
PHYSICAL REVIEW C 102, 034005 (2020)

Operator evolution from the similarity renormalization group and the Magnus expansion
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The Magnus expansion is an efficient alternative to solving similarity renormalization group (SRG) flow equa-
tions with high-order, memory-intensive ordinary differential equation solvers. The numerical simplifications
it offers for operator evolution are particularly valuable for in-medium SRG calculations, though challenges
remain for difficult problems involving intruder states. Here we test the Magnus approach in an analogous but
more accessible situation, which is the free-space SRG treatment of the spurious bound states arising from a
leading-order chiral effective field theory (EFT) potential with very high cutoffs. We show that the Magnus
expansion passes these tests and then use the investigations as a springboard to address various aspects of
operator evolution that have renewed relevance in the context of the scale and scheme dependence of nuclear
processes. These aspects include SRG operator flow with band- versus block-diagonal generators, universality
for chiral EFT Hamiltonians and associated operators with different regularization schemes, and the impact of
factorization arising from scale separation. Implications for short-range correlations physics and the possibilities
for reconciling high- and low-resolution treatments of nuclear structure and reactions are discussed.
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I. INTRODUCTION

Similarity renormalization group (SRG) transformations
are a valuable tool for low-energy nuclear physics, whether
applied in free space to soften input Hamiltonians for few-
and many-body calculations or for in-medium SRG (IMSRG)
calculations that directly target the ground state or low-lying
states in a given nucleus [1–3]. For both free-space and in-
medium formulations, it is imperative that other operators are
consistently and accurately evolved so that measurable quan-
tities are left invariant. In the present work, we address the
robustness of the Magnus expansion as a method to solve free-
space SRG flow equations and examine other issues of SRG
operator evolution in light of the proliferation of new chiral
EFT (χEFT) interactions [4–11], the scale dependence of
short-range-correlation (SRC) physics [12–15], recent interest
in high-cutoff effective field theories (EFTs) and renormal-
ization [16–19], and the universality of evolved operators
[20,21].

The SRG decouples low- and high-momentum scales in
a Hamiltonian by applying a continuous unitary transforma-
tion U (s), where s = 0 → ∞ is the flow parameter [22]. An
evolved operator is given by

O(s) = U (s)O(0)U †(s), (1)

where O(0) is the initial operator. Because U (s) is unitary, ma-
trix elements of the operator in evolved states are preserved.
An evolved operator can be found by solving a differential
flow equation obtained by taking the derivative of Eq. (1),

dO(s)

ds
= [η(s), O(s)], (2)

where η(s) = dU (s)
ds U †(s) = −η†(s) is the anti-Hermitian

SRG generator. For the free-space SRG, the generator is typ-
ically defined as a commutator, η(s) = [G, H (s)], where G
specifies the type of flow. The choice of G determines the
pattern of decoupling in the Hamiltonian.

By setting G = HD(s), the diagonal of the Hamiltonian,
the Hamiltonian is driven to band-diagonal form [23]. In low-
energy nuclear physics, G is usually taken to be the relative
kinetic energy, Trel; i.e., the diagonal of the potential is not
included in G. In most nuclear physics applications these
two choices give the same evolved operators. But in excep-
tional cases involving evolution across bound states, which we
consider in the next section, the two band-diagonal choices
can have drastically different behaviors [24,25]. For band-
diagonal decoupling, it is convenient to define λ ≡ s−1/4,
which roughly measures the width of the band-diagonal in the
decoupled Hamiltonian [26].

For block-diagonal decoupling [27,28], G is formed by
splitting the Hamiltonian into low- and high-momentum
subblocks as specified by a momentum separation scale �BD,

G =
[

PH (s)P 0

0 QH (s)Q

]
≡ HBD(s). (3)

Here P and Q are low- and high-momentum projection op-
erators. In momentum space, the projection operators are step
functions defined by the sharp cutoff �BD, although smoothed
versions are also possible and may be preferred in some
applications to avoid numerical artifacts [27]. These transfor-
mations are similar to Vlowk transformations [29–31] but keep
the high-momentum matrix elements nonzero, maintaining a
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unitary transformation in the full space. Complete decoupling
of the blocks is in principle only reached in the s → ∞ limit.
In practice it is sufficient to solve the flow equation (2) to some
finite value of s with a high-order ordinary differential equa-
tion (ODE) solver such that the remaining “neck” between
blocks is much narrower than �BD.

The SRG procedure can be implemented by solving the
flow equation Eq. (2) for the evolved Hamiltonian simulta-
neously with other operators of interest. However, one can
also solve Eq. (2) exclusively for the evolved Hamiltonian
and build the unitary transformation directly using the eigen-
vectors of the evolved and initial Hamiltonians (as is done in
Sec. IV). Another approach is to solve the following equation
for the unitary transformation:

dU (s)

ds
= η(s)U (s), (4)

which arises in an intermediate step in deriving Eq. (2). This
is the starting point in the Magnus expansion implementation
of the SRG.

The Magnus expansion gives us the capability to solve for
the SRG unitary transformation with negligible violations of
unitarity from numerically solving the ODEs,1 after which it
can be applied to any other operator of interest [32]. By uti-
lizing an exponential parametrization for the transformation,
U (s) = e�(s), Eq. (4) is recast as a flow equation for the anti-
Hermitian operator �(s). The solution of the flow equation
for �(s) permits the use of cheap low-order ODE methods
since the exponentiated operator is still unitary even if it has
accumulated nonnegligible time-step errors [32]. The Magnus
expansion also offers important advantages over the direct
solution of Eq. (4) in Fock space, where practical calculations
require operators to be truncated at the a-body level (a < A).
For instance, even if the Magnus flow equations are truncated
at the two-body level, the resulting unitary transformation
contains higher-body components from the exponentiation
of �.2

Due to these advantages, most large-scale IMSRG cal-
culations now utilize the Magnus expansion. There are still
open problems, though. For instance, in applications of the
IMSRG to derive effective valence shell-model Hamilto-
nians in multishell valence spaces, intruder states, which
are low-lying states whose wave functions are dominated
by high-energy configurations outside the model space, can
severely distort low-energy properties or even prevent the
flow from converging. It is not yet fully understood how the
IMSRG procedure evolves intruder state systems, though it
appears that induced three- and higher-body operators rapidly

1There is a small numerical violation of unitarity in the standard
approach to solving SRG equations due to accumulated time-step
errors. With the Magnus expansion, unitarity is preserved to much
higher precision because of the form of the transformation, as de-
tailed in Sec. II B.

2This is similar to the advantages of truncated coupled cluster
theory calculations relative to truncated configuration interaction
calculations.

grow in size for such systems, destroying the cluster hier-
archy (2N � 3N � 4N � · · · ) in the evolved Hamiltonian
[33].

Interestingly, there is an analog to the intruder state prob-
lem in the much simpler two-nucleon problem. In spin-triplet
channels and at leading-order (LO) in χEFT, taking the EFT
cutoff to high values can result in spurious, deep-bound states
due to the highly singular short-ranged tensor force from one-
pion exchange. In principle, these deep-bound states are not
a problem because they are outside the range of the EFT. In
practice, there are subtleties analogous to the intruder state
problem when one attempts to soften such Hamiltonians with
free-space SRG evolution. In Ref. [25], it was shown that
band-diagonal SRG decoupling of NN potentials in partial
waves with spurious bound states fails for the standard G =
Trel generator, as the flow forces the deep bound state into
the low-momentum sector. As a result, there is no decoupling
of high- and low-momentum physics, and the evolved inter-
actions become increasingly singular at low momentum. In
contrast, the Wegner generator G = HD succeeds at depositing
the spurious state(s) along the diagonal in the high-momentum
sector, which is more natural as it allows a clean decoupling of
high- and low-momentum physics. Since these findings were
for the direct solution of Eq. (2), this provides a good test case
for the Magnus approach and we document its performance
in detail. More generally, there has been renewed interest
in studying chiral interactions at high cutoffs [16]. These
high-cutoff chiral potentials provide us a laboratory to explore
the effects of the SRG generator on decoupling, universality,
and SRCs. These issues also inform the behavior of standard
χEFT potentials.

While interactions from χEFT have become the stan-
dard choice for ab initio calculations of nuclei, they are not
unique, even when restricted to the commonly used Weinberg
power counting, because of many choices for regularization
schemes and fitting protocols and even degrees of freedom
(i.e., with or without �s). In the early applications of χEFT
potentials to nuclei, these choices were not explored but in
recent years there has been a proliferation of nucleon-nucleon
(NN) potentials and associated three-nucleon forces (e.g., see
Refs. [4–11]). This diversification motivates us to revisit SRG
operator evolution. Past studies were limited to phenomeno-
logical interactions or a single class of chiral interactions
(namely the non-local-regulated potentials from Ref. [34] or
Ref. [35]). Here we examine the fate of scheme dependence
for new-generation NN potentials and associated operators as
they are evolved to lower resolutions.

One intriguing aspect is universality. By virtue of fitting
to the same data or phase shifts, different χEFT potentials
generate close to the same S matrix in the energy range
where there is a good fit; that is, the potentials are phase
equivalent in that range. However, matrix elements of the
potentials in momentum space differ significantly based on
the EFT order and the choice of regulator function and cutoff
(scale and scheme dependence). Nevertheless, it has been
observed that SRG transformations drive different NN po-
tentials toward the same low-momentum matrix elements; in
particular, this flow to universality is seen up to the momen-
tum value of phase inequivalence [20,29,31]. We examine
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FIG. 1. Diagonal and far off-diagonal matrix elements of nonlocal LO potentials at cutoffs � = 4 (black), 9 (red), and 20 fm−1 (blue),
SRG-evolving left to right under transformations with Wegner (solid) and block-diagonal (dashed) generators in the 3S1 channel. We vary the
SRG flow parameter λ for Wegner evolution and fix it at λ = 1.2 fm−1 for block-diagonal evolution. The decoupling scale in the block-diagonal
generator is denoted by �BD.

whether universality holds for modern chiral potentials but
also address universality for other operators evolving under
the corresponding SRG transformations. This has implica-
tions for the analysis of reactions at different resolution scales
[36–38].

The question of whether non-Hamiltonian operators de-
couple or take universal forms has not been fully addressed
in the literature.3 In fact, the decoupling of matrix elements
does not necessarily result for other operators as it does for
the Hamiltonian. In previous work [26,39], it was found that
SRG evolution induces low-momentum contributions in high-
momentum operators and changes low-momentum operators
very little, as might be expected from general EFT consider-
ations. We investigate whether this is a general trend of the
SRG for a wider selection of potentials and SRG generators,
explicitly analyze the nature of the evolution for representative
high-momentum and low-momentum operators, and relate
these observations to the high-resolution picture of SRCs and
the role of factorization.

The plan of the paper is as follows. We first revisit the
high-cutoff problem, and test the Magnus approach in Sec. II.
We consider evolution of new-generation NN Hamiltonians
in Sec. III and then turn to other operators in Sec. IV. Our
conclusions and outlook are summarized in Sec. V.

II. HIGH CUTOFFS AND THE MAGNUS EXPANSION

A. High cutoffs and spurious bound states

The χEFT potentials used in most ab initio nuclear cal-
culations are not renormalizable in the sense that dependence
on the regulator is not suppressed by taking the momentum

3Note that if the wave functions are decoupled, it is not necessary
for the operators themselves to decouple to get decoupled matrix
elements. See examples below.

cutoff increasingly high (or low if a coordinate-space regula-
tor). However, Nogga et al. [40] showed that the LO version
of these interactions, with promoted counterterms in some
channels, is renormalizable in this sense. There is active work
on renormalizable power counting for χEFT beyond LO (see
references cited in Ref. [16]).

The LO theory at high cutoff is a useful laboratory for
testing the SRG (as well as providing insight into the evolution
of SRC physics, see Sec. IV). It features the appearance of
spurious, deeply bound states in some channels, which is
ultraviolet physics beyond the range of the EFT and thus does
not violate EFT principles. However, these present a major
challenge to the SRG. Wendt et al. studied SRG band-diagonal
transformations of high-cutoff LO potentials [25] and showed
that channels with spurious deep-bound states did not auto-
matically exhibit the expected decoupling and universality of
the potential if the conventional SRG generator is used. In
particular, the spurious bound state(s) is driven from high to
low momentum in the evolved potential when applying trans-
formations with G = Trel. The observables remain unchanged
because the transformation is still unitary, but the potential
and wave functions are altered significantly by the presence of
the spurious bound state at low momentum. In contrast, if the
Wegner generator is used, the spurious state(s) is decoupled,
subsequently yielding universality in low-momentum matrix
elements of the potential.

In Fig. 1 we show SRG band- and block-diagonal evolu-
tion of high-cutoff nonlocal potentials at LO, which consists
of one-pion exchange and a contact interaction. We restrict
our attention to the 3S1-3S1 subblock of the coupled 3S1-3D1

channel (note that spurious, deeply bound states only appear
in spin-triplet channels [40]). The contact interaction is deter-
mined by fitting the associated low-energy constant to Elab =
10 MeV phase shift data. In the diagonal matrix elements of
Fig. 1, we see a steep drop-off in the Wegner transformed
potentials around k ≈ 1.6–1.75 fm−1. This corresponds to the
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decoupled spurious bound state (ε ≈ −2000 MeV). The value
of momentum where the spurious bound state decouples is a
scheme-dependent quantity that is sensitive to how momen-
tum space is discretized (the momentum mesh). Due to this
dependence, we have been unable to predict the value of k at
which the spurious state decouples. However, when the spuri-
ous state is decoupled outside the low-momentum part of the
potential, the Wegner evolution collapses the low-momentum
matrix elements of the different potentials to the same mesh-
independent values in accordance with universality. There is
no drop-off in the � = 4 fm−1 potential as it has no spurious
state.

We also see universality for the block-diagonal evolved
matrix elements as before, but there is no noticeable in-
fluence from the spurious bound state. This is due to
the band-diagonal generator locally decoupling the matrix
elements whereas the block-diagonal generator cleanly sep-
arates the potential into a low-momentum subblock and a
high-momentum subblock. In the limit λ → 0 with �BD

sufficiently low, the spurious deep-bound state(s) is con-
tained entirely in the high-momentum subblock. We verified
this by diagonalizing the subblocks separately to see which
one contained the spurious bound state. We identify �BD ≈
4.5 fm−1 as the approximate value at which the spurious
bound state switches from the low-momentum subblock to the
high-momentum subblock. Thus, the block-diagonal trans-
formations decouple the spurious state(s) at a higher value
of momentum than the Wegner transformations, which iso-
lates the physical states more effectively. Tests with different
meshes found the same value of momentum, suggesting a
scheme-independent result. However, we do not have an ana-
lytic understanding of these scales.

We can draw a loose analogy to intruder states corrupt-
ing low-energy physics in IMSRG calculations with spurious
bound states corrupting universality in SRG-evolved poten-
tials. From the analysis so far, it is evident that the choice
of SRG generator is important in properly decoupling the
high-momentum spurious state from low-momentum physics.
It would be interesting to generalize this conclusion to an
A-body system and analyze how different generators deal with
intruder states. However, we must first verify that the Magnus
approach is the same as the conventional SRG approach for
difficult systems because of its use in IMSRG calculations. In
the following subsections, we present the Magnus approach
and compare to the conventional SRG using high-cutoff po-
tentials with spurious states as a test case.

B. The Magnus expansion: Formalism

We briefly review the formalism of the Magnus expansion
and its use in the SRG. Mathematically speaking, the Magnus
expansion is a method for solving an initial value problem
associated with a linear ordinary differential equation. Formal
details of the Magnus expansion are discussed in Ref. [41]. We
will introduce the Magnus expansion in the context of SRG
operator evolution.

We can solve Eq. (4) with a solution U (s) = e�(s), where
�†(s) = −�(s) and �(0) = 0. �(s) is expanded as a power

series in η(s):

�(s) =
∞∑

n=1

�n(s), (5)

where the terms of the series are given by integral expressions
involving η(s),

�1(s) =
∫ s

0
ds1η(s1),

�2(s) = 1

2

∫ s

0
ds1

∫ s1

0
ds2 [η(s1), η(s2)], (6)

...

Equation (5) is referred to as the Magnus expansion. (Again,
see Refs. [41,42] for further details.) We avoid computing the
integral terms �n(s) since it requires storing η(s) over a range
of s values, which is impractical for large-scale calculations.
We focus instead on the derivative of �(s),

d�(s)

ds
=

∞∑
k=0

Bk

k!
adk

�(η), (7)

where Bk are the Bernoulli numbers, ad0
�(η) = η(s), and

adk
�(η) = [�(s), adk−1

� (η)]. We integrate this differential
equation to find �(s) and evaluate the unitary transformation.
Then the evolved operator can be evaluated with the Baker-
Cambell-Hausdorff formula [32],

O(s) = e�(s)O(0)e−�(s) =
∞∑

k=0

1

k!
adk

�(O). (8)

As k → ∞ in both sums in Eqs. (7) and (8), the Magnus
transformation matches the SRG transformation exactly.4 We
investigate several truncations kmax in Eq. (7) and take many
terms, kmax ∼ 25, in Eq. (8).

There are significant advantages to the Magnus implemen-
tation in IMSRG calculations. In the conventional approach,
the numerical error associated with solving Eq. (2) accumu-
lates directly in the operator and can distort the eigenvalues of
the transformed Hamiltonian. To guard against this, one must
use a high-order ODE solver, which can become prohibitive
for large-scale calculations due to the memory-intensive na-
ture of such solvers. In the Magnus implementation, unitarity
is guaranteed by the form of U (s). One can solve Eq. (7) with
a low-order stepping method with a substantially lower mem-
ory footprint, which nevertheless preserves the eigenvalues
exactly while still decoupling as desired. Here we demonstrate
this advantage by applying the Magnus implementation using
the first-order Euler step-method. Note that the execution time
for Magnus applied to free-space SRG is roughly the same
as for conventional SRG evolution, because the more compli-
cated evaluations in Eq. (7) are offset by the fewer evaluations
needed with a low-order ODE solver.

4Note that this equivalence is exact only if both series converge and
the ODEs in Eq. (7) are solved exactly.
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FIG. 2. Comparison of SRG- and Magnus-evolved diagonal and far off-diagonal matrix elements of the nonlocal LO potential (9 fm−1) in
the 3S1 channel for several truncations kmax in the Magnus sum (7). Here we evolve in λ left to right using the Wegner generator G = HD.

The second major advantage involves the evolution of mul-
tiple operators. In many situations, one may be interested
in evolving several operators at a time. In the standard pro-
cedure, we would have another set of coupled equations in
Eq. (2), drastically increasing memory usage. Each additional
operator increases the set of equations—say, N equations—
by another factor of N . In the Magnus approach, one only
needs �(s) to consistently evolve several operators via explicit
construction of U (s) = e�(s). While operator evolution is not
an issue for NN evolution, the capability to calculate U (s)
directly is crucial in IMSRG calculations where the model
space can be very large. While it is possible to solve for
U (s) by directly integrating Eq. (4), this suffers from the
same memory limitations as Eq. (2) due to the necessity of
a high-order ODE solver to guard against the loss of unitarity.

C. The Magnus expansion: Results

We compare the SRG evolution of the nonlocal LO poten-
tial with cutoff at 9 fm−1 using the conventional approach and
the Magnus approach. At this particular cutoff, the potential
has one spurious bound state in the 3S1-3D1 coupled channel
of about −2000 MeV in addition to the deuteron bound-state
energy. Figures 2 and 3 show the diagonal and far off-diagonal
matrix elements of the evolving potential using both methods
at several different truncations kmax for Magnus evolution for
the two band-diagonal generators, G = HD and Trel, respec-
tively. In both cases, as we take higher values of kmax the
Magnus evolution approaches the SRG despite the presence
of a spurious bound state. The agreement is rather poor for the
lowest truncation shown, kmax = 2. Although the observables
for the Magnus-evolved potentials are still unaltered indepen-
dent of kmax, the presence of the decoupled spurious bound
state has effects on the flow to band-diagonal form. That is,

there is more variation with respect to kmax in band-diagonal
decoupling of these potential matrix elements.

We have tested other, softer potentials such as the lower
cutoff of 4 fm−1 and higher-order chiral potentials and found
that the Magnus implementation always works as intended.
The Magnus implementation nearly matches the SRG results
in all cases where small differences come from the difference
in ODE solver and truncations in the Magnus approach. Thus,
we only show results for the high cutoff of 9 fm−1.

In some cases, η(s) grows as s increases, leading to con-
vergence issues in the Magnus expansion. When η(s) begins
increasing, �(s) grows prohibitively large. In Ref. [41] the
convergence of the Magnus expansion is described in terms
of the Frobenius norm of η(s), stating that convergence is sat-
isfied if

∫ S
0 ||η(s)||ds < rc over an interval 0 < s < S, where

rc = π for calculations involving real matrices.
In Fig. 4 we show the Frobenius norms of η(s) and �(s)

for the three high-cutoff potentials tested using G = HD. The
convergence issue arises for � = 20 fm−1 at s ∼ 10−4 where
||η(s)|| and subsequently ||�(s)|| jump several orders of mag-
nitude. However, the problem is completely avoided when the
block-diagonal generator is used. We have tested different
Magnus truncations kmax and Euler method step sizes and
found the same behavior.

Overall, the Magnus implementation reproduces the
generator-dependent SRG behavior for high-cutoff potentials,
where the universality of the different potentials is achieved
with the Wegner generator but not the relative kinetic energy
generator. We note that the block-diagonal generator decou-
ples the spurious bound state(s) at a much higher momentum
value than the Wegner band-diagonal generator and still flows
to a universal form in the low-momentum matrix elements.
Although we fixed kmax in our results, one could use an adap-
tive method of selecting kmax values at each step in s where
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FIG. 3. Same as in Fig. 2 but with G = Trel.

criteria is based on flow to band- or block-diagonal form. One
could also truncate Eq. (7) when the Frobenius matrix norm
of the kth term is significantly smaller than the matrix norm
of the 0th term (see Ref. [32] for further details).

From the convergence standpoint, the initial interaction
and generator η(s) clearly play a significant role in how the
Magnus implementation works. This should be no surprise
from how η(s) is defined in terms of the Hamiltonian. In
connection to the Magnus expansion in the IMSRG context,
similar convergence issues arise for intruder state problems
[33]. At least for the NN system, our results imply that the
choice of SRG generator can play a significant role in over-
coming the issues stemming from intruder states, though we
leave this as work for a future study.

III. SRG EVOLUTION OF NN POTENTIALS

A. Modern chiral NN potentials

Next we extend our analysis of the SRG evolution of high-
cutoff LO potentials to include higher-order chiral potentials.
In Ref. [20], the conditions under which different poten-
tials are driven to universal low-momentum matrix elements
were studied. Here we apply both band- and block-diagonal
transformations to several newer chiral potentials, also fo-
cusing on universality. For band-diagonal evolution, we use
the Wegner generator, G = HD, instead of Trel, which was
used in Ref. [20]. For these interactions with cutoffs of or-
der 2–3 fm−1, the two band-diagonal choices are essentially
equivalent, unlike for the potentials considered in the previous

FIG. 4. Frobenius norms of η(s) and �(s) from Magnus-evolving the high-cutoff LO potentials in the 3S1-3D1 coupled channel: � = 4
(black dashed), 9 (red dash-dotted), and 20 fm−1 (blue solid) where G = HD and kmax = 6.
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FIG. 5. Momentum-space matrix elements of the EMN N 4LO 500 MeV, RKE N 4LO 450 MeV, and Gezerlis et al. N2LO 1 fm potentials
SRG-evolved in λ with the Wegner generator in the coupled 3S1-3D1 channel (only 3S1 is shown here.)

section when the cutoff was above 4 fm−1. We restrict our
analysis in this section and the following section to the typical
SRG approach as results with the Magnus implementation and
standard SRG are indistinguishable for soft potentials.

We will consider three representative potentials: the N 4LO
potential with 500 MeV cutoff from Ref. [11] (denoted EMN
N4LO), the N 4LO potential with 450 MeV cutoff from
Ref. [9] (denoted RKE N 4LO), and the N2LO potential with
1 fm cutoff from Ref. [5] (denoted Gezerlis N2LO). These
three potentials differ in the regulator functions applied to the
contact and pion-exchange terms.

The EMN N 4LO interaction is a nonlocal potential where
both contact and pion-exchange interactions feature a nonlo-
cal regulator function of the form exp[−(k/�)2n − (k′/�)2n],
where � is the momentum-space cutoff and n is an integer.
A nonlocal regulator function for pion-exchange contribu-
tions can introduce regulator artifacts by distorting the known
analytic structure of the NN scattering amplitudes near thresh-
old for cutoffs � lower than the breakdown scale �b [4].
Semilocal chiral potentials have been introduced to reduce
regulator artifacts, such as the RKE potentials. Here a local
regulator function is applied for the long-range interactions
in momentum space, while a nonlocal regulator function is
used for the short-range interactions. Nonlocal interactions
are generally not suitable for continuum quantum Monte
Carlo methods, motivating the need for fully local chiral po-
tentials. The Gezerlis et al. N2LO potential is an example
of a local interaction where both the long-range and short-
range terms have a local regulator function in coordinate
space.

These chiral interactions give the same low-energy phase
shifts but the matrix elements of the potential are often com-
pletely different. We show band-diagonal SRG evolution of
the three potentials in the 3S1 channel in Fig. 5. On the left-
hand column where λ = 6 fm−1, the three potentials differ
dramatically. Further along the SRG evolution (right-hand
side), the potentials are driven to band-diagonal form where
the upper left corner of the contours, corresponding to low-
momentum matrix elements, become close to the same.

Figure 6 shows the SRG-evolved RKE N 4LO (450 MeV
cutoff) potential in the 1P1 partial wave channel for band- and
block-diagonal SRG generators on the top and bottom rows,
respectively. We continue to evolve to band-diagonal form
with respect to the parameter λ, but for the block-diagonal
generator, we label subplots with the parameter �BD that
characterizes the sharp cutoff in decoupling the low- and high-
momentum matrix elements. For complete block-diagonal
decoupling, one should take s → ∞, which corresponds to
λ → 0. This is difficult to carry out in practice since the ODEs
become stiff, so we stop the evolution at λ = 1 fm−1. We
see a small nonzero width in between the subblocks due to
the nonzero value of λ, but when the width is this small the
subblocks are effectively decoupled. With block-diagonal de-
coupling, one can truncate the Hamiltonian at the chosen value
of �BD, separately diagonalize each subblock, and retain all
eigenvalues to high accuracy. We have tested representative
cases and found the same eigenvalues to better than 0.1% for
both the low- and high-momentum subblocks.

In Ref. [20], it was found that shared long-distance physics
(e.g., the common pion-exchange tail) plus phase equivalence
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FIG. 6. Matrix elements of the RKE N 4LO 450 MeV potential SRG-evolving left to right under transformations with Wegner and block-
diagonal generators in the 1P1 channel. We vary the SRG flow parameter λ for Wegner evolution and fix it at λ = 1 fm−1 for block-diagonal
evolution. The decoupling scale in the block-diagonal generator is denoted by �BD.

up to some value of scattering momentum k0 implies poten-
tial matrix element equivalence up to the same value k0 in
SRG-evolved potentials where λ, �BD � k0 (see Figs. 1–4
in Ref. [20]). We verify the conclusion from Ref. [20] in
the representative chiral potentials showing the 3S1 channel
as an example. Figure 7(a) shows the NN phase shifts of
EMN N 4LO 500 MeV, RKE N 4LO 450 MeV, and Gezerlis
et al. N2LO 1 fm potentials in the 3S1 partial wave channel.
Figure 7(b) shows the diagonal and far off-diagonal matrix
elements of the evolved potentials in the 3S1 channel on the

top and bottom row, respectively. Band- and block-diagonal
evolved potentials are shown on the same subplots indicated
by solid and dashed lines, respectively, where the color in-
dicates the potential. The 3S1 phase shifts agree to within 1%
for k � 2 fm−1, and as we see in Fig. 7(b), universality occurs
once the potentials are SRG evolved past 2 fm−1. The matrix
elements of the potentials all begin to collapse to the same line
as λ and �BD decrease to the point of phase equivalence. In
this sense, we can think of the SRG evolution like an attractor;
the potentials evolve in the same manner contingent on the

(a) (b)

FIG. 7. (a) 3S1 phase shifts for the EMN N 4LO 500 MeV (solid black), RKE N 4LO 450 MeV (red dash-dotted), and Gezerlis et al. N2LO
1 fm (blue dashed) potentials. (b) Diagonal and far off-diagonal matrix elements of the EMN N 4LO 500 MeV (black), RKE N 4LO 450 MeV
(red), and Gezerlis et al. N2LO 1 fm (blue) potentials SRG-evolved with Wegner (solid) and block-diagonal (dashed) generators in the 3S1

channel. For block-diagonal evolution, we fix λ = 1 fm−1.
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FIG. 8. Frobenius norm of the difference of two SRG-evolved potentials for several partial wave channels, 1S0 (black), 3S1 (red), 1P1 (blue),
1F3 (green), and 1G4 (orange), comparing the three default potentials, EMN N 4LO 500 MeV, RKE N 4LO 450 MeV, and Gezerlis et al. N2LO
1 fm.

SRG generator with a wide variety of starting points. The two
generators collapse the potential to a different form, because
the induced contributions from SRG flow depend on how the
potential is decoupled, that is, the choice in G.

B. Quantifying universality

Next, to quantify universality in the potentials, we calculate
the Frobenius norm of the difference in potentials in Fig. 8.
Here we use G = HD as an example for several partial wave
channels. We evolve the three default potentials to λ = 6, 3,
2, 1.5, and 1 fm−1. To focus on the region of universality, we
truncate each potential matrix up to the momentum value λ

and divide the difference by the average norm of the three
truncated potentials. (This prevents the norm from decreas-
ing with lower λ because the matrices become smaller in
dimension due to truncation.) The momentum value of phase
equivalence occurs somewhere in the range of 1–2 fm−1 for
most of the channels included. We see a sharp drop in the
matrix norm at λ near this range.

Notice that the 3S1 channel differs significantly in compar-
ing Gezerlis N2LO to the other two potentials. This is due to
the 3S1 being dominated by the contact force, where for Gez-
erlis N2LO the regulator function is local, while it is nonlocal
for the other two potentials. A similar difference is seen in
the 1G4 channel, which is dominated by pion exchange, but
now for EMN N 4LO compared to the other two. Again, this
is caused by the difference in regulator functions, where EMN
N 4LO uses a nonlocal regulator and the other two a local
regulator. The difference in regulator functions between the
various potentials affects the flow to universality in channels
primarily affected by contact forces or pion exchange, but the
difference is small and unnoticeable in the previous figures.

We can also use techniques from spectral distribution the-
ory (SDT) to analyze universality [43]. In SDT the expectation
value of a potential is defined as

〈V 〉 = 1

N
TrV, (9)

where N is the dimension of the matrix V . The inner product
of two potentials V and V ′ is defined as

(V,V ′) = 〈(V † − 〈V †〉)(V ′ − 〈V ′〉)〉
= 〈V †V ′〉 − 〈V †〉〈V ′〉. (10)

We can now define the correlation coefficient ζV,V ′ which
gives a measure of the “similarity” between the two potentials,

ζV,V ′ = (V,V ′)
σV σV ′

, (11)

where σV is the positive square root of the variance,

σ 2
V = (V,V ) = 〈V 2〉 − 〈V 〉2. (12)

Geometrically, we can think of the potentials as two vectors
with θV,V ′ ≡ arccos(ζV,V ′ ) measuring the angle between them.
Further details of the relevant formulas in SDT can be found
in Refs. [44,45].

Although these calculations have been used to quantify the
differences in nuclear Hamiltonians, we provide calculations
of θV,V ′ instead since the relative kinetic energy is the same
in the three representative Hamiltonians. Analogous to Fig. 8,
we show the angle between pairs of the potentials for the same
values of λ in Fig. 9. Again, we make a truncation in the
potential matrices up to the value of λ. With SRG evolution,
θV,V ′ → 0 corresponding to strong correlations between the
compared potentials. The differences in the behavior of the
various channels as noted previously show in Fig. 9 as well.

C. Evolved wave functions and SRCs

Universality in the potentials for a given SRG generator
is naturally reflected in the low-energy wave functions. In
Fig. 10 we show the initial and evolved deuteron wave func-
tions in coordinate space for the three chiral potentials, where
the solid lines correspond to the S-state components and the
dashed lines to the D-state components. The wave functions
are evolved using a band-diagonal, λ = 1.2 fm−1 transforma-
tion. The short-distance part of the S state differs initially but
flows to the same form, while the initial D state also differs
and becomes suppressed after evolving. This reflects the flow
to universality in the low-momentum matrix elements of the
potentials. Despite the scheme dependence of the initial UV
treatment, decoupling the low- and high-momentum physics
means the states flow to the same wave function at low reso-
lution. Furthermore, the same low-resolution wave functions
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FIG. 9. SDT angle θV,V ′ between two SRG-evolved potentials for several partial wave channels, 1S0 (black), 3S1 (red), 1P1 (blue), 1F3

(green), and 1G4 (orange), comparing EMN N 4LO 500 MeV, RKE N 4LO 450 MeV, and Gezerlis et al. N2LO 1 fm.

result for initial deuteron wave functions with harder poten-
tials such as Argonne v18 (AV18) [46] and the LO high-cutoff
potentials from the previous section, as seen in Fig. 11.

Consider these results from the perspective of SRC phe-
nomenology [12–15]. In Fig. 11, the dip at small r in
ψd (r) in the initial S states reflects a strong repulsive core
in the initial potential (with the node for � = 9 fm−1 be-
cause of the spurious deep-bound state for that potential)
while the D-wave strength at short distance is from a strong
tensor force. These are the signatures of the SRC proton-
neutron pair in the deuteron; there will be corresponding
intermediate-momentum (D-state) and high-momentum (S-
state) signatures in the momentum wave functions. Note the
qualitative similarity of AV18 and the chiral � = 4 fm−1

wave functions, which demonstrates that even though the LO
chiral potential is only adjusted to fit very low energy phase
shifts, the same SRC structure is found because of the com-
mon iterated-pion-exchange and similar regularization scale
in the respective Hamiltonians. (This suggests that one is un-
likely to explore fine details of the NN interaction from SRC
physics.) The higher momenta extend well beyond the chiral
EFT breakdown scale of about 3 fm−1, where UV physics is
incorrect.

FIG. 10. Deuteron wave functions in coordinate space for the
same three chiral potentials as in Fig. 9 under band-diagonal SRG
transformations with G = HD and λ = 1.2 fm−1. The solid lines
correspond to the S states, and the dashed lines correspond to the
D states.

The scale and scheme dependence of SRCs is manifest in
these two figures. But by shifting the resolution scale through
SRG evolution, the SRC physics is dissolved as the deuteron
state becomes decoupled from high-energy contributions. All
physical observables will be preserved with these uncorre-
lated wave functions if the corresponding operators are also
SRG evolved. The purely high-momentum contributions re-
moved from the wave function are compensated in the evolved
operator as smeared contact operators, as illustrated in the
following section. This reflects a natural factorization of the
short-distance physics for low-energy states, which will be
the same in all nuclei (with 1S0 contributions as well for
A > 2). This factorization accounts for the short-distance or
high-momentum pair distributions for a fixed high-resolution
Hamiltonian being the same as well (so they are universal in a
difference sense than we have been considering) [26,39].

The flow to universality in the wave functions for a well-
specified SRG scheme suggests that the lower resolution
scales for nuclear structure from soft potentials and the shell
model can be matched by a well-specified reaction operator
structure [38]. The S-state versus D-state probabilities of the
deuteron can be viewed as spectroscopic factors for single-
particle strengths [47]. If one analyzed scattering from the
deuteron S state with a high-resolution reaction model but the

FIG. 11. Same as Fig. 10 but for the high-cutoff LO potentials
with � = 4 and 9 fm−1 and AV18, and λ = 1.2 fm−1. The inset plot
on the left panel shows the initial wave functions zoomed out on the
y axis up to r = 2 fm.
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FIG. 12. Momentum projection operator 〈k|a†
qaq|k′〉 for q = 0.3 fm−1 under SRG transformations using the RKE N 4LO 450 MeV

potential, evolving with Wegner (HD) and block-diagonal (HBD) generators in the 3S1 channel. The SRG flow parameter λ is varied for G = HD

evolution and fixed at λ = 1 fm−1 for G = HBD evolution. The decoupling scale for G = HBD is �BD.

low-resolution wave function, then the reduced D-state com-
ponent would lead one to conclude that the ratio of experiment
to theory cross sections was less than 1. This is the analog
of what is found in knock-out experiments analyzed with
an eikonal reaction model and shell-model wave functions
[48]. The flow to universal structure may provide a controlled
resolution of these discrepancies.

In summary, we have examined the flow to universality of
several recently developed χEFT potentials. We verified that
the general conclusions of Ref. [20] still hold, namely that
potential matrix elements collapse to similar values in regions
of phase equivalence. We quantified this collapse using both
Frobenius norm and the SDT angle θV,V ′ , which highlight the
differences in the three representative potentials from the reg-
ulator functions. Last, we illustrated the consequence of this
universality for low-energy wave functions of the potentials
by applying transformations to the deuteron.

IV. EVOLUTION OF OTHER OPERATORS

A. SRG for representative operators

In this section, we analyze SRG operator evolution using
the radius squared operator r2 and the momentum projec-
tion operator a†

qaq, where q is the relative momentum. These
serve as examples of long-distance operators (r2) and low-
and high-momentum operators (by specifying different q in
a†

qaq). We look to whether the observations on universality for
SRG-evolved Hamiltonians can be generalized to universality
for any SRG-evolved operator and contrast the evolution for
different generators. In evolving these operators, we build the
SRG unitary transformations explicitly using the eigenvectors
of the bare and evolved Hamiltonians, that is,

U (s) =
N∑

α=1

|ψα (s)〉〈ψα (0)|, (13)

where α indexes the states of the Hamiltonian. Then to evolve
the operator, we apply U (s) as in Eq. (1).

We start by considering the relative momentum projection
operator, a†

qaq, which works in a very simple way in the
two-body system. The expectation value of a†

qaq in some state
|ψ〉 gives the momentum distribution evaluated at q, that is,
〈ψ |a†

qaq|ψ〉 = |ψ (q)|2. Hence, the k, k′ matrix element of this
operator is proportional to two δ functions: δ(k − q)δ(k′ − q).
In the simplest discretization, this corresponds to a matrix
of zeros at every point in k and k′ except where k = k′ = q,
which makes the SRG-induced contributions quite clear. More
generally, we can use smeared δ functions with nonzero en-
tries, appropriately weighted to integrate to one, for the matrix
elements near k = k′ = q. In Figs. 12 and 13 we show two dif-
ferent sets of SRG-evolved momentum projection operators
(for q = 0.3 and 3 fm−1) with the Wegner and block-diagonal
generators using a slightly smeared operator. For large λ and
�BD values in both figures, we see the initial regularized δ

functions as a dark red dot where k = k′ = q, which persists
with SRG evolution. (See Figs. 3 and 4 in Ref. [26] for similar
visualizations with the simplest discretization.)

In Fig. 12 where q = 0.3 fm−1, the most evident induced
contributions are nonzero bands for k = q or k′ = q and then
smooth induced contributions eventually become visible at
k, k′ < 2 fm−1. These features are independent of the smear-
ing of the δ function and matrix elements in the deuteron are
the same up to small discretization artifacts. We can under-
stand the bands by taking one infinitestimal step �s in the
SRG evolution in Eq. (2) and taking k, k′ matrix elements,

〈k|�a†
qaq(s)|k′〉 = 〈k|[η, a†

qaq(0)]|k′〉�s. (14)

After inserting an intermediate integration, a†
qaq(0) will eval-

uate to two (smeared) δ functions, one of which survives
each term as δ(k − q) or δ(k′ − q). These δ function contri-
butions persist throughout the evolution and therefore show
up as (smeared) bands. For the Wegner generator the low-
momentum induced contributions are much larger than in
the case of the block-diagonal generator. This reflects that
the Hamiltonian is being modified more at high momentum
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FIG. 13. Same as Fig. 12 but for q = 3 fm−1.

by the band-diagonal evolution. Consequently, the block-
diagonal transformation roughly keeps the same low-k wave
function (assuming a low-energy state), and therefore a low-
momentum operator will change less under block-diagonal
transformations. This is analyzed further in Sec. IV B.

Figure 13 shows SRG evolution of 〈k|a†
qaq|k′〉 again but

for q = 3 fm−1. The band-diagonal SRG transformation in-
duces low-momentum contributions where the initial operator
was entirely zero. A similar change happens for the block-
diagonal transformation except the induced contributions at
low momentum sharply drop to zero at the block-diagonal
cutoff �BD. The smooth low-momentum contributions are
what is expected from an EFT perspective, as they can be
expanded as regulated (smeared) contact operators that absorb
the high-momentum contributions to low-energy states that
are decoupled by the evolution. These features are indepen-
dent of the mesh and the discretization of the δ functions. This
is an example of an operator product expansion factorization
[26,39], which is reviewed in Sec. IV C.

Next, we consider the r2 operator, relying on Ref. [26] for
formulas and some basic results. In the absence of an explicit
regulator for large r, the meshes used to create the r2 matrix
in coordinate space and then Fourier transform to momentum
will act as regulators. Visualizations of the bare r2 operator
will then be highly mesh dependent, even though expectation
values of r2 will be stable for sufficiently large cutoff in r or
small mesh spacing in k. With this in mind, we show visual-
izations of 〈k|r2|k′〉 in Figs. 14 and 15, where the latter has an
added regularization to illustrate the strong regulator depen-
dence. (The r2 operator in Figs. 14 and 15 include integration
factors k and k′ such that evaluating 〈ψ |r2|ψ〉 in momentum
space with wave functions equipped with additional factors
k or k′ will give the correct integration.) As evident in both
figures, there is strength near the diagonal for all k, so the
contribution to the r2 expectation value for a particular state
will be dictated by its momentum wave function.

The SRG evolution of the regulated r2 operator is barely
noticeable in contour plots (e.g., see Ref. [26]), so we fo-
cus instead on the induced changes in the operator when
evolving to low momentum. We use block-diagonal evolution

for clarity and split the contribution to r2 according to its
origin in different blocks of momentum space defined by
P = θ (�BD − k) and Q = θ (k − �BD) projection operators.
In particular, the four contributions to the evolved r2 operator
[designated r2(�BD)] in the low-momentum block is decom-
posed as:

Pr2(�BD)P = PU (�BD)Pr2(∞)PU †(�BD)P

+ PU (�BD)Pr2(∞)QU †(�BD)P

+ PU (�BD)Qr2(∞)PU †(�BD)P

+ PU (�BD)Qr2(∞)QU †(�BD)P. (15)

In Fig. 16 we show a representative set of these contributions
for the RKE N 4LO 450 MeV potential, labeled by their origin
before the block-diagonal unitary transformations.

The Q-Q panel in Fig. 16 is very similar to the corre-
sponding P-P block for the evolved high-momentum a†

qaq

shown in Fig. 13. This is not a coincidence: These smooth
low-momentum contributions have the same origin and same
understanding from EFT and OPE factorization. The P-Q
block is roughly constant in k′ for the same reason, while the k
dependence is associated with the bare operator, and therefore

FIG. 14. Visualization of the r2 operator in momentum space,
〈k|r2|k′〉, regulated only by the coordinate and momentum meshes.
The integration factors of k and k′ are included.
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FIG. 15. Same as Fig. 14 but with a coordinate-space regulator
function e−r2/a2

where a = 6 fm.

with the regularization (here as in Fig. 14), as is the full contri-
bution in the P-P block (likewise for the Q-P block, swapping
k′ and k). The implications for matrix elements in the deuteron
are given in the next section. We discuss how the behavior in
each panel of Fig. 16 follows from factorization in Sec. IV C.
The decomposition for other potentials or other choices for
�BD is qualitatively similar, with the Q-Q contribution scaling
with the hardness of the interaction, which reflects the extent
of initial high-momentum components (i.e., the short-range
correlations).

B. Connecting to wave function evolution

SRG transformations are unitary, meaning that the matrix
elements of the evolved operator are preserved. Therefore, the
changes in the operator must be accounted for in the evolved
wave functions. We can examine the evolved wave functions
to understand the differences in band- and block-diagonal
evolution of operators.

Figure 17 shows initial and evolved momentum distri-
butions for the deuteron and a high-energy state at ε ≈
300 MeV using the RKE N 4LO 450 MeV potential. For the
deuteron, the strength of the wave function is shifted to lower
momentum with the band-diagonal generator. With the block-
diagonal generators, the wave function is nearly the same up
to the value of the cutoff �BD. For the high-energy state,
the band-diagonal generator keeps the strength of the wave
function near the spike at k ≈ 2.7 fm−1. However, in the case
of the block-diagonal generator, the wave function changes
in different ways depending on the cutoff �BD. For �BD =

2 fm−1, we see the evolved distribution roughly matching the
initial one for k > �BD, and vice versa for �BD = 3 fm−1.
Recall that in block-diagonal SRG decoupling the Hamilto-
nian is split into a low-momentum subblock, PHP, and a
high-momentum subblock, QHQ. When �BD = 2 fm−1, the
ε ≈ 300 MeV state is contained in QHQ, whereas for �BD =
3 fm−1 it is contained in PHP. Note that the deuteron, being
the lowest energy state, is also contained in PHP, which is
consistent with what is seen in Fig. 17(a). A block-diagonal-
evolved wave function remains approximately unchanged in
the subblock where the state resides with the rest of the wave
function dropping to zero.

Generally speaking, SRG transformations change oper-
ators based on how the transformations change the wave
functions, which depends on the type of decoupling. Consider
the momentum projection operator with q = 3 fm−1 and a
block-diagonal transformation with �BD = 2 fm−1. We see
the evolved wave functions for the deuteron and the high-
energy state are opposite in the sense that the evolved deuteron
wave function matches the initial wave function for k < �BD

and the high-energy state wave function matches for k > �BD.
We can use the momentum projection operator a†

qaq to
understand the contrasting behavior in the wave functions.
With 〈ψ (0)|a†

qaq(0)|ψ (0)〉 = 〈ψ (s)|a†
qaq(s)|ψ (s)〉 from uni-

tarity, how does the evolved projection operator for q =
3 fm−1 and �BD = 2 fm−1 make sense given these changes
to the example wave functions? For the deuteron wave func-
tion, the expectation value takes strength from the induced
low-momentum contributions in the evolved operator where
the evolved deuteron wave function is strongest (k < 2 fm−1).
For the high-energy state, the expectation value depends more
on the remnants of the δ functions from the initial oper-
ator because the strength of the wave function is at high
momentum. In each case, the expectation value remains the
same.

The SRG does not decouple every operator in the sense
that it decouples matrix elements as in the Hamiltonian, but
instead reflects the changes made to the wave functions. In
Figs. 18 and 19 we show the evolution of the integrand of the
expectation value 〈ψ |a†

qaq|ψ〉 for deuteron and a high-energy
state ε ≈ 300 MeV, respectively, where q = 3 fm−1. Both the
wave function and operator are SRG evolved so the total
strength is preserved.

FIG. 16. SRG contributions to Pr2P in momentum space, splitting PU (�BD)r2(∞)U †(�BD)P into four components as in Eq. (15). For the
P-P contribution, the unevolved operator Pr2P is subtracted out. We apply a block-diagonal transformation from RKE N 4LO 450 MeV in the
3S1 channel with �BD = 2 fm−1.
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(a) (b)

FIG. 17. Momentum distributions from deuteron (a) and a high-energy state (b) with the RKE N 4LO 450 MeV potential. Here we compare
SRG-evolved distributions, G = HD (red solid), G = HBD at �BD = 2 fm−1 (blue dash-dotted), and G = HBD at �BD = 3 fm−1 (green dash-
dotted) each with λ = 1.5 fm−1, to the initial distribution (black dotted). Also ε ≈ 300 MeV for the high-energy state in (b).

In Fig. 18, the SRG transformations shift the strength
in the integrand to lower momentum, matching the changes
in the SRG-evolved deuteron wave function. The band-
diagonal transformation in the top row smoothly approaches
lower and lower momentum, eliminating the δ functions,
while the block-diagonal shows similar behavior but roughly
sets an upper limit �BD on the intermediate integrations.
The low-momentum contributions in the expectation value
are relatively constant as the fall off of the wave function
ψ (k) largely cancels out with the integration factors k2 and
k′2. In Fig. 19, band-diagonal evolution locally decouples
the expectation value at high momentum. Block-diagonal
evolution sharply isolates the expectation value to low- or
high-momentum subblocks depending on the value of �BD.
In the first two columns with block-diagonal decoupling, the

expectation value resides in the low-momentum subblock but
then switches to the high-momentum subblock in the last two
columns with lower �BD.

The expectation value 〈ψd |r2|ψd〉 shows little variation
with SRG evolution as the strength of initial operator resides
predominantly at low momentum. Thus, softening the high-
momentum tail of the deuteron wave function leads to only
a small change in the expectation value with r2. In Fig. 20
the contributions from different regions in k to the unevolved
deuteron matrix element of r2 are shown for the AV18 and
RKE N 4LO 450 MeV potentials by plotting the relative error
made by integrating only up to kmax. Only about 1% of the
expectation value comes from above 2 fm−1 in the initial wave
function for either potential and there is negligible contribu-
tion above 2 fm−1 once they are evolved to λ = 1.5 fm−1.

FIG. 18. Integrand of 〈ψd |a†
qaq|ψd 〉 in momentum space where ψd is the deuteron wave function and q = 3 fm−1. Here we SRG-evolve

the operator and wave function where each successive column indicates further evolution under the Wegner and block-diagonal generators
with the RKE N 4LO 450 MeV potential. We vary the SRG flow parameter λ for Wegner evolution and fix it at λ = 1 fm−1 for block-diagonal
evolution. The decoupling scale in the block-diagonal generator is denoted by �BD.
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FIG. 19. Same as Fig. 18 but with a high-energy state ψε where ε ≈ 300 MeV.

Table I shows the contributions from the blocks in Fig. 16
to the deuteron. In contrast to the entries for a†

qaq with q =
3 fm−1, which come entirely from the high-momentum Q-Q
block, the four blocks each contribute to the induced r2 ex-
pectation values. This implies that attempts to estimate the
high-resolution SRC contribution to the low-resolution radius
in schematic models, as in Ref. [49], are rather subtle. We have
checked that contributions to 〈ψd |Pr2P|ψd〉 with transforma-
tions from other potentials are consistent with the results in
Table I.

C. Factorization

In Refs. [26,50] it was shown that when there is a scale
separation in its momentum arguments, the SRG unitary trans-
formation should factorize into separate functions of low and

FIG. 20. Relative error of the deuteron rms radius from AV18
(black) and RKE N 4LO 450 MeV (red) truncating the momentum-
space calculation 〈ψd |r2|ψd 〉 at kmax. Solid lines indicate the fully
unevolved calculation and dashed lines indicate the SRG-evolved
calculation where λ = 1.5 fm−1.

high momentum, that is, U (k, q) → Klo(k)Khi(q) for k < λ �
q.5 This is expected from general considerations of the opera-
tor product expansion [26,39]. A test of factorization for three
chiral EFT potentials is shown in Fig. 21 by plotting the ratio
|U (ki, q)/U (k0, q)| versus q with k0 = 0.1 fm−1 for several
different ki. In general this ratio should vary widely with q
but should reduce to |Klo(ki )/Klo(k0)|, which is independent
of q, when the conditions for factorization are satisfied. This is
validated in the figure as plateaus of the U ratio in the expected
region in q for ki < λ. Furthermore, these plateaus are close
to one and vary slowly with ki, so the same is true of Klo(k).
We show only the 3S1 channel in Fig. 21 but have verified
factorization in other channels as well.

Consider the consequences of this factorization for block-
diagonal SRG evolution of an unevolved high-momentum
operator, which we define as one with support only in the Q-Q
block as in Sec. IV A:

[OQ]∞ = Q[OQ]∞Q. (16)

This includes a†
qaq for q in Q and Qr2(∞)Q in Eq. (15). In the

low-momentum block, the evolved operator becomes

P[OQ]�BD P = PU (�BD)Q[OQ]∞QU †(�BD)P

≈ PKlo[Khi[OQ]∞Khi]KloP (17)

or, for k, k′ in the P-P block,

〈k|[OQ]�BD |k′〉 ≈ Klo(k)Klo(k′)
[∫ ∞

�BD

dq̃′
∫ ∞

�BD

dq̃′′

×Khi(q
′)[OQ]∞(q′, q′′)Khi(q

′′)
]
, (18)

where dk̃ ≡ 2
π

k2dk. As all of the k, k′ dependence comes
from the smooth functions Klo(k)Klo(k′), this universal result
directly explains the particular cases of the P-P block behav-
ior in Fig. 13 and the Q-Q panel of Fig. 16. The same analysis

5In Ref. [26], Klo was denoted K and Khi was denoted Q. We switch
notation here to avoid confusion with the projection operator Q.
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TABLE I. SRG contributions to 〈ψd |Pr2P|ψd 〉 splitting PU (�BD)r2(∞)U †(�BD)P into four components as in Eq. (15) where P-Q and
Q-P are combined. For the P-P contribution, the unevolved 〈ψd |Pr2P|ψd 〉 value is subtracted. We apply block-diagonal transformations from
RKE N 4LO 450 MeV and AV18 in the 3S1 channel with �BD = 2 fm−1. For comparison, we also show results for a†

qaq with q = 3 fm−1.

〈ψd |Pr2P|ψd 〉 (fm2) 〈ψd |Pa†
qaqP|ψd 〉 (fm3)

Potential P-P P-Q + Q-P Q-Q P-P P-Q + Q-P Q-Q

RKE N 4LO 450 MeV −2.90 × 10−2 −3.22 × 10−1 1.66 × 10−1 0.0 0.0 5.05 × 10−4

AV18 −4.83 × 10−2 −4.33 × 10−1 2.33 × 10−1 0.0 0.0 1.61 × 10−3

goes through with the band-diagonal SRG, but with �BD → λ

and the boundaries not so sharply defined.
Note that in the non-Q-Q panels of Fig. 16 at least one

of the two SRG transformations does not factorize and is
fully in the low-momentum P subspace. For instance, in the
P-Q panel, we have one integral over low momentum and
another over high momentum. This yields oscillatory behavior
in k from the form of the bare r2 operator (which is scheme
dependent) and little variation in k′ because the factorized
function Klo(k′) is constant at leading order.

If we apply Eq. (18) to matrix elements of OQ for the same
Hamiltonian but in different nuclei, then the integrations in the
Q-Q block will be the same, so matrix-element ratios will be
determined by soft (“mean-field”) physics and be independent
of high-momentum details [26] [up to higher-order correc-
tions beyond (18)]. This explains why the high-momentum or
short-distance behavior of momentum distributions is univer-
sal in nuclei [14,26,39,51].

We can also use (18) to make comparisons for the same
nucleus but with different potentials. We use a†

qaq with q � λ

or �BD as an example, so

〈q′|[OQ]∞|q′′〉 → δ(q′ − q)δ(q′′ − q) (19)

and the ratio for two different potentials A and B is

R[a†
qaq(k, k′)] ≡ 〈k|[a†

qaq]A
λ |k′〉

〈k|[a†
qaq]B

λ |k′〉

≈ KA
lo(k)KA

lo(k′)KA
hi(q)2

KB
lo(k)KB

lo(k′)KB
hi(q)2

. (20)

From Fig. 21 we verify that the Klo functions should be ap-
proximately the same for several chiral EFT potentials, so this
ratio should be roughly constant for k, k′ < λ and q � λ. This
is illustrated in Fig. 22 for these same potentials in the 3S1

channel for q = 3 fm−1. After evolution to λ � q, the ratio R
is quite flat in the unshaded region. The value of the ratio at q
is well approximated at lower λ by

∣∣ψA
∞(q)

∣∣2∣∣ψB∞(q)
∣∣2 =

〈
ψA

λ

∣∣[a†
qaq]A

λ

∣∣ψA
λ

〉
〈
ψB

λ

∣∣[a†
qaq]B

λ

∣∣ψB
λ

〉 ≈ KA
hi(q)2

KB
hi(q)2

≡ f (q), (21)

where ψ denotes the various deuteron wave functions, which
share the same low-momentum structure so that the Klo de-
pendence roughly cancels.

The high-momentum function f (q) is dependent on the
differences in the UV behavior of each of the representative
potentials. This does not mean, however, that one of the po-
tentials is correct and the others are wrong. Indeed, matrix
elements of the representative operators considered in this
section, a†

qaq and r2, cannot be absolutely measured by them-
selves in experiments. To relate them to measurable quantities,
one must build and calibrate the initial operators for particular
experimental observables, as done with EFTs. A recent exam-
ple is the precision calculation of the deuteron structure radius
in Ref. [52], which requires the inclusion of two-body currents
that will have scale- and scheme-dependent contributions to
match the measured charge form factor. Only after the con-
sistent construction of the Hamiltonian and current operators,
with an assessment of uncertainties from theory discrepancies

FIG. 21. Numerical tests of factorization of the unitary transformation by plotting ratios of |U (k, q)| in the 3S1 channel as a function of
q for fixed k = k0 in the denominator and several values of ki in the numerator. Plateaus in q indicate factorization U (k, q) ≈ Klo(k)Khi(q),
which is expected for q � λ (outside shaded box) and k < λ. The unitary transformations are generated in each panel for a different chiral
EFT potential, all evolved to λ = 2 fm−1 with G = HD.
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FIG. 22. Ratio of evolved matrix elements R[a†
qaq(k, k)] (diagonal) and R[a†

qaq(k, 0)] (full off-diagonal) as defined in Eq. (20) in the 3S1

channel for q = 3 fm−1. Three potentials are compared to RKE N 4LO after evolution to several values of λ with G = HD. The dotted lines
indicate the value of |ψA

∞(q)|2/|ψB
∞(q)|2.

(such as EFT truncation errors), can one reliably compare
predictions.

For visual insight into factorization, we consider the SRG
transformation directly. We can write the SRG unitary trans-
formation as

U (s) = 1 + δU (s), (22)

where δU (s) is responsible for the induced changes in trans-
formed operators. In Fig. 23 we show contours of δU (s) in
momentum space in the 3S1 channel for the three represen-
tative potentials all evolved to λ = 1.5 fm−1 with G = HD in
the top row and to λ = 1 and �BD = 2 fm−1 with G = HBD

in the bottom row. Figure 23 depicts factorization in the fol-
lowing sense. By fixing k′ to a value much higher than λ or
�BD, we can take vertical lines up to k = λ or �BD and see

FIG. 23. Matrix elements of δU (k, k′) with the EMN N 4LO 500 MeV, RKE N 4LO 450 MeV, and Gezerlis et al. N2LO 1 fm potentials
with Wegner and block-diagonal generators in the 3S1 channel. Here we set λ = 1.5 fm−1 for band-diagonal evolution, and �BD = 2 and
λ = 1 fm−1 for block-diagonal evolution.
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FIG. 24. Matrix elements of δU (k, k′) with the high-cutoff LO potentials with Wegner and block-diagonal generators in the 3S1 channel.
Here we set λ = 1.2 fm−1 for band-diagonal evolution, and �BD = 2 and λ = 1 fm−1 for block-diagonal evolution.

little to no variation in the transformation. The transformation
approximately depends only on a function of high momentum
Khi(k′) in these regions, hence the same shade of color. One
can verify factorization in the opposite block by fixing k � λ

and taking horizontal lines up to k′ = λ.
The difference in regulator functions between the three

representative potentials is apparent in these figures. For in-
stance, in the EMN N 4LO case, the nonlocal regulator kills
off the high-momentum matrix elements of δU (s) because
U (s) is expressed in terms of the SRG generator η(s) which
contains the potential V (k, k′). In the subsequent panels, the
local momentum dependence of RKE N 4LO (semilocal) and
Gezerlis N2LO (local) is seen in nonzero matrix elements at
higher momentum values.

Figure 24 shows matrix elements of δU (s) for the
high-cutoff LO potentials. These potentials still exhibit fac-
torization of the SRG transformation, although the function
of high momentum Khi(q) will have much different behavior
than the softer chiral potentials. Furthermore, we see the ap-
pearance of positive, horizontal bands for the band-diagonal
transformations. In the first column, the band corresponds to
the region in which the high-momentum contributions of the
initial potential accumulate up to the momentum space cutoff
� = 4 fm−1. For � = 9 and 20 fm−1, the large and positive
band corresponds to the decoupled spurious bound state. This
piece of the transformation decouples the spurious bound state
along the diagonal in the evolved potential. Otherwise, the
low-momentum matrix elements are quite similar to the softer
transformations in Fig. 23, with larger contributions at high
momentum due to the high momentum-space cutoffs.

In this section, we examined the characteristics of SRG
evolution for representative operators a†

qaq and r2, extending
the treatment in Ref. [26]. The SRG changes in the operator
do not lead to any complications that would offset the desired
features in the decoupled NN potential. Corresponding wave

functions are decoupled in momentum space, either collapsing
locally to one region with band-diagonal evolution, or cleanly
cut off from low- or high-momentum subspaces with block-
diagonal evolution (depending on the energy of the state). The
matrix elements of expectation values using the evolved oper-
ators and states show how one can take advantage of scale and
scheme dependence to calculate consistent observable quanti-
ties at lower resolution. We used factorization to show that
high-momentum operators exhibit universal scaling depen-
dent only on the high-momentum physics of the underlying
NN potential. That is, the high-momentum (short-distance)
physics in the initial wave function appears in the evolved
operator.

While the results of operator evolution generally have the
same behavior for different potentials, the underlying scheme
dependence is apparent. The induced high-momentum (short-
distance) contributions in non-Hamiltonian operators are
dependent on the UV scheme of the NN potential. Further-
more, the remaining SRG components of non-Hamiltonian
operators reflect the scheme dependence of the bare oper-
ator. For example, contrasting smeared δ functions to the
single-point δ functions in a†

qaq from Ref. [26] gives differing
behavior in the SRG-evolved matrix elements at k, k′ = q.
Last, we demonstrated that the characteristics of operator
evolution are the same for band- and block-diagonal SRG
schemes, but the evolved matrix elements are different and
reflect the SRG decoupling scheme.

V. SUMMARY AND OUTLOOK

Operator evolution is a critical aspect of SRG evolution in
free-space and in-medium implementations. Our initial focus
here was on a technical aspect of this evolution: the efficacy
and robustness of the Magnus expansion, which we evaluated
in a difficult test environment with large cutoffs and spurious
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states. But this study led us to reconsider and expand past
studies of operator evolution in light of scheme dependencies
arising both from different SRG generators and from different
regulators of recent chiral EFT Hamiltonians. The flow to low
resolutions leads to universality (in the sense of independence
from initial scheme dependence) in Hamiltonians and low-
energy wave functions. The constraint of unitarity then has
implications for the corresponding flow of operators, while
the scale separation from decoupling leads to consequences
from factorization. Each of these aspects can be exploited in
future analyses of nuclear reactions that account for scale and
scheme dependence.

We first used high-cutoff EFTs to verify that the Magnus
expansion offers an improved variant of the standard SRG so-
lution methods. The Magnus implementation performs SRG
transformations to exact unitarity which allows one to solve
the flow equation (2) using simple, efficient methods. In Fock
space, the benefits of the Magnus expansion are especially
important as evolution of several operators simultaneously can
be quite difficult for many-body systems, hence the promi-
nence of the Magnus expansion in IMSRG calculations. Here
we showed that the Magnus implementation works effec-
tively for a difficult free-space test problem in decoupling
bound states using LO chiral potentials at high cutoffs. The
Magnus expansion reproduces the generator dependence seen
in Ref. [25] and obtains eigen-energies to high accuracy. In
carrying out this test, we also showed that the block-diagonal
generator decouples spurious, deeply bound states cleanly in
the high-momentum subblock but at higher momentum val-
ues than the band-diagonal generators and without apparent
dependence on the discretization mesh. However, the Magnus
expansion does not converge in some cases, which is similar
to a related issue in IMSRG calculations involving intruder
states. The NN convergence problem is related to the interac-
tion and can be avoided in at least some cases by a careful
selection of generator G.

The initial high-cutoff LO Hamiltonians and the con-
trasting evolution with band- and block-diagonal generators
represent extremes of scale and scheme dependence. Recently
introduced chiral EFT Hamiltonians are characterized by a
different type of scheme dependence in the use of qualitatively
distinct regulators. In comparing their flows to low resolution,
we confirmed that the momentum-space matrix elements of
this new generation of χEFT Hamiltonians flow to a universal
form when the decoupling scale is below the region of phase
equivalence. This happens for either band or block diagonal
generators, but the universal form is not the same [20]. We
found small deviations from universality in channels dom-
inated by one-pion exchange or only contact forces, which
are attributed to the difference in regulator functions. This
was examined quantitatively using the Frobenius norm and
SDT correlation coefficient and angle θV,V ′ as measures of the
differences in the evolved potentials.

The flow to near-universality for potentials leads to almost
perfect universality of deuteron wave functions. Dramatically
different initial wave functions in both their S-wave and
D-wave characteristics collapse to near-indistinguishable low-
resolution versions. We expect a similar collapse, if not as
extreme, for the lowest-energy states in other nuclei. This is

encouraging for our goal of a controlled understanding of how
spectroscopic factors are quenched in terms of a mismatch of
high-resolution reaction models and low-resolution structure.
With universal wave functions at low resolution, we expect to
identify universal features in the evolved reaction operators.

This goal led us to revisit the SRG evolution of non-
Hamiltonian operators first studied in Refs. [26,39] (see also
Refs. [53,54]). We first extended our SRG analysis to mo-
mentum projection operators at low and high momentum.
Evolution of the momentum projection operator exemplifies
the benefits that arise from SRG-transformed operators. In
particular, with decoupling at lower resolution there is a shift
of strength to low momentum in matrix element of low-energy
wave functions through induced two-body contributions (and
smaller higher-body contributions that do not contribute to the
deuteron). This induced structure is very smooth and does
not exhibit artifacts from the discretization of the operator.
The smoothness and universal properties are well under-
stood from the factorization of the unitary transformations
for well-separated momentum arguments. The ratios of the
same hard operators for different potentials scale with the
high momentum and differ in magnitude as expected from
differences in the ultraviolet content of the potentials. (Note
that to get the same matrix elements, the operators themselves
would have to be appropriately matched for the experimental
observable in question.) This suggests that a reliable the-
oretical understanding of high-energy reactions is possible
using low-energy structure components (the initial wave func-
tion) with no insurmountable complications from the evolved
operators.

Another representative operator is r2, which is sensitive
to the long-distance wave-function structure in coordinate
space. In momentum space, this operator has strength at all
momentum scales and its visual form is highly sensitive to
the momentum discretization scheme. The two-body induced
contributions from this operator to a low-energy state like the
deuteron are small (see Ref. [54] for results on induced three-
body contribution). We isolated four types of contribution to
the induced operator (see Fig. 16). The part originating fully
from the high-momentum sector takes the same smooth form
as the induced two-body operator for the high-q momentum
projection operator, and is explained in the same way by
factorization. However, while the qualitative behavior of the
other pieces is still explained by factorization, the numerical
contributions are scheme dependent (see Table I). This im-
plies that even roughly estimating the net contribution, as in
Ref. [49], may be difficult.

The features highlighted here and in work on the elec-
trodisintegration of the deuteron [37,38] on the interplay
of structure (wave functions) and reaction (operators) are
promising for a cleaner theoretical understanding of knock-
out reactions [55]. By exploiting the unitary invariance of
measured observables, we can shift the focus from cor-
recting many-body wave functions to the computationally
simpler RG flow of the operators. The long-standing and
well-documented mismatch of experimental and theoretical
cross sections for knock-out reactions (see Ref. [48] and
references therein) can be understood at least in part as a
failure to do consistent matching of resolution scales. That
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is, the overprediction of cross sections with (low resolution)
shell-model wave functions should be understood as arising
because a high-resolution reaction mechanism is used in the
analysis. Exploiting the flow to universal soft wave functions
and the corresponding consistent operators can open the door
to process-independent analyses of these reactions.
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