:

	K��T
μ =

12∑
p=1

�K��T
μ (i, j, k, l ), (24)

where the sum is over the 12 even permutations p ≡ i, j, k, l ,
and

�K��T
μ (i, j; k; l )

= {
HK,�

�1,�2,�3,L2,n2,n3
(
p)[[(sis j )Sa sk]Sbsl ]�

}
JJz

× [[(tit j )Tatk]Tbtl ]T Tz . (25)

Here HK,�
�1,�2,�3,L2,n2,n3

(
p) is the HH state defined in Eq. (23),
and si (ti) denotes the spin (isospin) function of particle i.

The total orbital angular momentum � of the HH function
is coupled to the total spin � to give the total angular momen-
tum JJz, whereas π = (−1)�1+�2+�3 . The quantum number T
specifies the total isospin of the state. The integer index μ

labels the possible choices of hyperangular, spin, and isospin
quantum numbers, namely

μ ≡ {�1, �2, �3, L2, n2, n3, Sa, Sb, Ta, Tb}, (26)

compatibles with the given values of K , �, �, T , J , and π .
Another important classification of the states is to group them
in “channels”: States belonging to the same channel have the
same values of angular �1, �2, �3, L2,�; spin Sa, Sb, �; and
isospin Ta, Tb, T quantum numbers but different values of n2,
n3.

Each state 	K��T
μ entering the expansion of the 4N wave

function must be antisymmetric under the exchange of any
pair of particles. To this aim it is sufficient to consider states
such that

�K��T
μ (i, j; k; l ) = −�K��T

μ ( j, i; k; l ), (27)

which is fulfilled when the condition

�3 + Sa + Ta = odd (28)

is satisfied.
The number MK��T of antisymmetric functions 	K��T

μ

having given values of K , �, �, and T but different com-
binations of quantum numbers μ [see Eq. (26)] is in general
very large. In addition to the degeneracy of the HH basis, the
four spins (isospins) can be coupled in different ways to �

(T ). However, many of the states 	K��T
μ , μ = 1, . . . , MK��T

are linearly dependent between themselves. In the expansion
of 	

γ LS
C it is necessary to include only the subset of linearly

independent states, whose number is fortunately noticeably
smaller than the corresponding value of MK��T .

The core part of the wave function can be finally written as

	
γ LS
C =

∑
K��T

∑
μ

uγ LS
K��T μ(ρ)	K��T

μ , (29)

where the sum is restricted only to the linearly independent
states. We have found convenient to expand the “hyperradial”
functions uγ LS

K��T μ(ρ) in a complete set of functions, namely

uγ LS
K��T μ(ρ) =

M−1∑
m=0

cγ LS
K��T μm gm(ρ), (30)

and we have chosen

gm(ρ) =
√

b9
m!

(m + 8)!
L(8)

m (bρ) e− b
2 ρ, (31)

where L(8)
l (bρ) are Laguerre polynomials [106] and b is a

parameter to be variationally optimized.
Using the expansion given in Eq. (30), finally the core part

can be written as

	
γ LS
C =

∑
K��T μm

cγ LS
K��T μm 	K��T

μ gm(ρ). (32)
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C. The Kohn variational principle

The S-matrix elements Sγ ,γ ′
LS,L′S′ (E ) of Eq. (17) and the

coefficients cγ LS
K��T μ,m occurring in the expansion of 	

γ LS
C

are determined using the Kohn variational principle (KVP).
Recalling Eqs. (2), (17), and (32), the wave function can be
written in a compact way as

	γ LS ≡ 	ν = 
−
ν −

∑
ν ′

Sν,ν ′
+
ν ′ +

∑
k

cνk	k, (33)

where hereafter we use the notation ν ≡ {γ LS}, k ≡
{K��T μm}, and

Sν,ν ′ ≡ Sγ ,γ ′
LS,L′S′ , cνk ≡ cγ LS

K��T μm, 	k = 	K��T
μ gm(ρ).

(34)

In practice, the index ν specifies the possible asymptotic
waves and the index k runs over all the terms used to expand
the core part. To use the KVP for the S matrix, we need also
the related wave function

	̃ν = 
+
ν −

∑
ν ′

S∗
ν,ν ′


−
ν ′ +

∑
k

c∗
νk	k, (35)

where the asterisk denotes the complex conjugate. In particu-
lar, we can define 	̃

J,Jz
ν = (−)L+J+JzT 	

J,−Jz
ν , where here we

have shown explicitly the dependence on the total angular
momentum and T is the time-reversal operator. Since H com-
mutes with T , then both 	

J,Jz
ν and 	̃

J,Jz
ν are eigenstates of H

with the same eigenvalue E . The KVP states that the coeffi-
cients Sν,ν ′ and cνk are determined by making the functional
[Sν,ν ′ ] defined as

[Sν,ν ′ ] = Sν,ν ′ + Sν ′,ν

2
−〈	̃ν ′ |H − E |	ν〉 + 〈	̃ν |H − E |	ν ′ 〉

4i
,

(36)

stationary with respect to variations of them [109–111]. The
expression above is obtained when the normalization factors
Dγ are chosen as in Eq. (16). After the variations of the func-
tional, a linear set of equations for Sν,ν ′ and cνk is obtained.
For example, let us consider the functional for the diagonal
case ν = ν ′ = ν0. Then

[
Sν0,ν0

] = Sν0,ν0 − 1

2i

[
A−,−

ν0,ν0
−

∑
ν

Sν0,ν

(
A+,−

ν,ν0
+ A−,+

ν0,ν

)
+

∑
ν,ν ′

Sν0,νSν0,ν ′A+,+
ν,ν ′ +

∑
k

cν0,k2B−
k,ν0

−
∑
k,ν

cν0,kSν0,ν2B+
k,ν +

∑
k,k′

cν0,kcν0,k′Ck,k′

]
, (37)

where

Aλ,λ′
ν,ν ′ = 〈


−λ
ν

∣∣H − E
∣∣
λ′

ν ′
〉
, (38)

Bλ
k,ν = 〈	k|H − E

∣∣
λ
ν

〉
, (39)

Ck,k′ = 〈	k|H − E |	k′ 〉, (40)

and λ, λ′ ≡ ±. Note the definition of the matrix elements
Aλ,λ′

ν,ν ′ in Eq. (38) which takes into account that (
λ
ν )† =


−λ
ν . Moreover, 〈	k|H − E |
λ

ν〉 = 〈
−λ
ν |H − E |	k〉 since

the wave functions 	k are square integrables. On the other
hand, Aλ,λ′

ν,ν ′ 
= Aλ′,λ
ν ′,ν . With the normalization factors Dγ chosen

as in Eq. (16), it can be proved that

1

2i
(A+,−

ν,ν − A−,+
ν,ν ) = 1. (41)

This relation can be used to test the numerical accuracy of
the calculated matrix elements. From the variation of the
expression given in Eq. (37), we can determine the S-matrix
elements Sν0,ν and the coefficients cν0,k . In the following,
we refer to Sν0,ν determined in this way as the “first-order”
S-matrix elements. Explicitly, one obtains the following linear
system: [

Ck,k′ −B+
k,ν ′

−B+
k′,ν

1
2

(
A+,+

ν,ν ′ + A+,+
ν ′,ν

)](
cν0,k′

Sν0,ν ′

)

=
[ −B−

k,ν0

iδν0,ν + 1
2

(
A+,−

ν,ν0
+ A−,+

ν0,ν

)]. (42)

This linear system is solved using the Lanczos algorithm. A
typical calculation involves the expansion of the core part with
10 000 HH functions and 16 functions gm(ρ). So the matrix
elements Ck,k′ form a matrix of dimension 160 000×160 000.
This part does not depend on the energy and can be calculated
only once. The possible ν values are much less. In this work at
maximum we can have four combinations for the p + 3H and
n + 3He scattering in the J > 0 waves. For example, for this
process and the wave Jπ = 1−, we may have the combina-
tions ν ≡ {γ LS} = {3 1 0}, {3 1 1}, {4 1 0}, {4 1 1}. Clearly the
matrix elements Bλ

k,ν ′ and Aλ,λ′
ν,ν depend on the energy and have

to be calculated every time from the beginning. However,
their number is much less than that of the C-matrix elements.
Moreover, the matrix on the left-hand side of Eq. (42) does
not depend on ν0 and therefore can be inverted only once for
all ν0.

The calculation has to be performed for each values of Jπ

and for all the different types of interaction of interest. Finally,
the procedure has to be repeated separately for the Tz = −1
(n + 3H scattering), Tz = +1 (p + 3He scattering), and Tz =
0 (p + 3H and n + 3He scattering) cases.

The KVP also states [109–111] that the quantities [Sν,ν ′ ]
are a variational approximation to the exact S-matrix ele-
ments Sexact

ν,ν ′ . To clarify better this assertion, let us write 	ν =
	exact

ν + εν , where 	ν are the wave functions determined
as discussed above, 	exact

ν the exact wave functions, and εν

the corresponding “error” functions. Then the KVP assures
that |[Sν,ν ′] − Sexact

ν,ν ′ | ∝ ε2. Therefore, the convergence of the
quantities [Sν,ν ′ ] to the exact S-matrix elements is quadratic
in the error functions and consequently much faster than the
convergence of the first-order estimates Sν,ν ′ . Usually, the
quantities [Sν,ν ′] are called the “second-order” S-matrix el-
ements. We note also that the quantities [Sν,ν ′ ] automatically
verify the condition [Sν,ν ′ ] = [Sν ′,ν] (principle of detailed bal-
ance). On the other hand, for the S-matrix elements calculated
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solving the linear system given in Eq. (42), this property is not
guaranteed. Only after the inclusion of a sufficient number
of terms in the expansion of the core part in Eq. (33) is the
symmetry property for Sν,ν ′ approximately verified.

D. Details of the calculation

Let us now consider the problem of the computation of the
matrix elements of the Hamiltonian, and in particular of the
NN and 3N interactions. First, let us consider the “core-core”
matrix elements, which explicitly read

Ck,k′ = 〈
	K��T

μ gm(ρ)
∣∣H − E

∣∣	K ′�′�′T ′
μ′ gm′ (ρ)

〉
, (43)

where 	K��T
μ are given in Eqs. (24) and (25). This calculation

is considerably simplified using the following property of the
functions given in Eq. (25):

�K��T
μ (i, j, k, l ) =

∑
μ′

aK��T
μ,μ′ (p)�K��T

μ′ (1, 2, 3, 4), (44)

where the coefficients aK��T
μ,μ′ (p) have been obtained using the

techniques described in Ref. [112]. In this way, we can write

	K��T
μ gm(ρ) = gm(ρ)

∑
μ′

ãK��T
μ,μ′ �K��T

μ′ (1, 2, 3, 4), (45)

where

ãK��T
μ,μ′ =

12∑
p=1

aK��T
μ,μ′ (p). (46)

The sum over the permutations enters only in the construction
of the coefficients ã, and it can be performed beforehand. With
a wave function written in this way, most of the integrations
needed to compute Ck,k′ can be performed analytically. The
remaining low-dimensional integrations can therefore be eas-
ily calculated with sufficiently dense grids to obtain relative
errors �10−6. The adopted procedure is the same as described
in Ref. [28].

Second, let us consider the “core-asymptotic” and
“asymptotic-asymptotic” matrix elements,

Bλ
k,ν = 〈

	K��T
μ gm(ρ)

∣∣H − E
∣∣
λ

γ LS

〉
, (47)

Aλ,λ′
ν,ν ′ = 〈


−λ
γ LS

∣∣H − E
∣∣
λ′

γ ′L′S′
〉
. (48)

The computation of (H − E )
λ
γ LS can be simplified as fol-

lows. We refer specifically to the p + 3H asymptotic state
given in Eq. (14). Then

(H − E )
±
3LS = D3

4∑
l=1

[
H3(i jk) + Vil + Vjl + Vkl

+Wi jl + Wikl + Wjkl

+ e2
il

ril
+ e2

jl

r jl
+ e2

kl

rkl
−

∇2
x1p

MN
+ B3 − q2

3

2μ3

]
× [

YL(ŷl ) ⊗ [
φt

3(i jk) ⊗ χlξ
p
l

]
S

]
JJz

×
[

G̃L(η3, q3yl )

q3yl
± i

FL(η3, q3yl )

q3yl

]
, (49)

where H3(i jk) is the Hamiltonian of the three-body subsys-
tems formed by particles i jk, φt

3 the 3H bound-state wave
function, B3 the corresponding binding energy, Vil (Wi jl ) the
NN (3N) potential acting on the pair (triplet) of particles il
(i jl), and

e2
il

ril
≡ e2

ril

1 + τz(i)

2

1 + τz(l )

2
, (50)

is the point-Coulomb potential between particles i and l
including the isospin projection over the proton states (even-
tual additional electromagnetic interactions are lumped in V ).
Above τz(i) is the isospin Pauli matrix acting on particle i.
Using H3(i jk)φt

3(i jk) = −B3φ
t
3(i jk) and that x1p = κ3yl , see

Eqs. (16) and (18), one obtains

(H − E )
±
3LS = 
±

3LS (T ) + 
±
3LS (V ), (51)


±
3LS (T ) = − D3

2μ3

4∑
l=1

[
YL(ŷl ) ⊗ [

φt
3(i jk)⊗χlξ

p
l

]
S

]
JJz

× GL(η3, q3yl ) , (52)


±
3LS (V ) = D3

4∑
l=1

(
Vil + Vjl + Vkl

+Wi jl + Wikl + Wjkl

+ e2
il

ril
+ e2

jl

r jl
+ e2

kl

rkl
− e2

yl

)
× [

YL(ŷl ) ⊗ [
φt

3(i jk) ⊗ χlξ
p
l

]
S

]
JJz

×
[

G̃L(η3, q3yl )

q3yl
± i

FL(η3, q3yl )

q3yl

]
. (53)

We have divided the expression of (H − E )
±
3LS in a kinetic

energy part plus a potential energy part. Note in the kinetic en-
ergy part the appearance of the function GL defined in Eq. (8).
Moreover, 2μ3 = κ2

3 MN , see Eq. (16), and 2η3q3 = e2κ2
3 MN ,

see Eq. (15). For the potential part, since φt
3 is antisymmetric

with respect to the exchange of the particles i, j, and k, in the
matrix elements defined in Eqs. (47) and (48) one can also
take Vil + Vjl + Vkl → 3Vil , and so on.

We note that the functions 
±
3LS (T ) and 
±

3LS (V ) now
vanish asymptotically at least as 1/(yl )2. In fact, due to the
presence of the bound-state wave function φt

3(i jk), the parti-
cles i, j, and k must be close. Then, we need only to discuss
what happens for yl → ∞. In this limit, the function GL goes
to zero exponentially as discussed in Sec. II A. For 
±

3LS (V ),
when yl → ∞, all distances ril , r jl , and rkl go to ∞ and
therefore all the NN and 3N potential terms V and W rapidly
vanish. Regarding the Coulomb term, it can be rewritten as[

e2
il

ril
+ e2

jl

r jl
+ e2

kl

rkl
− e2

yl

]
φt

3(i jk)

=
[

e2
il

(
1

ril
− 1

yl

)
+ e2

jl

(
1

r jl
− 1

yl

)
+ e2

kl

(
1

rkl
− 1

yl

)]
φt

3(i jk), (54)
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since in the 3H wave function φt
3(i jk) only one of the particle

is a proton and always (e2
il + e2

jl + e2
kl )φ

t
3 = e2φt

3. Therefore,

for yl → ∞ we have 1
ril

− 1
yl

∼ O(1/y2
l ) → 0, and so on. A

similar analysis can be performed for all the asymptotic states

±

γ LS with the other values of γ (γ = 1, 2, and 4). Clearly,
when the particle l is a neutron, the Coulomb term is missing.
Therefore, also for the matrix elements Aλ,λ′

ν,ν ′ given in Eq. (48),
the integrands are always short ranged and their calculation
does not present any singular behavior asymptotically.

As a final remark, we note that the relation
H3(i jk)φt

3(i jk) = −B3φ
t
3(i jk) is not exactly verified in

our calculation, as we construct variationally φt
3 in terms of

an expansion over the three-body HH functions. However,
as discussed in Ref. [110], this inaccuracy contributes at the
end to increase the error function εν and the full procedure
maintains its validity (for example, the quantities [Sν,ν ′ ]
are still a variational approximation of the exact ones).
As discussed later, we control this potential source of
inaccuracy by increasing the number of terms included in the
expansion of φt

3. We can anticipate that the error related to
this approximation is well under control.

Let us now resume the discussion of the matrix elements
given in Eqs. (47) and (48). Their calculations is simplified
by “projecting” the states 
±

γ LS and also 
±
γ LS (T ) over a com-

plete set of angular-spin-isospin states, constructed in terms
of the Jacobi vectors xi corresponding to the particle order
1,2,3,4. For example:


±
γ LS =

∑
α

F γ LS±
α (x1, x2, x3)Yα (x̂1, x̂2, x̂3), (55)

where

Yα (x̂1, x̂2, x̂3) = {[(
Y�3 (x̂3)(s1s2)S2

)
j3

(
Y�2 (x̂2)s3

)
j2

]
J2

× (
Y�1 (x̂1)s4

)
j1

}
JJz

[[
(t1t2)T2t3

]
T3

t4
]

T Tz
, (56)

and α = {�1, �2, �3, j1, j2, j3, J2, S2, T2, T3, T }. Note that due
to the antisymmetry of the wave function, we must have
�3 + S2 + T2 = odd. We recall that the indices LSγ specify
the asymptotic states defined in Eq. (3). These quantities are
expanded in terms of the states Yα constructed using the “ j j”
coupling” for convenience, since with these states it is easier
to compute the potential matrix elements (see below). This
“partial wave expansion” is performed including all states α

such that �i � �max. The functions F γ LS±
α can be obtained very

accurately by direct integration

F γ LS±
α (x1, x2, x3) =

∫
d x̂1d x̂2d x̂3 [Yα (x̂1, x̂2, x̂3)]†
±

γ LS.

(57)

This six-dimensional integral can be reduced to a three-
dimensional integral by performing the analytical integration
over three Euler angles. Then we are left with the integra-
tion over the “internal” angles or, in other words, over the
variables μ12 = x̂1 · x̂2, μ13 = x̂1 · x̂3, and μ23 = x̂2 · x̂3. This
integration is performed using a Gauss-Legendre quadrature
technique over nμ points (see Sec. III C).

Finally, using the transformation given in Eq. (44) and the
partial wave expansion given above, all these terms, 	k , 
±

γ LS ,

and 
±
γ LS (T ), can be rewritten as

	X =
∑

α

FX
α (x1, x2, x3)Yα (x̂1, x̂2, x̂3), (58)

where 	X stands for 	k , 
±
γ LS , or 
±

γ LS (T ). Above, F is ei-
ther a combinations of Jacobi polynomials of the hyperangles
and functions gm(ρ), see Eq. (45) for 	k , or corresponds to a
function F γ LS±

α for the asymptotic parts.
Then the matrix elements of a two-body potential can

be evaluated as explained in the following. Permuting the
particles in either the “bra” and in the “ket,” and using the
antisymmetry properties of 	k , 
±

γ LS , φt
3(i jk), and so on, it is

always possible to reduce these matrix elements to

〈	X |V12|	X ′ 〉. (59)

These integrals are easily calculated using the decomposition
given in Eq. (58). Here we have developed two different
procedures depending on whether the potential is local or
nonlocal.

1. Local potentials

In this case Eq. (59) is given explicitly by

〈	X |V12|	X ′ 〉 =
∫

d3x1d3x2d3x3 (	X (x1, x2, x3))†

×V (x3)	X ′
(x1, x2, x3). (60)

The calculation of the above integral is performed in two
steps. First, the spin-isospin-angular matrix elements∫

d x̂1d x̂2d x̂3 Yα (x̂1, x̂2, x̂3)†V (x3) Yα′ (x̂1, x̂2, x̂3)

= v
j3,T3,T,T ′

3 ,T ′

�3,S2,�
′
3,S

′
2

(x3)δ j3, j′3δ j2, j′2δ j1, j′1δ�2,�
′
2
δ�1,�

′
1

(61)

are computed analytically, and, second, the integration over
the moduli of the Jacobi vectors,∫ ∞

0
dx1dx2dx3 x2

1x2
2x2

3

(
FX

α (x1, x2, x3)
)∗

× v
j3,T3,T,T ′

3 ,T ′

�3,S2,�
′
3,S

′
2

(x3) FX ′
α′ (x1, x2, x3), (62)

is obtained in the following way:∫ ∞

0
dx1dx2dx3 x2

1x2
2x2

3

=
∫ ∞

0
ρ8dρ

∫ π
2

0
dϕ3(cos ϕ3)2(sin ϕ3)5

×
∫ π

2

0
dϕ2(cos ϕ2)2(sin ϕ2)2, (63)

where the hyperspherical angles ϕ2 and ϕ3 are defined in
Eq. (22). The integration over ρ is performed on a “scaled”
grid, using the new variable 0 � t � 1,

ρ ≡ ρ(t ) = h
α

nρ t
s − 1

αs − 1
. (64)
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The parameters h, αs, and nρ are chosen to optimize the inte-
gration. For example, most of the calculation performed in the
present work have been performed with the choice h = 0.04
fm, αs = 1.05, and nρ = 96. Note that ρ(t = 1) ≈ 90 fm in
this case.

The integration over ϕ2 is performed using the variable x =
cos 2ϕ2 so that∫ π

2

0
dϕ2(cos ϕ2)2(sin ϕ2)2 = 1

8

∫ +1

−1
dx

√
1 − x2, (65)

and the integration over x is then performed using nx Gauss-
Chebyshev points [106]. Finally, the integration over ϕ3 is
performed in a similar way, namely using the variable z =
cos 2ϕ3,∫ π

2

0
dϕ3(cos ϕ3)2(sin ϕ3)5 = 1

16
√

2

∫ +1

−1
dz

√
1 + z(1 − z)2,

(66)
using nz Gauss-Legendre points related to the zeros of the
P2nz+1 Legendre polynomial [106].

In summary, for local potentials the accuracy of the matrix
elements, and consequently of the phase shifts, depends on the
following parameters:

(i) �max, the maximum value of the orbital angular mo-
mentum used to truncate the expansion of Eq. (55).
Values �max = 5 or 6 have been found appropriate to
obtain a sufficient numerical accuracy.

(ii) The numbers nx, nz, and nμ (the latter is used
to perform the projection given in Eq. (57)) of
Gauss-Chebyshev and Gauss-Legendre points used
to perform the integrations of Eqs. (57), (65), and
(66). Typical used values are nz = 50, nx = 30, and
nμ = 16.

(iii) The values of the parameters h, αs, and nρ used to
perform the integration over the hyperradius.

(iv) The number N3 of three-body HH functions used to
construct the trinucleon bound-state wave function
φ3(i jk) entering the asymptotic functions 
±

γ LS , see
Eq. (3).

(v) The number M of Laguerre polynomials used to ex-
pand the hyperradial functions uγ LS

K��T μ(ρ), as given
in Eqs. (30) and (31). This expansion depends also
on the parameter b, and therefore one has also to
check the dependence of the results on this (nonlinear)
parameter.

In Sec. III C, we report a study of the dependence of the
calculated phase shifts on these parameters.

2. Nonlocal NN potentials

In this case Eq. (59) is calculated in a slightly different way.
Now we have

〈	X |V12|	X ′ 〉 =
∫

d3x1d3x2d3x3d3x′
3 (	X (x1, x2, x3))†

×V (x3, x′
3)	X ′

(x1, x2, x′
3). (67)

The calculation of the above integral is performed in two
steps. First, the spin-isospin-angular matrix elements∫

d x̂1d x̂2d x̂3d x̂′
3 Yα (x̂1, x̂2, x̂3)†V (x3, x′

3) Yα′ (x̂1, x̂2, x̂′
3)

= v
j3,T3,T,T ′

3 ,T ′

�3,S2,�
′
3,S

′
2

(x3, x′
3)δ j3, j′3δ j2, j′2δ j1, j′1δ�2,�

′
2
δ�1,�

′
1
, (68)

are computed analytically, and, second, the integration over
the moduli of the Jacobi vectors,∫ ∞

0
dx1dx2dx3dx′

3 x2
1x2

2x2
3x′2

3

(
FX

α (x1, x2, x3)
)∗

×v
j3,T3,T,T ′

3 ,T ′

�3,S2,�
′
3,S

′
2

(x3, x′
3) FX ′

α′ (x1, x2, x′
3), (69)

is obtained by using Gauss quadrature methods in the follow-
ing way: ∫ ∞

0
dx1dx2dx3dx′

3 x2
1x2

2x2
3 (x′

3)2

=
∫ ∞

0
dρ2dx3dx′

3 (ρ2)5x2
3 (x′

3)2

×
∫ π

2

0
dφ2(cos φ2)2(sin φ2)2, (70)

where x2 = ρ2 cos φ2 and x1 = ρ2 sin φ2. The integration over
φ2 is performed as specified in Eq. (65). Moreover,∫ ∞

0
dρ2(ρ2)5F (ρ2) =

∫ ∞

0
dρ2(ρ2)5e−ayρ2 eayρ2 F (ρ2)

= 1

(ay)6

∫ ∞

0
dy(y5e−y)eyF (y/ay), (71)

where y = ayρ2 and ay is a parameter. The integration over y is
performed using ny Gauss points yi generated from the weight
function y5e−y. The parameter ay is then chosen in order to
achieve accurate integrals with as-small-as-possible values of
ny. Finally, the integration of x3 (and x′

3) is performed in a
similar way, namely∫ ∞

0
dx3 (x3)2F (x3) =

∫ ∞

0
dx3 (x3)2e−azx3 eazx3 F (x3)

= 1

(az )3

∫ ∞

0
dz (z2e−z )ezF (z/az ), (72)

where z = azx3, with az being a free parameter. The integra-
tion over z is performed using nz Gauss points zi generated
from the weight function z2e−z. The parameter az is then
chosen in order to achieve accurate integrals with as-small-
as-possible values of nz.

In this case, the accuracy of the matrix elements, and con-
sequently also of the calculated phase shifts, depends on the
following parameters:

(i) �max, the maximum value of the orbital angular mo-
mentum used to truncate the expansion of Eq. (55).
Values �max = 5 or 6 have been found appropriate
to obtain a sufficient numerical accuracy also in this
case.

(ii) The values of the number of points used to per-
form the integrations, namely nz, ny, nx, and nμ [as
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before, nx is used to perform the integration over
φ2 as specified in Eq. (65) and nμ is used to per-
form the projection given in Eq. (57)]. Typical used
values are nz = 30, ny = 50, nx = 20, and nμ = 16.
The precision of the integrals depends also on the
parameters ay and az. Note that, once large-enough
values of ny and nz are used, the dependence on these
two parameters is negligible. Usually, we have taken
ay = az = 7 fm−1.

(iii) The number N3 of three-body HH functions used to
construct the trinucleon bound-state wave function
φ3(i jk).

(iv) The number M of Laguerre polynomials used to ex-
pand the hyperradial functions uγ LS

K��T μ(ρ), as given
in Eqs. (30) and (31). This expansion depends also on
b, and therefore one has also to check the dependence
of the results on this (nonlinear) parameter.

In Sec. III C, we will report a study of the dependence of
the calculated phase shifts on these parameters.

3. Matrix elements of the 3N potential

The matrix elements of a three-body potential Wi jk can
be evaluated in a similar way. In this work, we have taken
into account only local 3N potentials. Consider the matrix
element of W123. This operator is completely symmetric under
the exchange of particles 1, 2, and 3 and depends only on the
Jacobi vectors x3 and x2. By decomposing the wave function
as in Eq. (58), we have explicitly

〈	X |W123|	X ′ 〉 =
∫

d3x1d3x2d3x3 (	X (x1, x2, x3))†

×W (x2, x3)	X ′
(x1, x2, x3), (73)

where the dependence of W (x2, x3) on spin-isospin opera-
tors is understood. The calculation of the above integral is
performed in two steps. First, the spin-isospin-angular matrix
elements∫

d x̂1d x̂2d x̂3 Yα (x̂1, x̂2, x̂3)† W (x2, x3) Yα′ (x̂1, x̂2, x̂3)

= w
J2,T3,T,T ′

3 ,T ′

�3S2 j3�2 j2,�′
3S′

2 j′3�
′
2 j′2

(x2, x3)δ j1, j′1δ�1,�
′
1
δJ2,J ′

2
(74)

are computed mostly analytically (we are left with a one-
dimensional integration with respect to x̂2 · x̂3, which can be
readily obtained). We have prepared a code which for given
values of x2, x3 computes efficiently those matrix elements for
all forms of 3N potentials considered so far, namely Tucson-
Melbourne, Brazil, Urbana, Illinois, and chiral N2LO. The

calculation is completed by the integration over the moduli
of the Jacobi vectors,∫ ∞

0
dx1dx2dx3 x2

1x2
2x2

3

(
FX

α (x1, x2, x3)
)∗

×w
J2,T3,T,T ′

3 ,T ′

�3S2 j3�2 j2,�′
3S′

2 j′3�
′
2 j′2

(x2, x3)FX ′
α′ (x1, x2, x3), (75)

again obtained by using Gauss quadrature method, as dis-
cussed previously. In order to speed up the calculation, we
have imposed the following truncation to the 3N matrix ele-
ments:

w
J2,T3,T,T ′

3 ,T ′

�3S2 j3�2 j2,�′
3S′

2 j′3�
′
2 j′2

(x2, x3) = 0 for

� > �3N
max, J2 > J3N

max, K > K3N
max, (76)

where � can be any of �3, �2, �′
3, and �′

2. In our calculation, w
has been taken to vanish when acting on HH functions (either
on the right or on the left) having a grand angular quantum
number K > K3N

max. This truncation can be justified since the
3N potentials under consideration are rather smooth at short
interparticle distances, and the contribution of components of
large �, J2, and K has been found to be very small. This has
been verified numerically increasing the values of �3N

max, J3N
max,

and K3N
max until the calculated phase shifts were found rather

insensitive to further changes. Examples of the dependence of
the results on these parameters will be discussed in Sec. III D.

4. Parameterization of the S matrix

The scattering observables can be obtained directly from
the S-matrix elements. In the following, we present also the
results for a selected set of S-matrix elements in order to check
the convergence and compare with the results of the PSA of
Ref. [65] for p + 3He scattering. Always we calculate the
S-matrix elements (and the observables) via Eq. (36), namely
using the “second-order” estimates given by the quantities
[Sγ ,γ

LS,L′S′ ] (we simply call them Sγ ,γ

LS,L′S′ from now on). More-
over, these S-matrix elements are parameterized as follows.

For n + 3H, p + 3He, and p + 3H scattering below the
n + 3He threshold (Tr � 0.73 MeV), the number of open
asymptotic clusterizations is 1. Then, for J = 0, there is only
one LS combination in the sum over L′S′ of Eq. (17), namely
L′ = 0, S′ = 0 (L′ = 1, S′ = 1) for the even- (odd-) parity
state. Consequently, for these cases the S matrix reduces to
one parameter which is parameterized as usual as Sγ ,γ ′

LS,LS =
ηJπ exp(2iδJπ ). For J > 0, there are always two possible LS
combinations, and correspondingly the S matrix has been
parameterized as [113]

Sγ ,γ

LS,L′S′ =
(

cos εJπ − sin εJπ

sin εJπ cos εJπ

)[
η1 exp

(
2iδ1

Jπ

)
0

0 η2 exp
(
2iδ2

Jπ

)](
cos εJπ sin εJπ

− sin εJπ cos εJπ

)
. (77)

In this case we define ηJπ =
√

(η2
1 + η2

2 )/2. As is well known,
the S matrix should be unitary. However, in the application of
the Kohn principle given in Eq. (36), the value ηJπ = 1 is not
imposed: It is achieved only when the corresponding core part

	
γ LS
C is well described by the HH basis. We can use the value

of ηJπ as a test of the convergence of the HH expansion. In
cases of poor convergence, ηJπ is found to depend very much
also on the choice of fL(yi ), the function used to regularize the
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Coulomb function GL. This function depends on the nonlinear
parameter β, see Eqs. (6) and (7), and thus another test of the
convergence is performed by analyzing the dependence of ηJπ

vs. the parameter β. At the beginning of the calculation, when
the number of HH functions is not enough to get convergence,
ηJπ will be extremely dependent on the value of β (the phase
shifts depend less critically on β). By increasing the number
of HH components in the core wave function, we observe that
ηJπ → 1 and the dependence on β becomes negligible. Note
that the convergence rate has been found to depend on the
value of β, and there exist some critical values of this parame-
ter where the convergence can be very slow. However, it is not
difficult to find regions of values of β where the convergence
is fast and smooth and the final results are independent of β.
Since we are here interested in the study of the convergence
of the HH function, we have chosen β in one of the “favor-
able” region, where the convergence is achieved in a smooth
and fast way. A detailed study on this subject is reported in
Sec. III A.

For p + 3H above the n + 3He threshold (Tr � 0.73 MeV)
and n + 3He scattering, there are two open asymptotic clus-
terizations, γ = 3, 4. Now the dimension of the S matrix is
doubled with respect to the cases discussed above. Then it is
more convenient to presents the results directly in terms of the
matrix elements parameterized as

Sγ ,γ ′
LS,L′S′ = η

γ ,γ ′
LS,L′S′ exp

[
2iδγ ,γ ′

LS,L′S′
]
. (78)

The parameters η
γ ,γ ′
LS,L′S′ are always �1.

E. Choice of the basis

The main difficulty of the application of the HH technique
is the slow convergence of the basis with respect to the grand
angular quantum number K . This problem has been overcome
by dividing the HH basis in classes, depending on the value of
L = �1 + �2 + �3, total spin �, and n2 and n3. The calculation
is started by including in the expansion of the wave function
the HH states of the first class (class “C1”) having grand angu-
lar quantum number K � K1 and studying the convergence of
a quantity of interest (for example, the phase shifts) increasing
the value of K1. Once a satisfactory value of K1 = K1max

is reached, the states of the second class (class “C2”) with
K � K2 are added in the expansion, keeping all the states of
the class C1 with K1 � K1max. Then K2 is increased until the
desired convergence is achieved, and so on.

Note that in the case of p + 3He or n + 3H scattering, the z
component of the total isospin is |Tz| = 1, and therefore only
channels with total isospin T = 1 or 2 have to be included
in the expansion. The contribution of the T = 2 channels is
expected to be quite tiny, and in this paper they have been
disregarded. On the other hand, for p + 3H and n + 3He
scattering, the z component of the total isospin is Tz = 0, and
therefore we have to include in the HH expansion channels
with total isospin T = 0, 1, and 2. However, also in this case
we have disregarded the contribution of the T = 2 channels.

Let us now discuss the choice of the classes of HH states
for the various Jπ cases (in the following, we will use also
the spectroscopic notation). For example, for Jπ = 1+, both
3S1 and 3D1 components can be constructed by including a

rather small number of channels, since in this case the Pauli
principle does not allow for the overlaps between the 4Ns.
As a consequence, the core part is rather small and does not
require a large number of channels to be well described. The
same happens for L � 2 waves (Jπ = 2+, 3±, 4± and so on),
where the centrifugal barrier prevents the two clusters to come
close to each other.

On the other hand, it is well known that there is a strong
attraction in P waves [114]. In fact, various R-matrix analyses
have shown the presence of resonances for the Jπ = 0−, 1−,
and 2− waves. As a consequence, the convergence of the
HH expansion in these cases is much more problematic and,
correspondingly, for these cases we have organized differently
the HH expansion as explained below.

Regarding the Jπ = 0+ state, we have to distinguish be-
tween T = 0 and T = 1 states. For the T = 1 states, the only
needed for the study of n + 3H and p + 3He processes, the
Pauli principle prevents the overlaps between identical nucle-
ons and, consequently, the core part does not require a large
number of channels to be well described. On the other hand,
in the Jπ = 0+ T = 0 wave, needed for the study of p + 3H
and n + 3He processes, the potential is strongly attractive and
the construction of the wave function turns out to be more
difficult. In fact, in this wave there is the formation of the
α particle with binding energy of 28.3 MeV. Moreover, just
below the threshold of n + 3He scattering, there is the first
excited state of the α particle and therefore the S matrix in
vicinity of this resonance will vary very fast with the energy.
As a consequence, the convergence of the HH expansion for
this state will require a large number of channels.

Let us now define in detail the choice of the classes in
the various cases. For the less-critical cases (J = 1+, 2+, 3±,
4±, and so on), we have organized the HH expansion simply
grouping the HH functions in classes depending on the value
of L = �1 + �2 + �3. For example, for Jπ = 1+, the first class
includes all HH functions with L = 0, the second one all HH
functions with L = 2, and so on. So class C1 is composed of
3 T = 0 channels and 4 T = 1 channels with L = 0, class C2
by 51 T = 0 channels and 76 T = 1 channels with L = 2,
class C3 by 159 T = 0 channels and 239 T = 1 channels
with L = 4, and so on. Clearly, in the study of n + 3H and
p + 3He scattering, we need only to include the channels with
T = 1. As will be shown below, the third class gives already
a tiny contribution to the S matrix. A similar procedure has
been used for the other “easy” waves Jπ = 2+, 3±, and so on,
and also for the Jπ = 0+ T = 1 wave in case of the study of
n + 3H and p + 3He scattering. Clearly, for negative-parity
states, class C1 includes all HH functions with L = 1, class
C2 all HH functions with L = 3, and so on. For these cases,
in general, the convergence is achieved, also with a strong
repulsive potential like the AV18, with fairly small values of
grand angular quantum number K (K � 30).

Regarding the expansion of the Jπ = 0+ state for p + 3H
and n + 3He scattering, we have already discussed how the
construction of the T = 0 component of the wave function is
more critical. In this case, we need to include in the expansion
HH functions with K up to 60 or more. We have followed the
same subdivision adopted for the study of the ground state
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TABLE I. Quantum numbers of the first channels considered in
the expansion of the wave function of the 0+ state. See the text for
details.

α �1 �2 �3 L2 � Sa Sb � Ta Tb T

1 0 0 0 0 0 1 1/2 0 0 1/2 0
2 0 0 0 0 0 0 1/2 0 1 1/2 0
3 0 0 2 0 2 1 3/2 2 0 1/2 0

of the α particle [6]. First, we have seen that a very slow
convergence is observed for the particular sets of HH
functions which incorporate “two-body” correlations. It is
therefore appropriate to group these HH functions in the first
class and treat them with particular attention. In practice, in
the first class we include the HH states with n2 = 0 belonging
to the channels listed in Table I. Note that the corresponding
radial part of the HH functions depends only on cos φ3p =
ri j/ρ and thus these states take into account two-body corre-
lations [see Eq. (23)]. This is the part of the wave function
more difficult to construct due to the strong repulsions be-
tween the particles at short distances. In the second class,
we have included the HH functions belonging to the channels
listed in Table I but with n2 > 0. These HH functions depend
on cos φ2p, which is proportional to the distance of particle
k from the center of mass of the pair i j. Therefore, these
states start to take into account three-body correlations. For
the other classes, we have followed the procedure to group
them depending on the values of L and T . In practice, class
C3 includes the (remaining) channels with T = 0 and L = 2
and class C4 includes all T = 1 channels with L � 2. Then
class C5 (C6) includes both T = 0 and T = 1 channels with
L = 4 (L = 6), and so on.

Let us consider now the Jπ = 0−, 1−, and 2− waves. Note
that, since the waves under consideration are of negative par-
ity, only HH functions with odd values of L = �1 + �2 + �3

(and K) have to be considered. Also in these cases it is
necessary to consider first the states that describe “two-body”
correlations and group them in the first class. The second class
will contain HH functions describing three-body correlations,
and then we start to group them depending on the values
of L. However, for these states, we have observed a quite
different rate of convergence with respect to the inclusion of
HH functions belonging to channels with a given total spin �.
In particular, the channels with � = 1 give a very important
contribution to the structure of the scattering state for these
values of Jπ . On the contrary the channels with � = 0 and
� = 2 are less important. The final choice of the classes for
the cases Jπ = 0−, 1−, and 2− is detailed below.

(i) Class C1. In this class are included the HH states with
n2 = 0 belonging to the channels of Tables II–IV for
the waves with Jπ = 0−, 1−, and 2−, respectively,
for both T = 0 and T = 1. As discussed above, these
states take into account two-body correlations.

(ii) Class C2. This class includes HH functions belonging
(i) to the same channels as for class C1 but with n2 >

0 and (ii) to the rest of channels with �1 + �2+�3=1.

TABLE II. Quantum numbers of the first channels considered in
the expansion of the wave function of the 0− state. See the text for
details.

α �1 �2 �3 L2 � Sa Sb � Ta Tb T

1 1 0 0 1 1 1 1/2 1 0 1/2 0
2 1 0 0 1 1 1 3/2 1 0 1/2 0
3 1 0 0 1 1 0 1/2 1 1 1/2 0
4 1 0 2 1 1 1 1/2 1 0 1/2 0
5 1 0 2 1 1 1 3/2 1 0 1/2 0
6 1 0 2 1 1 0 1/2 1 1 1/2 0

1 1 0 0 1 1 1 1/2 1 0 1/2 1
2 1 0 0 1 1 1 3/2 1 0 1/2 1
3 1 0 0 1 1 0 1/2 1 1 1/2 1
4 1 0 0 1 1 0 1/2 1 1 3/2 1
5 1 0 2 1 1 1 1/2 1 0 1/2 1
6 1 0 2 1 1 1 3/2 1 0 1/2 1
7 1 0 2 1 1 0 1/2 1 1 1/2 1
8 1 0 2 1 1 0 1/2 1 1 3/2 1

The HH functions of type (i) take into account the
three-body correlations.

(iii) Class C3. This class includes the HH functions be-
longing to the remaining channels with �1 + �2 +
�3 = 3 and � = 1.

TABLE III. Quantum numbers of the first channels considered in
the expansion of the wave function of the 1− state. See the text for
details.

α �1 �2 �3 L2 � Sa Sb � Ta Tb T

1 1 0 0 1 1 1 1/2 0 0 1/2 0
2 1 0 0 1 1 0 1/2 0 1 1/2 0
3 1 0 0 1 1 1 1/2 1 0 1/2 0
4 1 0 0 1 1 1 3/2 1 0 1/2 0
5 1 0 0 1 1 0 1/2 1 1 1/2 0
6 1 0 2 1 1 1 1/2 0 0 1/2 0
7 1 0 2 1 1 0 1/2 0 1 1/2 0
8 1 0 2 1 1 1 1/2 1 0 1/2 0
9 1 0 2 1 2 1 1/2 1 0 1/2 0
10 1 0 2 1 1 1 3/2 1 0 1/2 0
11 1 0 2 1 2 1 3/2 1 0 1/2 0

1 1 0 0 1 1 1 1/2 0 0 1/2 1
2 1 0 0 1 1 0 1/2 0 1 1/2 1
3 1 0 0 1 1 0 1/2 0 1 3/2 1
4 1 0 0 1 1 1 1/2 1 0 1/2 1
5 1 0 0 1 1 1 3/2 1 0 1/2 1
6 1 0 0 1 1 0 1/2 1 1 1/2 1
7 1 0 0 1 1 0 1/2 1 1 3/2 1
8 1 0 2 1 1 1 1/2 0 0 1/2 1
9 1 0 2 1 1 0 1/2 0 1 1/2 1
10 1 0 2 1 1 0 1/2 0 1 3/2 1
11 1 0 2 1 1 1 1/2 1 0 1/2 1
12 1 0 2 1 2 1 1/2 1 0 1/2 1
13 1 0 2 1 1 1 3/2 1 0 1/2 1
14 1 0 2 1 2 1 3/2 1 0 1/2 1
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TABLE IV. Quantum numbers of the first channels considered in
the expansion of the wave function of the 2− state. See the text for
details.

α �1 �2 �3 L2 � Sa Sb � Ta Tb T

1 1 0 0 1 1 1 1/2 1 0 1/2 0
2 1 0 0 1 1 1 3/2 1 0 1/2 0
3 1 0 0 1 1 0 1/2 1 1 1/2 0
4 1 0 2 1 1 1 1/2 1 0 1/2 0
5 1 0 2 1 2 1 1/2 1 0 1/2 0
6 1 0 2 1 3 1 1/2 1 0 1/2 0
7 1 0 2 1 1 1 3/2 1 0 1/2 0
8 1 0 2 1 2 1 3/2 1 0 1/2 0
9 1 0 2 1 3 1 3/2 1 0 1/2 0

1 1 0 0 1 1 1 1/2 1 0 1/2 1
2 1 0 0 1 1 1 3/2 1 0 1/2 1
3 1 0 0 1 1 0 1/2 1 1 1/2 1
4 1 0 0 1 1 0 1/2 1 1 3/2 1
5 1 0 2 1 1 1 1/2 1 0 1/2 1
6 1 0 2 1 2 1 1/2 1 0 1/2 1
7 1 0 2 1 3 1 1/2 1 0 1/2 1
8 1 0 2 1 1 1 3/2 1 0 1/2 1
9 1 0 2 1 2 1 3/2 1 0 1/2 1
10 1 0 2 1 3 1 3/2 1 0 1/2 1

(iv) Class C4. This class includes the HH functions be-
longing to the channels with �1 + �2 + �3 = 3 and
� = 0 and 2.

(v) Class C5. This class includes the HH functions be-
longing to the channels with �1 + �2 + �3 = 5.

We remark again that the classification related to the total
spin is important since we have observed that the component
with � = 1 requires more states to be well accounted for,
while the � = 2 and � = 0 components give only a tiny
contribution to the phase shift (however, they are important
for achieving ηJπ = 1). Some examples of convergence for
the phase shifts, mixing angles, and “elasticity parameter” ηJπ

will be given in the next section.

III. CONVERGENCE AND NUMERICAL STABILITY

In this section, an analysis of the convergence and numeri-
cal stability of the results will be discussed.

A. Study of the convergence for n + 3H and p + 3He scattering

Let us first concentrate on n + 3H and p + 3He scattering.
At the energies considered here only one asymptotic state
is open, and the S matrix can be conveniently decomposed
in terms of a single phase shift (for the Jπ = 0± waves) or
in terms of two phase shifts and one mixing parameter, as
discussed in Sec. II D 4. We recall that for these processes we
need to include only T = 1 channels in the HH expansion.

Here we have considered the AV18 and N3LO500 potential
models. Both potentials represent the NN interaction in its full
richness, with short-range repulsion, tensor, and other non-
central components and charge symmetry-breaking terms, and
both reproduce the NN scattering data with a χ2/datum very

close to 1. The main difference is that the AV18 interaction
is local and has a strong repulsive part at short interparticle
distances, while the N3LO500 potential is nonlocal and has a
somewhat less repulsive core. In both cases, the electromag-
netic interaction has been limited to just the point-Coulomb
potential. Moreover, we have taken 1/MN = 41.47108 MeV
fm2 with the AV18 potential and 1/MN = 41.47 MeV fm2

with the N3LO500 potential. The function GL has been reg-
ularized with method 1 corresponding to two values of β as
reported in the tables.

Since the convergence is similar for both n + 3H and
p + 3He phase shifts, we will concentrate on the charged case,
where the presence of the long-range Coulomb potential can
complicate the calculation. Moreover, the convergence has
been found to be slower as the proton energy Ep = (4/3)Tr in-
creases, so the tests have been performed for Ep = 5.54 MeV,
the larger p + 3He energy considered in this paper. In this
subsection, the matrix elements have been computed using
�max = 5, nz = 30, ny = 50, nx = 20, and nμ = 16. We have
in all cases used M = 16 and b = 4.0 fm−1 in the expansion
of the hyperradial functions uγ LS

K��T μ(ρ).
Let us discuss first the convergence for the “easy” cases,

namely for Jπ = 0+, 1+, 2+, 3± and so on. As an example, we
consider here only the Jπ = 0+ case. As discussed previously,
for n + 3H and p + 3He scattering we have only one possi-
ble clusterization and for Jπ = 0+, L, S = 0, 0, the S matrix
is one-dimensional, parameterized as η0+ exp[2iδ( 1S0)]. The
results obtained for the p + 3He η0+ and δ( 1S0) at Ep =
5.54 MeV (corresponding to Tr = 4.15 MeV) are reported in
Table V. As can be seen from the table, the convergence is
similar for both potentials, since in this wave the interaction
between p and 3He clusters is dominated by the Pauli repul-
sion. The differences between the phase shifts obtained by
the two potentials are related to the different 3He binding
energy (and radius). Including an appropriate 3N interaction,
the phase shifts calculated with the different models becomes
quite close to each other. The inclusion of the first class
(channels with L = 0) already produces a very good estimate
for the phase shift. The inclusion of the second class (channels
with L = 2) decreases the phases shift by about 0.3◦ (0.7◦) for
the N3LO500 (AV18) case. Finally, the inclusion of the third
class (channels with L = 4) produces only tiny changes in the
result, showing the rapid convergence with respect to L.

From the table, we can also observe the dependence of
η and δ with respect to the chosen value of β. As it can be
seen, δ practically does not depend on β. On the contrary, the
inelasticity parameter is quite sensitive to β when the number
of HH functions included in the expansion is small. However,
including the second class with HH states up to K2 ≈ 28,
the dependence on β is noticeably reduced and η → 1. Note
that the inclusion of the third class has only a tiny effect on
η. For N3LO500, including the three classes, η becomes 1
with nearly five digits. For AV18, although the phase shift
has reached a good convergence, η is slightly different from
unity. It appears necessary in this case to include more states
of the first and second classes to reach an accuracy similar to
the N3LO500 case. An analogous behavior is observed using
method 2 of regularization, and for the other “easy” states 1+,
2+, 3±, and so on.
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TABLE V. Convergence of the Jπ = 0+ p + 3He inelasticity
parameter η0+ and phase shift δ( 1S0) (◦) at Ep = 5.54 MeV corre-
sponding to the inclusion in the core part of the wave function of
three different classes in which the HH basis has been subdivided.
See the main text for more details. The N3LO500 and AV18 poten-
tials are considered here with the inclusion of the point-Coulomb
interaction. The function GL has been regularized with method 1,
using the two values of β.

β = 0.80 fm−1 β = 0.90 fm−1

K1 K2 K3 η0+ δ( 1S0) η0+ δ( 1S0 )

N3LO500
32 1.00495 −68.914 1.00027 −68.909
36 1.00501 −68.911 1.00029 −68.906
40 1.00505 −68.909 1.00029 −68.904
44 1.00507 −68.909 1.00030 −68.903

44 16 1.00025 −68.581 1.00055 −68.568
44 20 1.00005 −68.564 1.00026 −68.558
44 24 1.00001 −68.557 1.00009 −68.553
44 28 1.00000 −68.555 1.00002 −68.549

44 28 10 1.00000 −68.547 1.00002 −68.544
44 28 12 1.00000 −68.545 1.00002 −68.540
44 28 14 1.00000 −68.544 1.00001 −68.538

AV18
32 1.00229 −70.041 1.00415 −70.511
36 1.00219 −70.018 1.00421 −70.488
40 1.00212 −70.001 1.00429 −70.472
44 1.00207 −69.989 1.00436 −70.459

44 16 1.00251 −69.318 1.00093 −69.318
44 20 1.00199 −69.280 1.00083 −69.271
44 24 1.00151 −69.254 1.00076 −69.246
44 28 1.00113 −69.236 1.00070 −69.231

44 28 10 1.00114 −69.224 1.00068 −69.217
44 28 12 1.00114 −69.216 1.00067 −69.206
44 28 14 1.00114 −69.210 1.00065 −69.198

Let us now concentrate on the “difficult” cases, namely
on the waves Jπ = 0−, 1−, and 2−. As an example, let us
show the results for the state Jπ = 1−. In this case we can
have L, S = 1, 0 and 1,1 and the S matrix has been decom-
posed as in Eq. (77), in terms of the parameters δ( 1P1),
δ( 3P1), ε1− and two inelasticity parameters η 1P1

and η 3P1
.

The convergence for the various quantities obtained using the
N3LO500 potential is reported in Table VI, where, for the sake
of simplicity, we have reported only the combination η1− =√

[(η 1P1
)2 + (η 3P1

)2]/2. First, we notice the different rate of
convergence for the two phase shifts, δ( 1P1) and δ( 3P1) (this
is true also for the AV18 potential). For both potentials, the
convergence of the class C1 is rather slow and a fairly large
values of K1 have to be used. The inclusion of the second
and third classes increases δ( 1P1) by about 1.5◦. The increase
of δ( 3P1) is more sizable, almost 6◦, and also the effect on
ε1− is noticeable. Including the states with � = 0 and 2, first
appearing when the class C4 is considered, has the same effect
on both δ( 1P1) and δ( 3P1), about 1◦, and its contribution is
very important to obtain η1− → 1. The contribution of class
C5 (including the channels with L = 5) is very small, and

TABLE VI. Convergence of 1− p + 3He inelasticity parameter
η1−, phase shifts δ( 1P1) and δ( 3P1) (◦), and mixing angle ε1− (◦) at
Ep = 5.54 MeV corresponding to the inclusion in the core part of
the wave function of the different classes C1–C5 in which the HH
basis has been subdivided. The N3LO500 is considered here with
the inclusion of the point-Coulomb interaction. The function GL has
been regularized with method 1, using β = 0.70 fm−1. In the last
row, the results with β = 0.80 fm−1 are also given.

K1 K2 K3 K4 K5 η1− δ( 1P1) δ( 3P1) ε1−

29 1.00502 20.506 37.192 11.130
33 1.00502 20.516 37.243 11.102
37 1.00502 20.520 37.268 11.088
41 1.00502 20.522 37.279 11.081

41 19 1.00525 21.774 42.115 10.104
41 23 1.00534 21.799 42.173 10.090
41 27 1.00541 21.814 42.201 10.083
41 31 1.00548 21.824 42.213 10.080

41 31 17 1.00541 21.886 42.848 9.824
41 31 21 1.00541 21.888 42.906 9.800
41 31 25 1.00541 21.889 42.936 9.787

41 31 25 13 1.00075 22.755 43.859 9.393
41 31 25 17 1.00035 22.843 43.917 9.393
41 31 25 21 1.00023 22.883 43.928 9.399

41 31 25 21 11 1.00026 22.884 43.929 9.396
41 31 25 21 13 1.00026 22.898 43.939 9.392
41 31 25 21 15 1.00026 22.902 43.945 9.388

β = 0.80 fm−1

41 31 25 21 15 1.00006 22.887 43.951 9.378

therefore we expect that the contribution of the remaining HH
states having L > 5 be negligible.

The convergence of the Jπ = 0− and 2− waves is similar
to that observed for the Jπ = 1− wave. In particular, the con-
vergence of the 3P0 ( 3P2) phase shift follows a similar pattern
as the 1P1 ( 3P1) phase shift. The convergence with the AV18
potential of all these parameters is slower, see below.

In order to obtain a quantitative estimate of the “missing”
phase shift due to the truncation of the HH expansion of the
various classes, let us introduce δ(K1, K2, . . .) as the phase
shift obtained by including in the expansion all the HH states
of the class C1 with K � K1, all the HH states of the class C2
having K � K2, and so on. Let us then consider K1, K2, . . . a
given convenient choice of the grand angular quantum number
Ki for each class i and define

�n(K1, K2, . . .) = δ(K1 + 2n, K2 + 2n, . . .)

− δ(K1 + 2n−2, K2 + 2n−2, . . .). (79)

Namely �n is the difference of the phase shift computed by
increasing each Ki by two units. The values of �n(K1, K2, . . .)
obtained for the N3LO500 and AV18 potentials and for the
1S0, 3S1, 3P0, 1P1, 3P1, and 3P2 phase shifts are shown in
Fig. 1.

Some explicit values of calculated δ(K1, K2, K3, . . .) are
reported in Tables VII and VIII. In Table VII, we report the
p + 3He phase shifts calculated using the N3LO500 potential
at Ep = 5.54 MeV, and also at lower energy Ep = 2.25 MeV,
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FIG. 1. The values of |�n(K1, K2, . . .)| obtained for the
N3LO500 (left panel) and AV18 (right panel) potentials and the 1S0,
3S1, 3P0, 1P1, 3P1, and 3P2 phase shifts. The quantity n is defined in
Eq. (79), i.e., 2n is the increase of the grand angular quantum number
for each class starting from a given set K1, K2, . . .. See the main text
for more details.

for the “simple” state 1S0, while the corresponding phase
shifts for the “difficult” states 1P1 and 3P1 are reported in
Table VIII. The values of the quantities Ki reported in the rows
corresponding to the value “n = 0” are just the Ki selected in
these cases. By inspecting these tables and Fig. 1, it is possible
to observe in some cases an increase of |�n|. This is due to the
following fact. Since many HH states are linearly dependent
and have to be excluded from the expansion, sometimes states
describing important configurations appear only for some
K � Kmin. When the Ki’s are increased and reach the value
Kmin, such configurations start to be included in the expansion,
and the corresponding phase shift has an abrupt change. For
larger values of Ki, all important configurations are already
included and the values of �n vary smoothly. In particular, as

it can be seen for n � 3, the differences �n start to decrease
approximately linearly in a logarithmic scale. Therefore we
can extrapolate the behavior �n ∝ xn, with x � 1. From this
simple behavior, we can readily estimate the missing phase
shift due to the truncation of the expansion to finite values of
n. Suppose we have calculated δ(K1 + 2n, K2 + 2n, . . .) up
to a given nmax; then �nmax+1 = x�nmax , and so on. Then the
missing phase shift can be estimated as

�M =
∞∑

n=nmax+1

�n = x�nmax + x2�nmax + · · ·

= x

1 − x
�nmax . (80)

Typical values for x are ≈0.8. The calculated missing phase
shifts with Eq. (80) are reported in Tables VII and VIII in the
rows labeled “�M ,” while in the rows denoted “EXT” we list
the extrapolated phase shifts computed as

δEXT = δ(K1 + 2nmax, K2 + 2nmax, . . .) + �M . (81)

As it can be seen from Table VII, the values of �M are
estimated to be rather small in all cases. For the “difficult”
cases reported in Table VIII, the convergence seems to be
under control for N3LO500. On the contrary, for AV18 and
specifically at the largest energy, the values of �M are es-
timated to be sizable. In this case, higher values of K1/K5

should be employed. We can see that the missing phase shift is
less than 2%. In any case, the extrapolation procedure affects
mainly the third digit of the phase shifts, and this has no
practical consequences for the p + 3He observables.

The extrapolation of other phase shifts is performed
analogously. Therefore, we can conclude saying that the con-
vergence for the N3LO500 potential is usually good. In this
case, the extrapolation factor x ≈ 0.8. The same is found with
all other interactions derived within chiral EFT. On the other
hand, for the AV18 potential the convergence is usually a bit
slower. For this case, usually an extrapolation factor x ≈ 0.85
is found to be more appropriate.

TABLE VII. Convergence of 1S0 p + 3He phase shift (◦) at Ep = 2.25 and 5.54 MeV corresponding to the inclusion in the core part
of the wave function of the different subsets of HH basis. The N3LO500 and AV18 potentials are considered here with the inclusion of the
point-Coulomb interaction. The corresponding values of the missing phase shifts, as calculated with Eq. (80), are given by the quantity �M . In
the rows labeled “EXT,” the extrapolated phase shifts computed as described in text have been reported (in all cases x ≈ 0.8).

Ep = 2.25 MeV Ep = 5.54 MeV

n K1 K2 K3 N3LO500 AV18 N3LO500 AV18

0 34 18 4 −41.259 −41.792 −68.580 −69.308
1 36 20 6 −41.255 −41.767 −68.572 −69.278
2 38 22 8 −41.251 −41.744 −68.563 −69.248
3 40 24 10 −41.248 −41.722 −68.555 −69.220
4 42 26 12 −41.245 −41.703 −68.549 −69.195
5 44 28 14 −41.243 −41.687 −68.544 −69.175

�M −0.009 −0.064 −0.021 −0.080
EXT −41.234 −41.623 −68.523 −69.095

x 0.8 0.8 0.8 0.8
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TABLE VIII. The same as in Table VII but for the 1P1 and 3P1 phase shifts.

δ( 1P1) (◦) δ( 3P1) (◦)

2.25 5.54 2.25 5.54
n K1 K2 K3 K4 K5 MeV MeV MeV MeV

N3LO500
0 31 21 15 13 5 10.301 22.771 16.800 43.609
1 33 23 17 15 7 10.306 22.785 16.843 43.713
2 35 25 19 17 9 10.334 22.857 16.891 43.823
3 37 27 21 19 11 10.343 22.884 16.925 43.903
4 39 29 23 21 13 10.350 22.901 16.944 43.947
5 41 31 25 23 15 10.354 22.913 16.958 43.979

�M 0.016 0.048 0.055 0.124
EXT 10.370 22.961 17.013 44.103

x 0.8 0.8 0.8 0.8
AV18

0 51 25 21 15 1 9.965 22.070 15.721 40.871
1 53 27 23 17 3 9.999 22.179 15.809 41.127
2 55 29 25 19 5 10.029 22.272 15.882 41.362
3 57 31 27 21 7 10.055 22.347 15.945 41.544
4 59 33 29 23 9 10.077 22.412 15.998 41.687
5 61 35 31 25 11 10.098 22.468 16.055 41.812

�M 0.119 0.417 0.323 0.708
EXT 10.206 22.785 16.378 42.520

x 0.85 0.85 0.85 0.85

Finally, we mention that the convergence rate when includ-
ing any type of 3N interactions has been found similar to the
cases when only the NN interaction is considered. In fact, in
general the 3N interactions are rather soft at short interparticle
distances, and therefore the convergence rate of the various
classes does not change appreciably.

B. Convergence for p + 3H and n + 3He scattering

Let us now consider the convergence of the HH expansion
for p + 3H and n + 3He scattering. Now channels with T = 0
and 1 have to be included in the expansion of the core part.
In general, we have observed similar convergence patterns as
already discussed, except for the Jπ = 0+ state. In fact, it is
well known that 4He has a narrow resonance in the Jπ = 0+,
T = 0 wave just above the p + 3H threshold. Therefore, this
wave has to be considered a “difficult” case, as the description
of the core part requires the inclusion of a large number of HH
states, those necessary to describe the Jπ = 0+ resonance. In
fact, for this case, the classes have been organized in a slightly
different method as discussed in Sec. II E.

Here we discuss only the convergence for the Jπ = 0+
wave. For other Jπ waves, the convergence has a similar
behavior as discussed in the previous subsection. Clearly,
for p + 3H scattering below the n + 3He threshold (Tr �
0.73 MeV) there is only one open asymptotic clusterization
and the S matrix is one dimensional. Above that threshold,
and for n + 3He scattering, there are two open asymptotic
clusterizations. For the J = 0+ wave, we have again LS =
00. The S matrix is parameterized as in Eq. (78) Sγ ,γ ′

00,00 =
η

γ ,γ ′
00,00 exp(2iδγ ,γ ′

00,00) and we recall that γ = 3 (4) corresponds

to the p + 3H (n + 3He) clusterization. The results obtained
for η3,3

00,00 and δ3,3
00,00 at Ep = 0.60 MeV (corresponding to Tr =

0.45 MeV) and Ep = 2.0 MeV (corresponding to Tr = 1.50
MeV) are reported in Table IX.

From the table, we can observe the large effect of class 2
(the triplet basis). We observe also that for Ep = 0.60 MeV,
the inclusion of the fourth class (states with isospin T = 1)
has a large effect, in particular on the parameter η3,3

00,00. Only
after including this class does this parameter starts to approach
the value 1. At Ep = 2.0 MeV, the effect of the fourth class is
less important. The inclusion of the fifth class, including both
T = 0 and 1 HH states with �max = 4 is still important, while
the inclusion of HH states with �max = 6 (sixth class) is much
less sizable.

Also for this case we can apply the extrapolation procedure
discussed previously and the results are reported in Table X.
We note that, also for the N3LO500 potential, the convergence
is not well achieved and the values of �M are sizable, in
particular at Ep = 0.60 MeV, close to the energy of the first
excited state of 4He. Note that at this energy, the n + 3He
channel is closed and therefore one should find η3,3

00,00 = 1. At
Ep = 2.0 MeV, the convergence is less problematic and we
estimate (η3,3

00,00)2 ≈ 0.06. This means that at this energy the
elastic process p + 3H → p + 3H will have a 6% probability.

For the present case, the uncertainties connected to the
extrapolation formula given in Eq. (80) are more significant,
especially below the n + 3He threshold. Assuming to have
an uncertainty �x ≈ 0.04 for the factor x (a rather conser-
vative estimate), the corresponding “error” in �M is given
by �x

(1−x)2 |�nmax | ≈ |�nmax | assuming x ≈ 0.8. For example, for
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TABLE IX. Convergence of 0+ p + 3H parameters η3,3
00,00 and δ3,3

00,00 (◦) defined in Eq. (78) at Ep = 0.60 and 2.0 MeV corresponding to
the inclusion in the core part of the wave function of the different classes C1–C6 in which the HH basis has been subdivided. The N3LO500
potential is considered here with the inclusion of the point-Coulomb interaction. The function GL has been regularized with method 1, using
β = 0.80 fm−1.

Ep = 0.60 MeV Ep = 2.0 MeV

K1 K2 K3 K4 K5 K6 η3,3
00,00 δ3,3

00,00 η3,3
00,00 δ3,3

00,00

38 1.0588 2.89 0.3549 9.20
42 1.0595 2.94 0.3553 9.27
46 1.0598 2.97 0.3556 9.30
50 1.0599 2.98 0.3556 9.32

50 40 1.2895 14.26 0.1209 36.86
50 42 1.3074 14.71 0.1204 36.73
50 44 1.3239 15.11 0.1199 36.61
50 46 1.3384 15.44 0.1194 36.51

50 46 32 1.7115 26.90 0.2102 77.89
50 46 34 1.7240 27.09 0.2104 77.91
50 46 36 1.7325 27.21 0.2105 77.93

50 46 36 40 1.0117 44.84 0.2002 75.99
50 46 36 42 1.0060 45.61 0.2002 75.99
50 46 36 44 1.0025 46.30 0.2002 75.98

50 46 36 44 18 1.0030 51.79 0.2325 80.23
50 46 36 44 20 1.0032 51.89 0.2351 80.47
50 46 36 44 22 1.0016 52.08 0.2354 80.50

50 46 36 44 22 14 1.0011 52.08 0.2354 80.56
50 46 36 44 22 16 1.0010 52.16 0.2360 80.64

Ep = 0.60 MeV, we obtain δ3,3
00,00(EXT) = 57.60 ± 1.35◦, ap-

proximately a 2% uncertainty. This uncertainty will not spoil
the comparison with the experimental data, since the latter
quantities are known with larger error bars.

Again, the convergence for other chiral interactions with or
without the inclusion of the 3N forces are similar. Regarding
the AV18 potential, the convergence of the 0+, T = 0 phase
shift would require the inclusion of HH functions with larger
K values. We have not pursued such a calculation any longer
in the present study.

C. Numerical stability

In this subsection, we want to discuss the dependence of
the results on the grids used for the calculation of the matrix
elements, the number of three-body HH functions used to con-
struct φ3(i, j, k), and on the parameters M and b entering the
expansion of the hyperradial functions [see Eq. (31)]. We limit
ourselves only to consider the calculation of the 1S0, 3S1, 3P0,
1P1, 3P1, and 3P2 p + 3He phase shifts at Ep = 5.54 MeV
with the N3LO500 potential. Similar results were obtained for
all the other cases considered in this paper.

TABLE X. Convergence of the parameters η3,3
00,00 and δ3,3

00,00 (◦) at Ep = 0.60 and 2.00 MeV corresponding to the inclusion in the core part
of the wave function of the different classes of HH basis. The N3LO500 potential is considered here with the inclusion of the point-Coulomb
interaction. The corresponding values of the missing phase shifts, as calculated with Eq. (80), are given by �M . In the rows labeled “EXT”,
the extrapolated phase shifts computed as described in text have been reported (in all cases x ≈ 0.8).

Ep = 0.60 MeV Ep = 2.0 MeV

n K1 K2 K3 K4 K5 K6 η3,3
00,00 δ3,3

00,00 η3,3
00,00 δ3,3

00,00

0 40 36 26 34 12 6 1.0068 40.90 0.2156 78.11
1 42 38 28 36 14 8 1.0054 44.06 0.2219 78.93
2 44 40 30 38 16 10 1.0040 46.78 0.2269 79.56
3 46 42 32 40 18 12 1.0028 49.03 0.2309 80.03
4 48 44 34 42 20 14 1.0017 50.81 0.2337 80.37
5 50 46 36 44 22 16 1.0010 52.16 0.2360 80.64

�M −0.0028 5.44 0.0092 1.08
EXT 0.9982 57.60 0.2452 81.72

x 0.8 0.8 0.8 0.8
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TABLE XI. p + 3He phase shifts (◦) at Ep = 5.54 MeV calculated for different values of the parameters used in the calculation. The
parameter �max is the maximum value of orbital angular momenta used to expand the asymptotic states, see Eq. (55). The number of grids
points nz, ny, nx , and nμ are used in the numerical integration of the potential matrix elements. N3 is the number of three-body HH functions
used to construct the 3He wave function. Finally, the parameters b (fm−1) and M are used in the expansion of the hyperradial functions in
terms of Laguerre polynomials, see Eqs. (30) and (31). The N3LO500 potential is considered here with the inclusion of the point-Coulomb
interaction. The 3He binding energy obtained with N3 = 390 (N3 = 480) three-body HH functions is 7.12869 (7.12871) MeV. See Sec. II D
for more details. The changed parameters with respect to “case a” are highlighted in bold.

Case �max nz ny nx nμ N3 b M δ( 1S0) δ( 3S1) δ( 3P0) δ( 1P1) δ( 3P1) δ( 3P2)

a 5 30 50 20 16 365 4.0 16 −68.518 −60.104 25.065 22.955 44.091 47.811
b 5 40 60 30 18 365 4.0 16 −68.533 −60.111 25.042 22.960 44.102 47.815
c 6 30 50 20 16 365 4.0 16 −68.524 −60.105 25.057 22.991 44.191 47.927
d 5 30 50 20 16 480 4.0 16 −68.514 −60.104 25.070 22.938 44.081 47.805
e 5 30 50 20 16 365 3.5 16 −68.524 −60.109 25.081 22.969 44.102 47.819
f 5 30 50 20 16 365 3.5 18 −68.523 −60.108 25.081 22.961 44.104 47.825

The values of the “extrapolated” (as discussed in the pre-
vious subsection) phase shifts obtained for different values of
the parameters in case of the potential N3LO500 are reported
in Table XI. In the “case a” row, we have reported the phase
shifts calculated using the “standard” values of �max, number
of grids points, number of three-body HH functions, and
values of M and b used so far. Increasing the values of grids
points nz, ny, nx, nμ used to compute the matrix elements (case
b), the calculated phase shifts change only by approximately
0.1%. The effect of increasing �max (case c) has a slightly
larger effect, in particular for the 3P1 and 3P2 phase shifts. The
increasing of the number of three-body HH functions (case d)
to describe the 3He bound state produces negligible effects.
The same using a different value of b (case e). Finally, the
phase shifts are rather insensitive to the increase of the number
M of Laguerre polynomials. In addition to the cases discussed
in Table XI, the calculation of the matrix elements depends
also on the parameters ay and az used to define the grids in the
integrals given in Eqs. (71) and (72). We have found that once
large-enough values for ny and nz are used, the dependence
on these two parameters is completely negligible. Therefore,
we can conclude that the calculated phase shifts are almost
insensitive to the choice of the various parameters.

A similar analysis has been performed also for other poten-
tials, in particular for AV18, which has a stronger repulsion
at short interparticle distances. In this case, the calculations
depend on the parameters discussed in Sec. II D 1, and in

particular on h, αs, and nρ defining the ρ grid, see Eq. (64). For
example, the 3P2 phase shift calculated using the “standard
grid” (h = 0.04 fm, αs = 1.05, and nρ = 96) is 46.704◦, while
using a denser grid (h = 0.03 fm, αs = 1.04, and nρ = 127)
results in 46.726◦. In summary, we have found that the calcu-
lated phase shifts are almost insensitive to the changes of the
various parameters also in this case. The greatest sensitivity is
found again for the parameter �max. Increasing it by one unit,
however, causes at most 0.5% changes in the phase shifts.

D. Numerical stability with the inclusion of the 3N potential

In this subsection, the numerical stability of the results
when the 3N potential is included is studied. The method now
involves the calculation of the 3N potential matrix elements
discussed in Sec. II D 3. Here we report the results of the
inclusion of the N2LO500 3N interaction together with the
N3LO500 NN potential.

In Table XII, the dependence of the usual p + 3He phase
shifts at Ep = 5.54 MeV on several parameters is studied.
Some of these quantities also enter the calculation of the
matrix elements of the NN potential, namely �max, nz, ny, nx,
nμ, N3, b, and M. In the cases reported below, we have used
the same values of the grid points nz, ny, and nx to calculate
both NN and 3N matrix elements, given in Eqs. (67) and (75),
respectively. Moreover, adding the 3N force, the calculations
also depend on the values of the parameters �3N

max, J3N
max, and

TABLE XII. p + 3He phase shifts (◦) at Ep = 5.54 MeV calculated for different values of the parameters when a 3N interaction is included.
The parameters �max, nz, ny, nx , nμ, N3, b, and M have the same meanings as in Table XI. The dimension of parameter b is fm−1. The parameters
�3N

max, J3N
max, and K3N

max are used in the truncation of the spin-isospin-angular matrix elements of the 3N force, see Sec. II D 3 for more details.
The calculation are performed using the N3LO500/N2LO500 interaction with the inclusion of the point-Coulomb potential. The 3He binding
energy obtained with N3 = 390 (N3 = 480) three-body HH functions is 7.72988 (7.72991) MeV. The changed parameters with respect to the
“case a” are highlighted in bold.

Case �max nz ny nx nμ N3 b M �3N
max J3N

max K3N
max δ( 1S0 ) δ( 3S1) δ( 3P0 ) δ( 1P1) δ( 3P1) δ( 3P2)

a 5 30 50 20 16 365 4.0 16 5 15/2 16 −66.554 −58.523 24.188 22.579 44.990 49.732
b 5 30 50 20 16 365 4.0 16 6 17/2 16 −66.554 −58.524 24.188 22.580 44.993 49.734
c 5 30 50 20 16 365 4.0 16 5 15/2 18 −66.554 −58.520 24.205 22.584 45.015 49.749
d 6 40 60 30 18 480 3.5 18 5 15/2 16 −66.533 −58.518 24.209 22.613 45.101 49.869
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TABLE XIII. NN+3N interaction models used in this work. In columns 2–4 the values of the cutoff parameter � and the coefficients cD

and cE entering the chiral 3N force are reported (the coefficients are adimensional). In the last columns we have reported the corresponding
3H, 3He, and 4He binding energies. The experimental values of the latter quantities are reported in the last line.

Model � (MeV) cD cE B( 3H) (MeV) B( 3He) (MeV) B( 4He) (MeV)

N3LO500/N2LO500 500 +0.945 −0.0410 8.471 7.729 28.34
N3LO600/N2LO600 600 +1.145 −0.6095 8.467 7.733 28.59
N4LO450/N2LO450 450 +0.560 +0.460 8.482 7.714 28.53
N4LO500/N2LO500 500 −0.745 −0.150 8.473 7.728 28.15
N4LO550/N2LO550 550 −1.030 −0.570 8.470 7.731 28.07
Expt. 8.480 7.718 28.30

K3N
max used to truncate the spin-isospin-angular matrix ele-

ments w of the 3N force, given in Eq. (76).
As it can be seen from the table, the effect of the truncation

of the spin-isospin-angular matrix elements w of the 3N force
(cases b and c) is rather well under control, since we observe
only very tiny differences between the phase shifts. The use of
denser grids, more accurate 3He wave functions, and a larger
number of Laguerre polynomials (case d) produces at most
changes of the order of 0.2%. Therefore, we can conclude that
the numerical aspect of the inclusion of the 3N interaction
in the calculation of the p + 3He phase shifts is well under
control. A similar degree of accuracy has been reached also
for other 3N interactions.

IV. RESULTS

In this section we report the results obtained for various
scattering observables. In the first subsection, a study of n +
3H and p + 3He elastic scattering is presented, while the sec-
ond subsection is dedicated to the study of the resonant states
of 4He as extracted from the p + 3H phase shifts. Finally, in
the last subsection we present an analysis of the p + 3H →
p + 3H, p + 3H → n + 3He, and n + 3He → n + 3He pro-
cesses.

As stated before, in this section we report the results ob-
tained mainly using the N3LO interaction derived by Entem
and Machleidt [38,39], corresponding to two different cutoff
values (� = 500 MeV and � = 600 MeV). These NN inter-
actions are labeled, respectively, N3LO500 and N3LO600. In
this way we can explore the dependence on the cutoff value
� of the 4N observables. The 3N force considered here has
been derived at N2LO in Ref. [41] (the 3N force at N3LO
and N4LO are still under construction but we plan in future
to include them in the 4N calculations). With the N3LO500
(N3LO600) NN interaction, we have considered the 3N N2LO
force labeled N2LO500 (N2LO600) with the parameters cD

and cE fixed to reproduce the 3N binding energy and the
tritium GTME. These values were recently redetermined in
Ref. [46] after finding and correcting an inconsistency be-
tween the 3N force and the axial current used so far [48].

In some cases, we have also considered the new potentials
developed at successive order (N4LO) in Ref. [40] for three
different cutoff values (� = 450, 500, and 550 MeV). With
such NN interaction, we have used the same N2LO 3N force.
In this case, however, the values for the πN parameters ci

entering the 3N N2LO force have been chosen as in the last

column of Table IX of Ref. [40], taking into account in an
effective way part of the missing N3LO and N4LO 3N forces
(the two-pion-exchange contribution). In such a way, these
N2LO 3N force may be seen as effective N4LO 3N forces
[40]. The corresponding values for cD and cE have been fixed
again by reproducing the 3N binding energy and the tritium
GTME [47].

For the sake of clarity, the adopted values of all employed
parameters cD and cE are summarized in Table XIII, where
we have also reported the corresponding 3H, 3He, and 4He
binding energies. Note that in the following we have used
1/MN = 41.47 MeV fm2 with the N3LO potentials defined in
Refs. [38,39] and 1/MN = 41.47107 MeV fm2 with the new
N4LO potentials of Ref. [40]. As it can be seen, the calculated
4He binding energies are rather close to the experimental
value. Therefore, eventual 4N forces should be rather tiny and
their effect in A = 4 scattering at low energy can be safely
neglected.

For this study we have focused our attention to the effect
of the 3N interaction. For this reason we have restricted the
electromagnetic interaction between the nucleons to just the
point-Coulomb interaction between the protons. Note that
with the N3LO500 and N3LO600 NN interactions, one should
include only the effect of the two-photon exchange, Darwin-
Foldy term, and vacuum polarization interactions in the 1S0

partial wave [39]. We have disregarded them in this work. The
effect of these additional electromagnetic interactions is the
subject of a forthcoming paper [115].

A. p + 3He and n + 3H scattering

The p + 3He and n + 3H observables are calculated at
specific values of the kinetic energy EN of the incident nu-
cleon, related to Tr by

EN = 4
3 Tr . (82)

In the energy range considered here (EN � 6 MeV), the
various n + 3H and p + 3He observables are dominated by
S-wave and P-wave phase shifts (D-wave phase shifts give
only a marginal contribution, and more peripheral phase shifts
are negligible).

Let us first discuss the results for n + 3H zero-energy scat-
tering. The relevant quantities are the singlet as and triplet at

scattering lengths, the zero-energy total cross section σT , and
the coherent scattering length ac, related as follows:

σT = π (|as|2 + 3|at |2), ac = 1
4 as + 3

4 at . (83)
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TABLE XIV. Total cross section σT (b) and coherent scattering
length ac (fm) for n + 3H zero energy scattering calculated with
different interactions. The last rows report the experimental values.

Interaction σT ac

AV18 1.85 3.83
AV18/UIX 1.73 3.71

N3LO500 1.802 3.780
N3LO600 1.797 3.775
N3LO500/N2LO500 1.687 3.658
N3LO600/N2LO600 1.693 3.663

Expt. 1.70 ± 0.03 [55] 3.82 ± 0.07 [116]
3.59 ± 0.02 [117]

3.607 ± 0.017 [118]

The experimental accessible quantities are σT and ac. The
n + 3H cross section has been accurately measured over a
wide energy range and the extrapolation to zero energy does
not present any problems. The value obtained is σT = 1.70 ±
0.03 b [55]. The coherent scattering length has been mea-
sured by neutron interferometry techniques. The most recent
values reported in the literature have been obtained by the
same group; they are ac = 3.82 ± 0.07 fm [116] and ac =
3.59 ± 0.02 fm [117], the latter value being obtained with a
more advanced experimental arrangement. Finally, the value
ac = 3.607 ± 0.017 fm has been obtained from p − 3He data
by using an approximate Coulomb-corrected R-matrix theory
[118].

The total cross section and coherent scattering length cal-
culated with the considered interactions are compared with the
experimental values in Table XIV. Since in the as-at plane,
the ellipse corresponding to the experimental value of the
total cross section σT and the straight line corresponding to
the coherent scattering length ac are almost tangent [30], the
extraction of the experimental scattering lengths suffers of
large uncertainties (in particular for as). Therefore, we prefer
to compare directly the results of the calculations with σT

and ac. It is well known that the n + 3H singlet and triplet
scattering lengths are linearly correlated with the 3H binding
energy B3 [30]. Therefore, only with the interactions including
the 3N force (which well reproduce B3) the calculated σT and
ac are close to the experimental values. From inspection of
Table XIV, it can be concluded that there is a satisfactory
agreement between the calculated and the measured value of
σT . However, the calculated coherent scattering lengths differ
slightly from the experimental value, in particular from the
more accurate one, ac = 3.607 ± 0.017. Interestingly, the ac

calculated using the χEFT interactions differ less from the
experimental value than the value calculated with AV18/UIX.
It would be interesting to study this observables with the most
recent chiral interactions of Ref. [40]. Work in this direction
is in progress.

The n + 3H total cross section as function of the incoming
neutron energy En is shown in Fig. 2. The light cyan (darker
blue) band shown in the figure collects the results obtained
using the N3LO500 and N3LO600 (N3LO500/N2LO500 and
N3LO600/N2LO600) interactions. Therefore the width of the

0110
En [MeV]

0

1

2

3

σ 
[b

]

Phillips (1980)
NN
NN+3N

FIG. 2. n + 3H total cross section as function of the incoming
neutron energy En calculated with the NN N3LO interaction of
Refs. [38,39] (light cyan band) or including also the 3N N2LO
interaction discussed in the text (darker blue band). The width of
the bands reflects the spread of theoretical results using � = 500
or 600 MeV cutoff values. See the main text for more details. The
experimental values are taken from Ref. [55].

bands reflects the theoretical “uncertainty” connected to the
use of interactions with two different cutoff values. As it can
be seen by inspecting the figure, the width of the bands is
very tiny, and a very good agreement with the experiment is
observed, in particular for the results obtained including the
3N force.

Let us discuss now p + 3He scattering. In this case, there
exists an accurate PSA which has allowed for the extraction of
phase shifts and mixing parameters from the available experi-
mental data [65]. A comparison of a selected set of calculated
phase shifts with those obtained by this PSA is shown in
Fig. 3. Again, the light cyan (darker blue) bands shown in
the figure collect the results obtained using the N3LO500 and
N3LO600 (N3LO500/N2LO500 and N3LO600/N2LO600)
interactions and the width of the bands reflects the use of
the two different cutoff values. The inspection of the figure
reveals that, using the interaction models with only a NN
potential, both S- and P-wave phase shifts result to be at
variance with the PSA. Including the 3N force, we observe
a general improvement of the description of the phase shifts.
The decreasing (in absolute value) of the S phase shifts when
the 3N force is added is mainly due to the smaller dimension
of the 3He nucleus following the increase of binding energy.
These phase shifts are negative since the Pauli principle does
not allow us to have three protons in S wave. The P waves
are attractive. In particular, for the 3P1 and 3P2 waves, the
3N interaction provides an extra attraction; the resulting phase
shifts are in nice agreement with the PSA. Regarding the 1P1

and 3P0 phase shifts, the 3N interaction reduces a little bit the
disagreement with the experimental ones, but the calculated
values still overpredict the experimental values at the largest
energy.
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FIG. 3. p + 3He phase shifts as function of the incoming proton
energy Ep calculated with the NN N3LO interaction of Refs. [38,39]
(light cyan band) or including also the 3N N2LO interaction dis-
cussed in the text (darker blue band). The results of the PSA
performed at TUNL have been also reported [65].

Let us now compare the theoretical results directly with a
selected set of observables for which there are accurate exper-
imental data. We have reported the results for the p + 3He
unpolarized differential cross section in Fig. 4 for various
energies of the incident proton. As usual, the results obtained
with the NN (NN + 3N) potentials are shown as a light cyan
(darker blue) band. As it can be seen by inspecting the figure,
the widths of the bands in this case are very tiny; they can be
appreciated only at energy Ep = 5.54 MeV for θc.m. ≈ 30◦.
Furthermore, we observe a very good agreement with the
experimental values, in particular for the results obtained in-
cluding the 3N force.

On the contrary, for the proton analyzing power Ay0, shown
in Fig. 5, we note a large sensitivity to the inclusion of the
3N interaction. The calculations performed using N3LO500
and N3LO600, in fact, largely underpredict the experimental
data, a fact already observed before also using other interac-
tions [31,36,58]. A sizable improvement is found by including
the N2LO 3N interaction, as already found in Ref. [66] and
recently confirmed by Ref. [20]. The underprediction of the
experimental data is now around 6–10%.

For the 3He analyzing power A0y, shown in Fig. 6, we
note a smaller sensitivity to the inclusion of the 3N interac-
tion. However, the results obtained with the 3N force show a
slightly larger dependence on the cutoff. Here the experimen-
tal values have larger errors, and therefore it is not possible
to arrive to a definite answer about the performance of the
different interactions.

To better point out the sensitivity to the particular interac-
tion model, in Fig. 7 an enlargement of Ay0 and A0y at Ep =
5.54 MeV in the peak region is shown. From the inspection
of the figure, we note that the observables are sensitive to
the choice of the cutoff �, in particular Ay0 calculated with
the � = 600 MeV interaction model is slightly closer to the
experimental data. Here we have reported also the results ob-
tained using the AV18/IL7 phenomenological interaction. We
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Ω
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FIG. 4. p + 3He differential cross section as function of the center-of-mass scattering angle for three different proton energies Ep calculated
with the NN N3LO interactions of Refs. [38,39] (light cyan band) or including also the 3N N2LO interactions (darker blue band). The width
of the bands reflects the use of two different cutoff values, � = 500 and 600 MeV. The experimental data are from Refs. [56–58].
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FIG. 5. Same as in Fig. 4 but for the p + 3He analyzing power Ay0. The experimental data are from Refs. [31,58,59].
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FIG. 6. Same as in Fig. 4, but for the p + 3He analyzing power A0y. The experimental data are from Refs. [59,65].
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FIG. 7. p + 3He analyzing powers at Ep = 5.54 MeV calculated with the N3LO500/N2LO500 (blue solid lines), N3LO600/N2LO600
(dashed magenta lines), and AV18/IL7 (dot-dashed red lines) interaction models. The experimental data are from Refs. [31,58,59].
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FIG. 8. Same as in Fig. 4 but for the p + 3He Ayy, Axx , Axz, and Azx spin polarization coefficients at Ep = 5.54 MeV. The experimental data
are from Refs. [59,65].

note that Ay0 calculated with AV18/IL7 is very similar to the
results obtained with the chiral models, while A0y is in better
agreement with the data than with N3LO500/N2LO500.

The previously observed large underprediction of the p +
3He Ay0 observable, when only NN forces were taken into
account [31,36,54,58], was considered to be due to some
deficiencies of the interaction in P waves, as, for example, due
to the appearance of a unconventional “spin-orbit” interaction
in A > 2 systems [119]. The IL7 model has been fitted to
reproduce the P-shell nuclei spectra and, in particular, the two
low-lying states in 7Li. This may explain the improvement
in the description of the p + 3He analyzing powers obtained
with this interaction model. Regarding the N2LO 3N force
models, its two parameters have been fitted to 3N observables
(the 3N binding energy and the tritium GTME), quantities
which are more sensitive to S waves. Therefore, its capability
to improve the description of the p + 3He analyzing powers
is not imposed but it is somewhat built in.

In the literature, there are also measurements of spin polar-
ization coefficients. Unfortunately, these measurements have
not the same precision as for the unpolarized cross section
and the proton analyzing power. As an example, we report
in Fig. 8 Ayy, Axx, Axz, and Azx calculated at Ep = 5.54 MeV
compared with the available experimental data. As can be
seen, the sensitivity to � is small reflecting in the small widths
of the two bands. Also the effect of 3N force is tiny, and we
observe a good agreement between calculations and data.

B. Resonances of 4He

Let us now consider the p + 3H scattering. The incident
energy of the proton beam in the laboratory system is re-
lated to the center-of-mass kinetic energy as Ep = 4

3 Tr . We
remember that for Tr > B( 3H) − B( 3He) ≡ �3 ≈ 0.72 MeV,
the channel n + 3He is open. In this subsection, however, we
focus on the results obtained for the parameters δ3,3

LS,L′S′ and

η3,3
LS,L′S′ describing the elastic process p + 3H → p + 3H. As

usual, they are related to the S matrix as given in Eq. (78). For
the sake of simplicity, here we denote δ3,3

LS,L′S′ ≡ δp+ 3H and we
refer to it as the p + 3H phase shift.

Let us present first a calculation performed for the 0+
wave with the Minnesota (central) potential [120] in order to
compare our results with the accurate calculations performed
in Refs. [121,122]. We have reported the calculated values
of 0+ phase shift δp+ 3H (corresponding to the 1S0 wave in
spectroscopic notation) in Fig. 9, together with the results of
Ref. [121]. For the Minnesota potential, the n + 3He thresh-
old is at E = 0.675 MeV, shown in the figure by an arrow.
For that energy the phase shift has a discontinuity. Probably,
at energies just below the opening of the n + 3He channel, it
should be convenient to include in the wave function also an
asymptotic “closed” component like


c
4LS =

4∑
l=1

[
YL(ŷl ) ⊗ [

φh
3 ⊗ χlξ

n
l

]
S

]
JJz

exp(−β4yl )

yl
, (84)

where φh
3 is the 3He wave function, ξ n

l the isospin state
of the neutron (particle l), and yl the distance between the
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FIG. 9. p + 3H 1S0 phase shift calculated with the Minnesota
potential as function of the center-of-mass kinetic energy Tr . Solid
line: present calculation; red dots: RGM calculation of Ref. [121];
crosses: phase shift extracted from the R-matrix analysis [24]. The
arrow denotes the energy of the n + 3He threshold.
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FIG. 10. p + 3H phase shifts as function of the center-of-mass kinetic energy Tr calculated with the N3LO500 (red dashed curves),
N3LO600 (red dotted curves), N3LO500/N2LO500 (black solid curves), and N3LO600/N2LO600 (red dot-dashed curves) interactions. The
experimental phase shifts have been extracted by an R-matrix analysis in Ref. [24].

center-of-mass of 3He and the neutron. Above, we have spec-
ified that γ = 4 and β4 = √

2μ4(�3 − Tr ), where �3 ≈ 0.72
MeV is the difference between the 3H and 3He binding
energies. When Tr → �3, β4 becomes rather small and the
component 
c

4LS will have a long-range tail. Configurations
of this type are rather difficult to be constructed in terms of
the HH expansion, whence the utility of explicitly including
them in the variational wave function. Work in this direction
is currently in progress.

Returning to Fig. 9, we note that the results of our calcu-
lation and that of Ref. [121] are very close. The phase shift
has a “resonant” behavior, with a very sharp increase followed
by a plateau. In particular, δp+ 3H reaches the value of 90◦ for
E ≈ 0.12 MeV.

Now let us try to extract the energy ER and width � of
the resonance using two methods. In the first method, one can
just estimate ER as the value of Tr for which the first derivative
δ′

p+ 3H
has a maximum and � = 2/δ′

p+ 3H
(ER) [123]. Using the

phase shifts reported in Fig. 9, we obtain ER = 0.064 MeV
and � = 0.088 MeV.

Another method to determine ER and � has been taken
from Ref. [124]. The idea is to fit the calculated S matrix for
various energies using a Padè approximation, namely

S (k) = 1 + ∑N
n=1 ankn

1 + ∑N
n=1(−)nankn

, (85)

where k = √
2μTr and μ is the p + 3H reduced mass. This

form is suggested by the general properties of the S matrix,
in particular that S (−k) = S (k)−1 and that S (k → 0) → 1.

Given a number N of values S (ki ), i = 1, . . . , N , the coeffi-
cients an can be simply obtained solving the linear system

N∑
n=1

[1 + (−)n+1S (ki )]k
n
i an = S (ki ) − 1. (86)

The resonances are then calculated as the poles of the S
matrix, namely the zeros of the denominator of Eq. (85).
The problem thus reduces to find the zeros of the polynomial
1 + ∑N

n=1(−)nankn, which can be readily obtained using the
method described in Ref. [125]. However, since the S matrix is
extracted using only a finite number of energies, the procedure
finds a number of spurious poles, in addition to the “true”
poles. To recognize the true poles, in Ref. [124] it is suggested
to vary N and to observe the position of the poles in the
plane Re(k), Im(k): The position of the “true” poles should
be independent on N , while the spurious pole positions will
vary considerably with N .

We have used this procedure using the phase shifts cal-
culated with the Minnesota potential and selecting increasing
values of N = 4, 6, . . .. We have found one stable pole, from
which the values E = ER = 0.067 MeV and � = 0.070 MeV
are extracted, in reasonable agreement with the values de-
termined using the first method. We note that in Ref. [121],
the resonance energy is determined, by a bound-state ap-
proximation, to be ER = 0.12 MeV, which corresponds to the
energy Tr for which δ = 90◦. In Ref. [122], the resonance is
obtained by a complex scaling method at ER = 0.07 MeV and
� = 0.06 MeV (with a numerical error estimated to be several
tens of keV), in good agreement with our results.
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TABLE XV. Energy of the 0+ resonance and its width as
extracted from the phase shifts reported in Fig. 11. The experi-
mental values are extracted from the R-matrix analysis reported in
Ref. [114].

Interaction ER (MeV) � (MeV)

N3LO500 0.126 0.556
N3LO600 0.134 0.588

N3LO500/N2LO500 0.118 0.484
N3LO600/N2LO600 0.130 0.989

N4LO450/N2LO450 0.126 0.400
N4LO500/N2LO500 0.118 0.490
N4LO550/N2LO550 0.130 0.740

Expt. 0.39 0.50

We now present the results for some p + 3H
phase shifts calculated with the N3LO500, N3LO600,
N3LO500/N2LO500, and N3LO600/N2LO600 interactions
in Fig. 10. We note rather large differences for the 1S0 phase
shift when the 3N force is added, while for the P-wave phase
shifts the results with and without the 3N force are rather
close. Again, below the threshold of the n + 3He channel,
the inclusion of the “closed” component as given in Eq. (84)
could improve the convergence, in particular for the 1S0

case. Work in this direction is in progress. In any case,
for the 1S0 phase shift, below the opening of the n + 3He
channel, the results obtained using the N3LO500/N2LO500
and N3LO600/N2LO600 differ considerably. In order to
explore this result, we have performed additional calculations
using the N4LO450/N2LO450, N4LO500/N2LO500, and
N4LO550/N2LO550 interactions. The results obtained for
the 1S0 phase shift at low energies are reported in Fig. 11.

We note that the results obtained with the
N3LO500/N2LO500 and N4LO500/N2LO500 interactions
are very close (we remember that the values of c1, c3, c4,
cD, and cE in these two 3N force interactions are different).
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FIG. 11. 1S0 p + 3H phase shift as function of the center-of-
mass kinetic energy Tr calculated with several interactions.

On the other hand, we observe again a strong dependence
on the cutoff values. The interactions with the softer cutoff
corresponds to larger values of the p + 3H phase shift. Note
that the differences between the phase shifts calculated with
the various � are significantly larger than the theoretical
uncertainties connected to the extrapolation procedure
discussed in the previous section, which at Ep = 0.60 MeV
(corresponding to Tr = 0.45 MeV) was estimated to be
around 1.4◦. Therefore, these differences cannot be ascribed
to the uncertainties in the extrapolation of the phase shifts.

From these phase shifts it is possible to extract the res-
onance parameters as discussed previously. We report in
Table XV the values obtained using method 1. The values
of ER are somewhat independent on the inclusion of the 3N
force and the value of the cutoff and are around 0.1 MeV,
somewhat at variance with respect to the experimental datum.
On the contrary, the width is very sensitive to the cutoff. The
potentials with cutoff � > 500 MeV predict a too-large width
when compared to the experimental value.

TABLE XVI. Energies ER and widths � of the resonances in the different waves obtained using the chiral interactions. The experimental
values are taken from Ref. [114] and obtained from an R-matrix analysis.

3P0
1P1

Interaction ER (MeV) � (MeV) ER (MeV) � (MeV)

N3LO500 0.89 0.46 1.7 8.2
N3LO600 1.05 0.57 1.7 8.6
N3LO500/N2LO500 0.90 0.46 1.8 8.6
N3LO500/N2LO500 0.98 0.54 1.8 8.7
R matrix 1.20 0.84 6.13 12.7

3P1
3P2

Interaction ER (MeV) � (MeV) ER (MeV) � (MeV)

N3LO500 1.0 4.7 1.4 3.1
N3LO600 1.0 4.8 1.5 3.3
N3LO500/N2LO500 1.3 4.7 1.4 2.7
N3LO600/N2LO600 1.3 4.4 1.7 2.9
R matrix 4.43 6.10 2.02 2.01
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FIG. 12. Same as in Fig. 4 but for the p + 3H differential cross section. The experimental data are from Refs. [67–69,72–74].

We have also extracted the resonance parameters from the
3P0, 1P1, 3P1, and 3P2 phase shifts (some of them are reported
in Fig. 10). The results are listed in Table XVI. The experi-
mental information is obtained using an R-matrix method as
discussed in Ref. [114], so it is not clear whether the two
methods would give consistent results. Work to clarify this
issue is still in progress. From inspection of the table, we
can see that the values of ER are consistently smaller than the
experimental ones. The width of the resonance in the 0− wave
is predicted to be smaller than that reported by the R-matrix
analysis. From the calculation, this resonance is found to have
approximately the same width as the 0+ resonance studied
earlier. The dependence on the cutoff and on the inclusion of
the 3N interaction is not critical. The width of the resonances

found in the 1− wave are noticeably large. Very likely in this
case the extracted values of ER and � are not significant. On
the other hand, the resonance in the 2− wave is well estab-
lished, and the energy and width are in reasonable agreement
with the values extracted from the R-matrix analysis.

C. p + 3H and n + 3He scattering

Let us now consider the results obtained for the p + 3H
and n + 3He observables. We have reported the results for
the p + 3H unpolarized differential cross section in Fig. 12 at
various energies of the incident proton. Again, the results ob-
tained with N3LO500 and N3LO600 (N3LO500/N2LO500
and N3LO600/N2LO600) potentials are collected in the light
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A
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Ep=2.0 MeV Ep=3.0 MeV Ep=4.15 MeV

FIG. 13. Same as in Fig. 4 but for the p + 3H proton analyzing power. The experimental data are from Refs. [59,65].
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FIG. 14. The same as Fig. 4 but for the n + 3He differential cross section and neutron analyzing power. The experimental data are from
Refs. [75,82,83].

cyan (darker blue) bands. By inspecting the figure, at the two
lowest energies the effect of 3N force is sizable. We also
note that, at the two lowest energies, the observable becomes
very cutoff dependent when including the 3N force. For those
energies the n + 3He channel is closed, and the cross section
considerably depends on the position of the first excited state
of 4He. In fact, the differences in the cross section originate

mainly from the 1S0 phase shift. Above the n + 3He thresh-
old, the width of the band is small, as observed before for
p + 3He. In this case, we find that the contribution of the 3N
force is small. The p + 3H analyzing powers are reported in
Fig. 13, where we show only the results obtained at energies
larger than the n + 3He threshold (below it this observable is
tiny). For these energies, the effect of 3N force is not very
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FIG. 15. The same as in Fig. 4 but for the p + 3H → n + 3He differential cross section and proton analyzing power. The experimental
data are from Refs. [92–94,96,97].
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important. We find that the height of the peaks is only slightly
increased when the 3N force are included, but this does not
significantly help in reducing the disagreement observed with
the experimental data at Ep = 4.15 MeV, as can be seen in
Fig. 13.

Some of the results obtained for n + 3He elastic scattering
are reported in Fig. 14. The results obtained using NN inter-
action only or including also the 3N force are as usual shown
by bands. As it can be seen inspecting the figure, the widths
of the bands are always small, showing that the dependence
on � is not critical. Also the effects of the inclusion of the 3N
forces are small.

The results for some p + 3H → n + 3He charge exchange
reaction observables are reported in Fig. 15, together with
the available experimental data. We see that the contribution
of the 3N force is small for these observables. Again, the
dependence on the cutoff is not critical.

V. CONCLUSIONS AND PERSPECTIVES

We have discussed in detail the application of the HH
method to the 4N scattering problem, limiting our study to
processes with only two clusters in the asymptotic regions
(but below the energies for which the channel d + d is open).
We have discussed the issues of convergence and numerical
stability, showing that they are under control. The conver-
gence of the HH expansion is usually well achieved for chiral
potentials, except for the p + 3H Jπ = 0+ phase shift, where
large extrapolations are needed in order to take into account
the contribution of HH states of large K . However, we have
also discussed the procedure used to estimate the “missing”
phase shift, believed to be reliable.

In the paper we have also included the results of a first
campaign of calculations of various low-energy elastic and
charge-exchange processes. In particular, we have studied
the effect of including the N2LO 3N forces, constrained to
reproduce the 3H binding energy and the GTME in tritium β

decay. For n + 3H elastic scattering, the inclusion of the 3N
forces is very helpful in reproducing the scattering lengths and
the total cross section, in particular in the resonance region.
For p + 3He the main effect of the inclusion of 3N force is
to reduce the disagreement between theory and experiment in
the observable Ay0, which is present when only NN forces are
taken into account.

For n + 3He elastic scattering and the charge exchange
reaction p + 3H → n + 3He, the inclusion of the 3N forces
is tiny, although in general it helps to obtain a slightly better
description of the data. On the other hand, for the p + 3H elas-
tic scattering (at energies below the opening of the n + 3He
channel) sizable effects of the 3N force are observed mainly
in the 1S0 wave. In particular, a rather strong dependence on
the cutoff used to regularize the chiral potential is found when
the 3N force is included in the calculations. We have specu-
lated that this effect might be related to a critical dependence
on the 3N force of the position and width of the resonance
representing the first excited state of 4He. Further studies of
this resonance are currently in progress. Moreover, it would

be rather important to have new and more accurate measure-
ments of p + 3H elastic scattering at these low energies, as
the available experimental data are rather old and of limited
angular range.

More refined calculations of the same processes with the
new generation of chiral potentials up to N4LO [40] are
currently in progress. First, we would like to improve the
calculations of the p + 3H phase shifts just below the open-
ing of the n + 3He channel including explicitly in the wave
functions the “closed” component given in Eq. (84). More-
over, calculations with larger sets of HH functions will be
undertaken. From the observables calculated using the inter-
actions at different chiral orders, we plan also to estimate the
“theoretical uncertainties” due to our incomplete knowledge
of the nuclear dynamics, following the procedure proposed
in Ref. [126]. Further calculations performed with the local
EFT interactions developed in Refs. [46,127,128] are planned.
These latter interactions take into account also the �-particle
degrees of freedom. Finally, we propose also to explore the ef-
fect of the 3N force contact terms appearing at N4LO [63,64].
These terms are currently studied in the A = 3 system in order
to solve the Ay puzzle found in N + d scattering. It would
be very interesting to see whether these terms can help in
solving also the various disagreements discussed in this paper
for A = 4 scattering.

The availability of the n + 3H, p + 3He, p + 3H, and
n + 3He scattering wave functions will allow for the study
of various radiative capture reactions, as p + 3H → 4He + γ

and n + 3He → 4He + γ , of electron scattering elastic and
transition form factors, as for the 4He(e, e′) 4He

∗
process,

of reactions of astrophysical interest, as the “hep” reaction
3He(p, e−νe) 4He, and of the process 3H(p, e+e−) 4He, re-
cently exploited experimentally in order to demonstrate the
existence of a new kind of particle [1].

In the near future, we plan also to extend the formalism to
d + d scattering and to energies above the threshold for the
breakup in three or more clusters in the final state. Work in
this direction has been already undertaken.
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APPENDIX: THE REGULARIZATION
OF THE FUNCTION GL

In this Appendix, we describe the functions fL(y) used to
regularize the irregular Coulomb functions using method 1,
namely

G̃L(η, qy)

qy
= GL(η, qy)

qy
− fL(y)

yL+1
exp(−βy), (A1)
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where, in general,

fL(y) = a0 + a1y + a2y2 + · · · + aN yN + (b1y + b2y2 + · · · + bMyM ) log(2qy). (A2)

An important aspect of this method is that the function

GL = −
{

f ′′
L −

(
2β + 2L

y

)
f ′
L +

(
β2 + 2

βL − ηq

y
+ q2

)
fL

}
e−βy

yL+1
, (A3)

where f ′ = df /dy, and so on, becomes a smooth function, without any oscillatory behavior. The function fL is chosen (as
discussed below) so that both G̃L/qy and GL are regular at the origin. Let us first discuss the cases L = 0 and L = 1 separately,
and then we give the general expression for L > 1.

1. Case L = 0

Let us start from the small-y behavior of the irregular Coulomb function G0, which reads [106]

G0(η, qy)

qy
→ 1

C0(η)q

{
[2ηq + 2η2q2y + O(y2)] log(2qy) +

[
1

y
+ O(y)

]}
. (A4)

The quantities CL(η) are defined as [106]

C0(η) =
√

2πη

e2πη − 1
, CL(η) =

√
L2 + η2

L(2L + 1)
CL−1(η). (A5)

Note that CL(0) = 1/(2L + 1)!. Let us look for a function f0(y) expressed as

f0(y) = a0 + a1y + (b1y + b2y2 + b3y3) log(2qy). (A6)

For y → 0

f0(y)e−βy

y
→ a0

y
+ a1 − a0β + O(y) + [b1 + (b2 − βb1)y + O(y2)] log(2qy). (A7)

In order to have G̃0/qy = G0/qy − f0(y)e−βy/y regular at the origin (together with its first derivative), we have to make vanish
the coefficients of the terms 1/y, log(2qy), and y log(2qy), namely

a0 = 1

C0(η)q
, b1 = 2ηqa0, b2 = 2ηq(ηq + β )a0. (A8)

The other two coefficients a1 and b3 are determined so that G0 is regular at the origin. From Eq. (A3), and using the expressions
for the coefficients a0, b1, and b2 given above, we find for y → 0

G0 =
{

3b2 − 2β(a1 + b1) + (β2 + q2)a0 − 2ηqa1

y
+ O(y0) + [6b3 − (4β + 2ηq)b2 + (β2 + q2)b1 + O(y)] log(2qy)

}
e−βy.

(A9)

Therefore, we choose

a1 = β2 + q2 + 2ηq(β + 3ηq)

2(β + ηq)
a0, (A10)

b3 = 1

3
(2β + ηq)b2 − β2 + q2

6
b1. (A11)

In this way G0 is regular at the origin.

2. Case L = 1

As before, we start from the small-y behavior of G1, which reads [106]

G1(η, qy)

qy
→ 1

3C1(η)q2

{
2

3
q2η(1 + η2)

[
qy + η

2
(qy)2 + O(y3)

]
log(2qy) +

[
1

y2
− ηq

y
+ 1 + 2η2

2
q2 + O(y)

]}
. (A12)
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Let us look for a function f1(y) expressed as

f1(y) = a0 + a1y + a2y2 + (b3y3 + b4y4) log(2qy). (A13)

For y → 0

f1(y)e−βy

y2
→ a0

y2
+ a1 − a0β

y
+

(
a2 − a1β+ a0

β2

2

)
+ O(y) + [b3y + (b4 − b3β )y2 + O(y3)] log(2qy). (A14)

In order to have G̃1/qy = G1/qy − f1(y)e−βy/y2 regular at the origin (together with its first derivative), we have to make vanish
the coefficients of the terms 1/y2, 1/y, and y log(2qy), namely

a0 = 1

3C1(η)q2
, a1 = (β − ηq)a0, b3 = 2

3
q3η(1 + η2)a0. (A15)

The other two coefficients a2 and b4 are determined so that G1 is regular at the origin. From Eq. (A3), and using the expressions
for the coefficients a0, a1, and b3 given above, we find for y → 0

G1 =
{

2a2 − [β2 + q2 + 2ηq(β − ηq)]a0

y2
+ [2q3η(1 + η2) + (β2 + q2)(β − ηq)]a0

y

− 2(β + ηq)a2

y
+ O(y0) + [4b4 − (4β + 2ηq)b3 + O(y)] log(2qy)

}
e−βy. (A16)

Therefore, we choose

a2 =
[
β2 + q2

2
− ηq(β − ηq)

]
a0, b4 = 2β + ηq

2
b3. (A17)

With this choice also the coefficient of the term 1/y automatically vanishes. In this way G1 is regular at the origin.

3. Cases L � 2

Now for y → 0 the logarithmic term in the expression of GL/qy does not present any singular behavior (it is multiplied by
a factor yL+1). Therefore, we can retain all coefficients b = 0 in Eq. (A2). The coefficients a’s are then fixed using the same
procedure as described above. Now we define fL(y) as

fL(y) = a0 + a1y + a2y2 + · · · + aL+2yL+2, L � 2, (A18)

and we introduce

f̃L(y) = fL(y)e−βy, f̃L(y) =
∞∑

k=0

ãkyk, (A19)

where

ãk =
L+2∑
k′=0

ak′ (−β )k−k′

(k − k′)!
, k = 0, . . . ,∞. (A20)

The coefficients ãk , k = 0, . . . , L + 2 can be fixed by requiring that G̃L/qy and GL be regular at the origin, with the result that

k = 0 ã0 = 1

(2L + 1)CL(η)qL+1
, k = 1 ã1 = −ηq

L
ã0,

k = 2, . . . , L + 2 ãk = −2ηqãk−1 − q2ãk−2

k(k − 2L − 1)
. (A21)

The parameters ak , k = 0, . . . , L + 2, can be readily obtained from ãk by recurrence, using Eq. (A20). In fact

a0 = ã0 = 1

(2L + 1)CL(η)qL+1
, (A22)

ak = ãk −
k−1∑
k′=0

ak′ (−β )k−k′

(k − k′)!
, k = 1, . . . , L + 2. (A23)

Since we need to fix ãk , k = 0, . . . , L + 2, we need to have at least L + 3 parameters a0, . . . , aL+2 in the expansion for fL�2

given in Eq. (A18), i.e., we can set ak�L+3 = 0.
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