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Three-neutron bound and continuum states

Souichi Ishikawa *

Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda, Tokyo 102-8160, Japan

(Received 29 April 2020; accepted 24 August 2020; published 8 September 2020)

The three-neutron (3n) system is studied by numerical calculations with the Faddeev three-body formalism
for a realistic nucleon-nucleon (NN) potential. A response function for the transition from 3H to 3n continuum
states by an isospin excitation operator is calculated, from which no evidence of 3n resonance state is found.
Different methods to extrapolate the 3n energy from bound state energies with an extra attractive effect to the
NN potential are examined. While extrapolations with attractive effects by enhanced NN potentials or three-body
potentials result in the nonexistence of 3n resonance states, one by external trapping potentials leads to a positive
3n energy, which may be considered as a resonance state. It is found that this contradiction is due to a general
defect of the trapping method.
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I. INTRODUCTION

Studies of few-neutron systems are expected to enrich
our knowledge of the interaction among neutrons, which is
essential to microscopic understanding of neuron-rich nuclei
and neutron matter. For a neutron-neutron (nn) system there
exists a virtual state, which results a peak in energy spectra
of reactions leaving two neutrons in the final state, such as
the π−d → nnγ reaction, and gives us information of the
1S0 scattering length (see, e.g., Ref. [1]). There has been no
conclusive evidence for the existing of bound or resonance
state in 3n (e.g., Ref. [2]) and four-neutron (4n) systems,
besides a few experimental suggestions for a resonant 4n state
[3,4].

Recently, the existence of 3n as well as 4n resonance
states was indicated by quantum Monte Carlo calculations [5]
and no-core Gamow shell model calculations [6]. However,
these calculations contradict previous calculations [7–10] (see
also Refs. [11–13]) by the Faddeev-type method [14], which
showed that complex energy eigenvalues of the Hamiltonians
of the systems are too far from the real energy axis to give
any effect as a resonance. The aim of this paper is to clarify a
reason of this discrepancy by performing Faddeev 3n calcula-
tions for continuum and bound states.

In Refs. [7,8], the Faddeev equations [14] were solved in
combination with the complex scaling method, from which
one can obtain a complex energy eigenvalue of the system,
Er − i �

2 with Er being the resonance energy and � the width.
On the other hand, in Ref. [10], the transition amplitude for
3n → 3n scattering was calculated at positive real energies,
from which the pole position of the amplitude in the complex
energy plane is evaluated.

Since the 3n → 3n scattering cannot be performed as a
laboratory experiment, in the present paper I will study one
of possible realization of 3n continuum systems, namely
the charge exchange reaction 3H(n, p)3n. Actually, there
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have been some experimental works for its mirror reaction,
3He(p, n)3p [15,16]. In Ref. [17], this reaction was studied
in a plane wave impulse approximation (PWIA), in which re-
sponse functions of the transition from 3He to the three-proton
(3p) state by spin-isospin transition operators were calculated
in the Faddeev three-body formalism.

The response function is written as the imaginary part of a
matrix element of the Green’s function for the 3n Hamiltonian
[see Eq. (7) below]. A complex eigenvalue of the Hamiltonian
corresponds to the pole of the Green’s function in the complex
energy plane. If the pole is close to positive energy axis in
the fourth quadrant so that the response function has a peak
as a function of the (real) energy, one may recognize that a
resonance state exists.

In the above mentioned calculations, to realize a bound
state or a resonance state artificially, an additional attractive
effect is given on the original Hamiltonian either by enhancing
the nn interaction [7,8,10], by introducing a three-body force
[8], or by introducing an external potential that confines the
neutrons in a trap [5,6]. Energies are calculated with modify-
ing the strength of the attractive effect, from which the energy
for the original Hamiltonian is extracted.

In Sec. II, three-body calculations of the response function
will be described. In Sec. III, results of the response function
as well as the 3n binding energy for modified 3n Hamiltonians
are presented, and the extrapolation methods will be exam-
ined. In Sec. IV, results of 3n calculations will be interpreted
in a simple two-body system. A summary will be given in
Sec. V.

II. RESPONSE FUNCTION

In this paper, I will study a response function correspond-
ing to 3H bound state to 3n continuum state by an isospin
excitation operator:

Ô(Q) =
3∑

i=1

eiQẑ·ri t (−)
i , (1)
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where Q is the momentum transfer, t (−)
i an isospin operator

that transforms the proton i in 3H to neutron i in the final
3n state, and ri the coordinate vector in the three-nucleon
center-of-mass (c.m.) system of the particle i. This is one of
three transition operators to used in PWIA analysis of the
3H(n, p)3n reaction.

First, I introduce the 3n Hamiltonian in the c.m. system,

H3n = H0 +
∑

i

V (2B)
i +

∑
i

V (3B)
i , (2)

where H0 is the three-body kinetic energy operator, V (2B)
i is

an two-body potential between particles j and k, and V (3B)
i is

a three-body potential (3BP) that is symmetric with respect to
particles j and k.

Let |� (±)(q, p; Jπ )〉 be an eigenstate of the 3n Hamiltonian
H3n(Jπ ) for the total angular momentum J and parity π state
associated with an asymptotic 3n state, in which the relative
momentum between two neutrons is q and the momentum of
the third neutron with respect to c.m. of the neutron pair is p.
The superscript (±) expresses the outgoing (+) or incoming
(−) boundary condition.

The eigenvalue problems is written as

H3n(Jπ )|� (±)(q, p; Jπ )〉 = E (q, p)|� (±)(q, p; Jπ )〉, (3)

with

E (q, p) = q2

m
+ 3p2

4m
, (4)

where m is the mass of the neutron.
A response function corresponding to the transition from

the 3H bound state, |�t 〉, to 3n-continuum states with energy
E by an operator Ô(Q) is written as

R(E , Q; Jπ ) =
∫

dq d p|T (q, p; Q, Jπ )|2δ(E − E (q, p)),

(5)
where the transition amplitude is defined by

T (q, p; Q, Jπ ) = 〈� (−)(q, p; Jπ )|Ô(Q)|�t 〉. (6)

Using the completeness of the 3n states, one finds

R(E , Q; Jπ ) = 〈�t |Ô†(Q)δ(E − H3n(Jπ ))Ô(Q)|�t 〉
= −1

π
Im〈�t |Ô†(Q)

1

E + iε− H3n(Jπ )
Ô(Q)|�t 〉.

(7)

Here, I introduce a wave function |�(Q, Jπ )〉 describing
the disintegration process,

|�(Q, Jπ )〉 = 1

E + iε − H3n(Jπ )
Ô(Q)|�t 〉. (8)

Adapting the Faddeev theory to solve Eq. (8), a three-body
wave function |�〉 is decomposed into three (Faddeev) com-
ponents:

|�〉 = |	(1)〉 + |	(2)〉 + |	(3)〉, (9)

where I drop the arguments Q and Jπ for simplicity. Corre-
sponding to this decomposition, the operator Ô is decomposed
into three components:

Ô = Ô1 + Ô2 + Ô3, (10)

FIG. 1. Energy dependence of the response function R(E , Q; 3
2

−
)

for Q = 300 MeV/c (black solid curve), Q = 400 MeV/c (red
dashed curve), and Q = 500 MeV/c (blue dotted curve) calculated
with AV18. The black, red, and blue arrows indicate the energies
given by Eq. (13) for Q = 300, 400, and 500 MeV/c, respectively.

with the condition that Ôi is symmetric with respect to the
exchange of j and k. Then Faddeev equations read

|	(1)〉 = G1(E )Ô1|�t 〉 + G1(E )V (2B)
1 |	(2) + 	(3)〉

+ G1(E )V (3B)
1 |	(1) + 	(2) + 	(3)〉

(and cyclic permutations), (11)

where the operator Gi(E ) is a channel Green’s function de-
fined as

Gi(E ) ≡ 1

E + ıε − H0 − V (2B)
i

. (12)

The Faddeev equations, Eq. (11), are solved as integral
equations in coordinate space, whose formal and technical
details are essentially same as those used for the nucleon-
deuteron scattering [18,19] and three-alpha-particle [20]
problems. The amplitude, Eq. (6), is calculated from the so-
lution.

In the present work, I will use the Argonne v18 model
(AV18) [21] for the NN potential, taking partial waves with
angular momenta j � 4. The 3H wave function for the initial
state is calculated with AV18 and the Brazil 2π -exchange type
three-nucleon potential, BR-O(q4), in Ref. [22].

III. 3n CALCULATIONS

I will consider the transition from the 3H ground state to
3n( 3

2
−

) continuum state. This final state was reported to be
the most preferable in a sense that the modification of the
original nuclear interaction to produce a resonance state could
be minimal [7,8], and is considered to be the state found in
Ref. [5].

Figure 1 displays the response functions R(E , Q; 3
2

−
) for

Q = 300, 400, and 500 MeV/c calculated with AV18 as func-
tions of E . The figure shows that the response functions have
a peak at the energy, which varies with Q. The vertical arrows
indicate the energies calculated by

E = Q2

2m
− B(3H) − Q2

6m
, (13)
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FIG. 2. Energy dependence of the response function R(E , Q; 3
2

−
)

calculated by 3P2 - 3F2 modified AV18 with (a) α = −1.0, (b) α =
−2.0, (c) α = −2.4, and (d) α = −2.8. In each figure, black solid,
red dashed, and blue dotted curves denote for Q = 300, 400, and
500 MeV/c, respectively.

where B(3H) is the 3H binding energy. This value means that
the momentum Q is absorbed by one neutron, which leads to
a quasifree process. The peak energy of the response function
for each of Q almost coincides with the one given by Eq. (13),
which shows that the peaks of R(E , Q) are not due to a
resonance pole.

In the following, I will examine three extrapolation proce-
dures with giving additional attractions to the 3n Hamiltonian:
(i) by multiplying a factor to the nn potential to enhance an
attractive contribution; (ii) by introducing a 3BP; and (iii)
by introducing additional potential that traps neutrons around
their center of mass.

(i) The factor multiplied to the nn potential will be denoted
by (1 − α). Since a rather small value of α, e.g., −0.080 for
AV18, makes the nn(1S0) system bind [8], the factor will be
multiplied only to the 3P2 - 3F2 partial wave component of the
nn potential, which is known to be attractive. In this notation,
a negative value of α gives an attractive effect. In fact, an
nn(3P2 - 3F2) bound state exists for α < −3.39, and a 3n( 3

2
−

)
bound state exists for α < −2.98. These values agree with
those obtained in Ref. [8].

The response functions for Q = 300, 400, and 500 MeV/c
calculated by 3P2 - 3F2 modified AV18 with α = −1.0, −2.0,
−2.4, and −2.8 are displayed in Fig. 2. As the attractive
effect becomes larger, the Q dependence of the peak energy
does weaker. For α < −2.0, the peak energies are almost Q
independent, and are plotted as green triangles in Fig. 3 as a
function of α.

Since the peak energy may not necessarily be the resonance
energy, I will test to fit the response function by the following
expression:

R(E ) = b(E − Er ) + c�

(E − Er )2 + �2/4

+ a0 + a1(E − Er ) + a2(E − Er )2, (14)

which has a form of the Lorentz function taking into ac-
count some asymmetric effects. The parameters Er , �, an

FIG. 3. Calculated 3n energies for AV18 as functions of the fac-
tor α. Black circles are calculated values of the 3n binding energy.
Black dashed curves are obtained by fitting the 3n binding energy.
Green triangles are the peak energies of the response functions. Red
squares are extracted values of Er , with error bars being ± 1

2 � from
the response functions using Eq. (14).

(n = 0, 1, 2), b, and c are obtained from the response function
for E � 30 MeV. Here the complex value Er − i �

2 could
be a pole energy of the Green’s function in the complex
plane. Extracted values of Er and � are Q independent for
−2.7 � α � −1.6. In Fig. 3, extracted values of Er are plotted
as red squares with error bars being ± 1

2�. As the attractive
effect is reduced, Er increases and stays at about 6.5 MeV
with increasing width, which reaches about � = 30 MeV at
α = −1.6. Numerical errors of Er and � in the extraction
are as small as 10−3 MeV for α = −2.7, and increase as the
magnitude of α becomes small: about 0.4 MeV for α = −1.6.
Extracted values of Er and � are Q dependent for α > −1.6,
which indicates that the complex value Er − i �

2 is away from
the real energy axis. These tendencies in the obtained values
of (Er, �) are similar to those from the 3n → 3n amplitude
with 3P2 - 3F2 modified nn potentials in Ref. [10].

Calculated values of the 3n( 3
2

−
) binding energy for α <

−3.0 are plotted as black circles in Fig. 3. As shown in
the figure, both of the peak energies and the extracted Er

appear to be smoothly connected to the binding energies. An
extrapolation is performed by fitting the 3n binding energies
with a quadratic polynomial of α, which is chosen just for its
simplicity. The result is plotted as black dashed curve in the
figure, which approximately follows the extracted Er rather
than the peak energy.

(ii) The introduction of an attractive 3BP is another way
to bring an extra attractive effect. In Ref. [17], the response
functions for spin-isospin transitions from 3He ground state
to 3p continuum state are calculated, introducing a 3BP to
produce a 3p resonance. Here, I will apply the same functional
form of 3BP, which was taken from Ref. [23]:

V (3B)
i = 1

3

2∑
n=1

Wne−(r2
i j+r2

jk+r2
ki )/b2

n , (15)

where ri j is the distance between the ith and jth neutrons.
Note that this form of V (3B)

i is totally symmetric under the
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(a) (b)

(c) (d)

FIG. 4. Energy dependence of the response function R(E , Q; 3
2

−
)

calculated with AV18 + 3BP for (a) W1 = −10 MeV, (b) W1 =
−30 MeV, (c) W1 = −50 MeV, and (d) W1 = −70 MeV. In each
figure, black solid, red dashed, and blue dotted curves denote
R(E , Q; 3

2

−
) for Q = 300, 400, and 500 MeV/c, respectively.

particle exchange and the total 3BP is obtained by summing
up all cyclic permutations of Eq. (15), and the factor 1/3
arises because of that. The range parameters and the strength
parameters of the shorter range term are the same ones as
used in Refs. [23,24]: b1 = 4.0 fm, b2 = 0.75 fm, and W2 =
35.0 MeV.

When the 3BP is applied to 3n( 3
2

−
) state with AV18,

there is at least one 3n bound state for the attractive strength
W1 < −80 MeV. The value W1 = −80 MeV contrasts with
W1 = −2.55 MeV that is determined to reproduce 3H binding
energy [17]. Also, it is noted that the required value of the
strength parameter W1 for the 4n(0+) state to bind, as the
lower bound of the experimental value [4], is −36.14 MeV
[23].

Figure 4 shows the response functions for Q = 300, 400,
and 500 MeV/c, calculated with AV18 plus 3BP of the
strength parameter W1 = −10, −30, −50, and −70 MeV.
The dependence of the peak energy on Q becomes weak
as the magnitude of W1 increases. For −80 <W1 < −50 MeV,
the peak energies are almost Q independent, and are plotted
as green triangles in Fig. 5.

Extracted values of Er and � from the response functions
using Eq. (14) are plotted in the form of Er ± 1

2� for −80 <

W1 < −20 MeV, where the values are Q independent. As the
attractive effect is reduced, Er increases and then decreases,
having a maximum value of about 4 MeV and a width of about
� = 8 MeV at W1 = −40 MeV. Numerical errors of Er and �

in the extraction are about 10−4 MeV for W1 = −75 MeV, and
increase as the magnitude of the 3BP decreases: 0.1 MeV for
W1 = −20 MeV.

The calculated values of the 3n binding energy are plotted
as black circles in Fig. 5, and a quadratic fit to these energies
is shown as the black dashed curve. It is interesting to see that
the fitted curve, in spite of its simple quadratic form, almost
follows the extracted vales of Er using Eq. (14).

The variations of (Er, �) with respect to the parameters to
modify the attractive effect in the cases (i) and (ii) are very
similar to the pole trajectory obtained in the previous Faddeev

4

24

FIG. 5. Calculated 3n energies as functions of the 3BP strength
parameter W1. Black circles are calculated values of the 3n binding
energy, and the black dashed curve is obtained by fitting the 3n bind-
ing. Green triangles are the peak energies of the response functions,
and red squares are extracted values of Er with error bars being ± 1

2 �

from the response functions using Eq. (14).

calculations [8,10]. In both cases, the quadratic fitting of the
3n binding energy leads to a conclusion that there is no pole
in the complex energy plane close to the real axis.

(iii) Next, I will examine the extrapolation using a trapping
potential. As in Refs. [5,6], I use a potential of Woods-Saxon
form with a radius RWS and a diffuseness parameter aWS =
0.65 fm,

W (ri) = WWS
1

1 + e(ri−RWS )/aWS
, (16)

where ri is the distance of ith neutron from the c.m. of the 3n
system.

For the 3n bound state problem with the one-body potential
W (ri ), Faddeev calculations are performed in a way that the
potential W (r1) is treated as same as the three-body potential
V (3B)

1 in Eq. (11). This treatment works well thanks to the
limited range of wave functions for the bound state problem.

Calculated 3n binding energies for some values of RWS

are plotted in Fig. 6 as functions of the potential strength
parameter WWS. The curves are obtained by fitting the cal-
culated energies with a quadratic polynomial of WWS, and are
extrapolated to WWS = 0 MeV. Extrapolated 3n energies with

FIG. 6. Calculated 3n binding energies for AV18 as functions of
the strength of the trapping potential WWS. Black circles, red squares,
and green triangles are calculated for the range parameter values
RWS = 4.5, 6, and 7.5 fm. Curves are obtained by fitting the points
with a quadratic polynomial of WWS.
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FIG. 7. The effective potentials for (a) RWS = 4.5 fm and (b)
RWS = 7.5 fm. Black curves are for WWS = 0 MeV, red curves for
WWS = −1 MeV, green curves for WWS = −2 MeV, and blue curves
for WWS = −3 MeV. The meaning of solid and dashed curves is
explained in the text.

different RWS values almost coincide with about 3 MeV. This
may be the same result with one of Refs. [5,6], which suggests
the existence of 3n resonance.

On the other hand, the results of the extrapolation meth-
ods (i) and (ii) demonstrate that the extrapolated 3n complex
energy for the AV18 potential has a large negative imaginary
part, and the real part of the energy may be negative, which
indicates the nonexistence of 3n resonance.

These contradictory results throw some doubt on the reli-
ability of the extrapolation method by a trapping potential. In
the next section, a possible reason for this will be discussed.

IV. 2n SYSTEMS WITH GAUSSIAN POTENTIAL

Having in mind that a naive picture of 3n( 3
2

−
) state is a

two-body system of the spin-singlet nn pair (dineutron) and
the neutron in a P-wave (L = 1) state, I will apply the ex-
trapolation method (iii) in the previous section to a two-body
(two-neutron) P-wave system. In general, a P-wave resonance
state may occur because of an attractive potential pocket
within an exterior barrier caused by the centrifugal potential.
Here, I define an effective potential Veff (x;WWS) as the sum
of an attractive Gaussian potential, the P-wave centrifugal
potential, and the trapping potential, Eq. (16):

Veff (x;WWS) = vG exp(−(x/rG)2) + h̄2L(L + 1)

mx2

+
∑
i=1,2

W (ri ), (17)

where x is the distance between two particles. In this study, I
take the parameters of the Gaussian potentials as rG = 2.5 fm
and vG = −50 MeV. The calculated P-wave scattering phase
shift for this Gaussian potential takes a maximum of about 70◦
starting from 0◦ at zero energy, which means that the system
does not have a resonance state.

The effective potentials Veff (x;WWS) for WWS between −3
and 0 MeV taking the range parameter values of RWS = 4.5 fm
and RWS = 7.5 fm are displayed in Fig. 7. In the figure, the
solid curves indicate the potentials for which no bound state
exists, and dashed curves indicate those for which a bound
state exists.

FIG. 8. WWS dependence of the energy of 2n p-wave state by the
effective potential, Eq. (17), with vG = −50 MeV. Black circles, red
squares, and green triangles denote calculations by the trapping po-
tentials with RWS = 4.5 fm, 6.0 fm, and 7.5 fm. Curves are obtained
by fitting the binding energies.

As the attractive effect becomes larger, the potential pocket
spreads rapidly with vanishing barrier because the range of the
trapping potential is longer than that of the Gaussian potential.
In other words, as the attractive effect is reduced, the barrier
appears at positive energy, which may cause an extra repulsive
effect that does not exist for the bound states.

This extra repulsive effect is demonstrated in Fig. 8, which
shows WWS dependence of calculated values of the two-body
energy for RWS = 4.5 fm, 6.0 fm, and 7.5 fm. The dependence
of the energy on WWS in the bound state region is described
by a quadratic polynomial, and leads to a positive energy at
WWS = 0 MeV. However, soon after getting into the contin-
uum region, the dependence is quite different from that in
the bound state region and the energy increases more than
expected from the fitting, which indicates that the attractive
effect becomes weak rapidly. Because of the rise in the con-
tinuum region, the extrapolation is no longer reliable.

V. SUMMARY

Continuum states of the 3n system are studied with the
response function for the transition from 3H to 3n continuum
state by an isospin excitation operator. One observes that the
response function calculated with the AV18 nn potential does
not reveal any resonance peak.

In view of the recent discrepancy in 3n calculations on
the existence of a 3n resonance state, I have examined three
methods to bring an attractive effect to make the 3n system
bind for extrapolating the 3n energy: to enhance a component
of the nn potential, to introduce a three-body force, and to add
an external attractive trapping potential. The first two methods
are consistent with the nonexistence of 3n resonance state. In
the last case, the attractive effect unusually reduces the exte-
rior barrier caused by the P-wave centrifugal potential, which
makes the extrapolations using calculated 3n binding energies
difficult. The reason for the unsuccessful extrapolation for the
trapping method is due to the longer range trapping potential
destroying the potential barrier. This defect occurs in general,
and the trapping method should be used carefully in studies of
resonance states of few- and many-body systems.
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