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Chiral effective field theory calculations of weak transitions in light nuclei
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We report quantum Monte Carlo calculations of weak transitions in A � 10 nuclei, based on the Norfolk
two- and three-nucleon chiral interactions, and associated one- and two-body axial currents. We find that the
contribution from two-body currents is at the 2–3% level, with the exception of matrix elements entering the
rates of 8Li, 8B, and 8He β decay. These matrix elements are suppressed in impulse approximation based on
the (leading order) Gamow Teller transition operator alone; two-body currents provide a 20–30% correction,
which is, however, insufficient to bring theory in agreement with experimental data. For the other transitions,
the agreement with the data is satisfactory, and the results exhibit a negligible to mild model dependence when
different combinations of Norfolk interactions are utilized to construct the nuclear wave functions. We report a
complete study of two-body weak transition densities which reveals the expected universal behavior of two-body
currents at short distances throughout the range of A = 3 to A = 10 systems considered here.
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I. INTRODUCTION

In this work, we present quantum Monte Carlo (QMC)
calculations, including both variational Monte Carlo (VMC)
and Green’s function Monte Carlo (GFMC) calculations, of
Gamow-Teller (GT) matrix elements entering β-decay and
electron-capture rates in A = 3–10 nuclei. These observables
are experimentally known (in most cases) at the subpercentage
level, and are used here primarily to validate our microscopic
theoretical modeling of the nucleus as a system of nucleons
interacting with each other via effective interactions, and with
electroweak probes via effective currents. Specifically, this
modeling is based on local two- and three-nucleon interac-
tions formulated in configuration space, and derived from a
chiral effective field theory (χEFT) that retains, in addition to
nucleons and pions, � isobars as explicit degrees of freedom
[1–4]. They are referred to below as the Norfolk interactions
and are denoted as NV2+3. Accompanying these interactions
are one- and two-body axial currents—local in configuration
space—derived within the same χEFT formulation [3–5].
In the calculations to follow, we include up to tree-level
contributions at next-to-next-to-next-to-leading order (N3LO)
in the chiral expansion, and disregard subleading corrections
involving loops and higher order contact terms.

An analogous study was recently reported by some of
the present authors in Ref. [6]. There, the QMC calculations
were based on the Argonne-v18 (AV18) two-nucleon [7] and
Illinois-7 (IL-7) three-nucleon [8] interactions, in combina-
tion with the axial currents of Ref. [5]. We found agreement
with the experimental Gamow-Teller matrix elements at the

≈2% level for the A = 6 and 7 systems, and at the ≈10%
level in 10C. The large uncertainty in the A = 10 transition
is primarily systematic and results from the narrow energy
separation between the first two Jπ = 1+ states in 10B, which
makes it hard to precisely disentangle them [6]. The study of
Ref. [6] found that two-body currents generate an additive
contribution of the order of ≈3% and concluded that the
agreement with the data is mainly attributable to the use of
fully correlated nuclear wave functions, rather than two-body
effects in the currents.

In the meantime, no-core shell-model calculations of weak
matrix elements based on chiral interactions and currents [9]
found the sign of the overall correction generated by two-body
currents to be opposite to that obtained in Ref. [6] for the same
systems (but in agreement with a hybrid calculation of the
A = 6 decay reported in Ref. [10]). This discrepancy was at-
tributed to the hybrid nature of the calculation of Ref. [6], i.e.,
to the mismatch between the two- and three-body correlations
implemented to construct the nuclear wave functions—and
induced by the AV18 and IL7—and those entering the axial
currents which were instead derived from χEFT.

In this work, by reexamining the evaluation of these weak
matrix elements with the NV2+3 chiral interactions [1–4],
in combination with consistent chiral axial currents at tree
level [5], we aim to address and explore the aforementioned
claim. We investigate the sensitivity of the calculated matrix
elements with respect to different choices of regulators and
to different strategies adopted to constrain the three-body
Norfolk interactions (NV3). This latter aspect is important in
order to understand the interplay between these interactions
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and the axial currents, since the strength of the contact current
and that of the three-body interaction of one-pion-range are
rigorously related to each other by the symmetries imposed in
the χEFT formulation [11–13].

This study has several merits. First, we report new GFMC
results of the energy spectra of A � 10 nuclei based on two
classes of NV2+3 interactions. In addition to the systems
studied in Ref. [6], we study weak transitions in A = 8 nuclei
where we find that two-body axial currents provide a large
correction to the one-body results. Finally, we provide the first
calculations of two-body weak transition densities which shed
light on the role of short-range physics in these observables.

Searches for physics beyond the standard model (BSM) via
β decay are the focus of current and planned experimental
programs carried out at the Facility for Rare Isotope Beams
(FRIB), the the University of Washington, and Argonne Na-
tional Laboratory (see, e.g., Ref. [14] and references therein).
Among the targets under consideration are 6He, 8Li, 8B, and
10C. A systematic study of axial-current matrix elements in
these systems is a prerequisite for all further investigations
and BSM searches in β decay. β decays are ideal processes
to assess the validity of the dynamical inputs of ab inito cal-
culations, namely many-body correlations and weak currents.
The latter also impact calculations of neutrinoless double β

decay matrix elements, whose knowledge is critical to the
neutrinoless double β decay experimental program [15].

This paper is structured as follows: a brief review of the
QMC computational method and Norfolk interactions is given
in Secs. II and III. The many-body axial currents used in this
work are reported in Sec. IV. Results and conclusions are
provided in Secs. V and VI.

II. QUANTUM MONTE CARLO METHOD

The quantum Monte Carlo methods used in this study
have been described in detail in several review articles, the
most recent of which being Refs. [16,17]. Here we sketch
the computational procedure and refer the interested reader
to Refs. [16,17] and references therein.

We seek accurate solutions of the many-nucleon
Schrödinger equation

H�(Jπ ; T, Tz ) = E�(Jπ ; T, Tz ), (1)

where Jπ are the total angular momentum and parity of the
state and T and Tz are the total isospin and its projection,
respectively. We use the Hamiltonian

H =
∑

i

Ki +
∑
i< j

vi j +
∑

i< j<k

Vi jk, (2)

where Ki is the nonrelativistic kinetic energy and vi j and
Vi jk are the NV2 and NV3 local chiral interactions [1–4],
collectively denoted as NV2+3.

The VMC trial function �V (Jπ ; T, Tz ) for a given nucleus
is constructed from products of two- and three-body correla-
tion operators acting on an antisymmetric single-particle state
of the appropriate quantum numbers. The correlation opera-
tors are designed to reflect the influence of the interactions
at short distances, while appropriate boundary conditions are
imposed at long range [18–21]. The �V (Jπ ; T, Tz ) contains

variational parameters that are adjusted to minimize the ex-
pectation value

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (3)

which is evaluated by Metropolis Monte Carlo integration
[22]. The lowest value for EV is then taken as the approximate
ground-state energy of the exact lowest eigenvalue of H , E0,
for the specified quantum numbers.

A good trial wave function is given by

|�V 〉 = S
A∏

i< j

⎡⎣1 + Ui j +
A∑

k �=i, j

Ũ T NI
i jk

⎤⎦|�J〉. (4)

The Jastrow wave function �J is fully antisymmetric and has
the (Jπ ; T, Tz ) quantum numbers of the state of interest, while
Ui j and Ũ T NI

i jk are two- and three-body correlation operators.
The GFMC method [16] improves on the VMC wave func-

tions by acting on �V with the operator exp [−(H − E0)τ ].
The operator is applied in a sequence of small imaginary-time
steps �τ to produce a propagated wave function

�(τ ) = e−(H−E0 )τ�V = [e−(H−E0 )�τ ]n�V . (5)

Obviously �(τ =0) = �V and �(τ → ∞) = �0. Quanti-
ties of interest are evaluated in terms of a “mixed” expectation
value between �V and �(τ ):

〈O(τ )〉M = 〈�(τ )|O|�V 〉
〈�(τ )|�V 〉 , (6)

where the operator O acts on the trial function �V . The desired
expectation values would, of course, have �(τ ) on both sides;
by writing �(τ ) = �V + δ�(τ ) and neglecting terms of order
[δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (7)

where 〈O〉V is the variational expectation value.
For off-diagonal matrix elements required by the transi-

tions we are interested here, the generalized mixed estimate
is given by the expression

〈� f (τ )|O|� i(τ )〉√
〈� f (τ )|� f (τ )〉

√
〈� i(τ )|� i(τ )〉

≈ 〈O(τ )〉Mi + 〈O(τ )〉M f − 〈O〉V , (8)

where

〈O(τ )〉M f = 〈� f (τ )|O|� i
V 〉

〈� f (τ )|� f
V 〉

√
〈� f

V |� f
V 〉

〈� i
V |� i

V 〉 , (9)

and 〈O(τ )〉Mi is defined similarly. For more details see
Eqs. (19)–(24) and the accompanying discussions in Ref. [23].

III. NORFOLK INTERACTION MODELS

We base our calculations of weak transitions in A = 6–
10 on the local NV2 and NV3 interactions developed in
Refs. [1–4]. The NV2 model has been derived from a χEFT
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TABLE I. Values of (fixed) low energy constants (LECs) used in
this work: g̃A and hA are adimensional, Fπ = 2 fπ is given in MeV,
and the remaining LECs are given in GeV−1. See text for explanation.

g̃A hA Fπ c1 c2 c3 c4 b3 + b8

1.29 2.74 184.80 −0.57 −0.25 −0.79 1.33 1.40

that uses pions, nucleons, and �’s as fundamental degrees
of freedom. It consists of a long-range part, vL

i j , mediated
by one- and two-pion exchanges, and a short-range part,
vS

i j , described in terms of contact interactions with strengths
specified by unknown low-energy constants (LECs). The
strength of the long-range part is fully determined by the
nucleon and nucleon-to-� axial coupling constants gA and
hA, the pion-decay amplitude Fπ , and the LECs c1, c2, c3,
c4, and b3 + b8, constrained by reproducing πN scattering
data [24]. The LECs entering the contact interactions are
fixed by fitting nucleon-nucleon scattering data from the most
recent and up-to-date database collected by the Granada group
[25–27]. The value for hA is taken from the large Nc expansion
or strong-coupling model [28]. The value of the nucleon
axial coupling constant used to construct the nucleon-nucleon
interaction accounts for the Goldberger-Treiman discrepancy
[29,30] and, to distinguish it from the experimental value of
gA = 1.2723 (23) [31] entering the axial currents, we denote
it with g̃A. For completeness, Tables I and II report the values
of these constants, along with the pion and nucleon masses,
the �-nucleon mass difference, the electron mass, and the fine
structure constant α used in the NV2 interactions (these last
two characterize the electromagnetic part of the NV2s [1]).

The contact terms are implemented using a Gaussian repre-
sentation of the three dimensional δ function, with RS denot-
ing the Gaussian parameter [1–4]. The pion-range operators
are strongly singular at short range in configuration space and
are regularized by a radial function characterized by a cutoff
RL [1–4]. There are two classes (I and II) of NV2s, differing
only in the range of energy over which they are fitted to the
database—class I up to 125 MeV and class II up to 200 MeV.
For each class, two combinations of short- and long-range
regulators have been used, namely (RS , RL ) = (0.8, 1.2) fm
(models NV2-Ia and NV2-IIa) and (RS , RL ) = (0.7, 1.0) fm
(models NV2-Ib and NV2-IIb). Class I (II) fits about 2700
(3700) data points with a χ2/datum �1.1 (�1.4) [1,2].

The NV2 models were found to provide insufficient at-
traction in GFMC calculations of the binding energies of
light nuclei [2]. To remedy this shortcoming, a consistent
three-body interaction was constructed up to N2LO in the
chiral expansion. It consists of a long-range part mediated

TABLE II. Values of charged and neutral pion masses, proton
and neutron masses, �-nucleon mass difference, and electron mass
(all in MeV), and of the (adimensional) fine structure constant α.
Note that h̄c is taken as 197.32697 MeV fm.

mπ0 mπ± Mn Mp m�N me α−1

134.9766 139.5702 939.56524 938.27192 293.1 0.510999 137.03599

TABLE III. Adimensional cD and cE values of the contact terms
in the NV3 interactions obtained from fits to (i) the nd scattering
length and trinucleon binding energies [37] and (ii) the central value
of the 3H GT matrix element and the trinucleon binding energies
(starred values) [4]. The adimensional z0 values are obtained using
the relation given in Eq. (16).

Ia (Ia*) Ib (Ib*) IIa (IIa*) IIb (IIb*)

cD 3.666 (−0.635)−2.061 (−4.71) 1.278 (−0.61)−4.480 (−5.25)
cE−1.638 (−0.090)−0.982 (0.55) −1.029 (−0.35)−0.412 (0.05)
z0 0.090 (1.035) 2.013 (2.881) 0.615 (1.03) 2.806 (3.059)

by two-pion exchange and a short-range part parametrized in
terms of two contact interactions [32,33] proportional to the
LECs cD and cE . These LECs have been obtained by fitting
either observables that involve exclusively strong interactions
[34–37] or a combination of observables that involve both
strong and weak interactions [4,12,38]. This last strategy is
feasible because of the relation established in χEFT [11] that
links cD with the LECs entering the contact axial current at
N3LO [12,13,38] (see next section for details).

In Ref. [37], cD and cE were determined by simul-
taneously reproducing the experimental trinucleon ground-
state energies and nd doublet scattering length. These first-
generation NV2+3 interactions, denoted with NV2+3-Ia/b
and NV2+3-IIa/b, have been implemented in both VMC
and GFMC codes and used to study static properties of light
nuclei [2,17,37,39–41] and in auxiliary-field diffusion Monte
Carlo (AFDMC) [42], Brueckner-Bethe-Goldstone (BBG)
[43,44], and Fermi hypernetted chain/single-operator chain
(FHNC/SOC) [45,46] approaches to investigate the equation
of state of neutron matter [47,48].

In more recent work [4], cD and cE were constrained by
fitting, in addition to the trinucleon energies, the empirical
value of the GT matrix element in tritium β decay. These
second-generation NV2+3 interactions were designated as
NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗. These two different pro-
cedures for fixing cD and cE produced rather different values
for these LECs. They are reported in Table III.

IV. χEFT AXIAL CURRENTS

Many-body axial currents have been first examined within
χEFT by Park and collaborators in Ref. [49]. In that work,
the authors retained pions and nucleons in their effective
theory and calculated the two-body axial currents up to one-
loop terms. The derivation neglected, for example, pion-pole
contributions. More recently, two-body axial currents with
pions and nucleons have been derived by the Bonn group [50]
using the unitary transformation method, and by the JLab-
Pisa group using time-ordered perturbation theory [3,5]. The
two derivations differ in the treatment of reducible diagrams.
When calculating box diagrams entering the electromagnetic
charge and current operators [51–55], the two methods lead to
results that are in agreement. However, as discussed at length
in Refs. [3,56], the two groups find different results for the box
diagrams in the two-body axial current operator at N4LO. The
numerical impact of this difference has been investigated in
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(a)

(b) (c)

(d)

N3LO

N2LO

LO

(e)

FIG. 1. Diagrams illustrating the contributions to the axial cur-
rent up to N3LO used in this work. Nucleons, � isobars, pions, and
external fields are denoted by solid, thick-solid, dashed, and wavy
lines, respectively. The square in panel (b) represents relativistic
corrections, while the dot in panels (d) denotes a vertex induced by
subleading terms in the π -nucleon chiral Lagrangian [3].

Refs. [3,4], where both the JLab-Pisa and Bonn versions of the
N4LO current operators have been implemented to calculate
the GT matrix element in triton β decay. In those studies, it
was found that the corrections generated by the JLab-Pisa and
Bonn N4LO operators are qualitatively in agreement (they
both quench the GT matrix element at leading order), and
provide, respectively, a ≈6% and ≈4% contribution to the
total GT matrix element.

Here we consider two-body axial currents derived within
the same χEFT used to construct the NV2+3 interactions
[4]. Moreover, we base our calculations on tree-level cor-
rections only, and disregard the (problematic) N4LO loop
contributions discussed above. This choice is advantageous
also because it allows for a clearer comparison with the no-
core shell model and coupled-cluster calculations of Ref. [9],
which are also based on tree-level axial currents alone (albeit
derived in a �-less χEFT). Corrections at N4LO in the
present formulation are, in practice, subsumed in the LECs of
the theory, which have been determined by fits to experimental
data.

Before moving on to a (brief) discussion of these axial cur-
rents, it is worthwhile pointing out that many-body corrections
to leading one-body transition operators have been shown to
be crucial for providing a quantitatively successful description
of many nuclear electroweak observables [57], such as nu-
clear electromagnetic form factors [58–61], low-energy elec-
troweak transitions [6,52,53,62–65], and electroweak scatter-
ing [66]. They have also been used in studies of double β

decay matrix elements [39,67–69].
The N3LO axial currents used in this work are represented

diagrammatically Fig. 1. We refer the interested reader to
Refs. [4,5] for additional details and explicit expressions of
the operators; here we only note that we do not show diagrams
that lead to vanishing contributions as well as pion-pole terms
which give negligible corrections to the matrix elements under
study.

The LO term, which scales as Q−3 in the power counting
(Q denotes generically a low-momentum scale), is shown in

Fig. 1(a) and reads

jLO
5,a(q) = −gA

2
τi,a σ i eiq·ri , (10)

where gA is the nucleon axial coupling constant (gA = 1.2723
[31]), fπ is the pion-decay amplitude ( fπ = 92.4 MeV), σ i

and τ i are the spin and isospin Pauli matrices of nucleon i, q
is the external field momentum, ri is the position of nucleon
i, and the subscript a specifies the isospin component (a =
x, y, z).

At N2LO there are two contributions (scaling as Q−1).
The first one is a relativistic correction to the single-nucleon
operator at LO and is diagrammatically illustrated in Fig. 1(b),
while the second involves the excitation of a nucleon into a
� by pion exchange, as illustrated in Fig. 1(c). In the tables
and figures below, we will denote these two contributions
with N2LO-RC and N2LO-�, respectively. We use the same
notation introduced in Ref. [4] and write the cumulative N2LO
contribution as

jN2LO
5,a (q) = jN2LO

5,a (q; RC) + jN2LO
5,a (q; �). (11)

At N3LO (or Q0 in the chiral expansion), there is a term
of one-pion range illustrated in Fig. 1(d), and a contact term
shown in Fig. 1(e), which together give the following N3LO
correction

jN3LO
5,a (q) = jN3LO

5,a (q; OPE) + jN3LO
5,a (q; CT). (12)

We will denote the individual terms with N3LO-OPE and
N3LO-CT, respectively.

The configuration-space expressions of these currents are
given in Eqs. (2.7)– (2.10) of Ref. [4]. Here we limit ourselves
to report the expression of the N3LO contact term used in
this work to explicitly show the relation between the LECs
entering this axial current and the LEC cD in the three-nucleon
interaction. In r space the N3LO-CT current reads

jN3LO
5,a (q; CT) = z0 ei q·Ri j

e−z2
i j

π3/2
(τ i × τ j )a (σ i × σ j ), (13)

where

Ri j = (ri + r j )/2 , zi j = ri j/RS, (14)

and ri j is the interparticle distance. The δ function in the
contact axial current has been smeared by replacing it with
a Gaussian cutoff of range RS ,

CRS (ri j ) = 1

π3/2R3
S

e−(ri j/RS )2
, (15)

as previously done for the contactlike terms of the NV2
interactions. The adimensional LEC z0 (reported in Table III)
is given by

z0 = gA

2

m2
π

f 2
π

1

(mπ RS )3

[
− mπ

4 gA 
χ

cD

+mπ

3
(c3 + 2 c4) + mπ

6 m

]
, (16)

where cD is the LEC multiplying one of the contact terms in
the three-nucleon interaction [33] given in Table III, 
χ =
1 GeV is the chiral symmetry breaking scale, c3 and c4 are
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TABLE IV. GFMC predictions for A � 10 nuclear states studied
in this work, compared to experimental values [70–72]. The 4He
ground-state energy predictions are included in addition to the states
studied in this work. Numbers in parentheses are statistical errors for
the GFMC calculations; experimental errors, being negligible, are
not indicated. The dominant spatial symmetry (s.s.) of the nuclear
wave function is given in the second column.

AZ (Jπ ; T ) s.s. E (MeV)

Ia Ia* Expt.

4He(0+; 0) [4] −28.24(3) −28.21(4) −28.30
6Li(1+; 0) [42] −31.97(6) −31.06(8) −31.99
6He(0+; 0) [42] −29.32(4) −28.46(5) −29.27
7Li( 3

2

−
; 1

2 ) [43] −39.25(15) −38.27(14) −39.25
7Li( 1

2

−
; 1

2 ) [43] −39.18(15) −37.66(15) −38.76
7Be( 3

2

−
; 1

2 ) [43] −37.75(8) −36.56(10) −37.60
8He(0+; 2) [422] −31.33(7) −28.53(6) −31.40
8Li(2+; 1) [431] −41.59(10) −38.89(7) −41.28
8Li(1+; 1) [431] −40.59(7) −37.78(7) −40.30
8B(2+; 1) [431] −37.87(8) −35.63(8) −37.74
8Be(2+; 0) [44] −54.07(7) −53.16(11) −53.47
10B(1+; 0) [442] −64.61(41) −60.46(30) −64.03
10C(0+; 1) [442] −61.01(50) −56.65(22) −60.32

given in Table I, and m and mπ are the average nucleon and
pion masses. It has recently been realized [13] that the relation
between z0 and cD had been given erroneously in the original
reference [12], a – sign and a factor 1/4 were missing in the
term proportional to cD.

V. RESULTS

The GFMC energies of the nuclei of interest (as well as
4He) calculated using the NV2+3-Ia and NV2+3-Ia* mod-
els are listed in Table IV along with the dominant spatial
symmetry (s.s.) of the variational wave functions [73]. The
energies are obtained using ≈80 000 walkers, and are all well
converged by 30 unconstrained steps [74]. All the GFMC
results presented in this article (but for the two cases discussed
below) are averages over the imaginary time τ from 0.2 to
0.82 MeV−1. Results obtained with the NV2+3-Ia interaction
are in statistical agreement with those published in Ref. [37]
based on the same nuclear Hamiltonian. Model NV2+3-Ia
leads to predictions that are in excellent agreement with the
data. We also report for the first time results based on the
second generation of NV2+3 interactions, specifically model
NV2+3-Ia*, whose three-nucleon interaction has been con-
strained by fits to the experimental trinucleon binding energies
and tritium GT matrix element. Results obtained with the
NV2+3-Ia∗ Hamiltonian display a somewhat less satisfactory
agreement with the experimental data, but still less than 4%
away from them.

A typical imaginary-time evolution of the GFMC transition
matrix elements is shown in Fig. 2. As can be seen, there is a
rapid drop of 3% from the initial VMC estimate at τ = 0 that
reaches a stable value around 0.2 MeV−1. The results for all
transitions presented in this article are averages over τ from

0.2 0.4 0.6 0.8
τ MeV−1

1b 2b 1b+2b

2.26

2.24

2.22

2.20

2.18

2.16

2.14

2.12

2.10

0.080

0.075

0.070

0.065

0.060

FIG. 2. Propagation of the 6He → 6Li transition matrix element
as function of imaginary time τ , based on the NV2+3-Ia Hamilto-
nian. Results with the one-body current at LO and currents beyond
LO are indicated with 1b and 2b, respectively. Dashed and solid lines
represent central values and associated error bars. Black dashed and
solid lines denote the VMC results. See text for further explanations.

0.2 to 0.82 MeV−1, as indicated by the dashed lines, with
statistical errors denoted by the solid lines. The calculations of
weak transitions involving the (Jπ , T ) = (2+, 0) state of 8Be
and the ground state of 8B are treated differently. For these
two states, we observe that the binding energy, magnitude of
the quadrupole moment, and point-proton radius all increase
monotonically as the imaginary time increases. This can be
appreciated in Fig. 3 where we show the point-proton radii
of the two nuclear states. We interpret this behavior as an
indication that the resonant excited state of 8Be is dissolving
into two separated α’s, while 8B is breaking into p + 7Be.
In the case of 8Be, this issue has been addressed already in
Refs. [64,65,74]. Here, we use similar techniques to treat these
systems and extract matrix elements from the GFMC data. In
particular, we note that the ground-state energy of 8Be drops
very quickly as the imaginary time increases and reaches sta-
bility around τ ∼ 0.1 MeV−1. The transition matrix elements
involving the two dissolving states have been determined
assuming that, also for these states, τ ≈ 0.1 MeV−1 is the
point at which spurious contaminations in the nuclear wave
functions have been removed by the GFMC propagation. We
then average in a small interval around this point, typically
between 0.06 and 0.14 MeV−1. Calculations involving these
two systems are clearly affected by a systematic error. To have
a rather rough estimate of this error, we study the sensitivity of
the extracted matrix elements with respect to variations in the
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FIG. 3. GFMC propagation of the point-proton radius of the first
excited state of 8Be (upper panel) and 8B (lower panel) based on the
NV2+3-Ia and NV2+3-Ia* Hamiltonians.

imaginary time interval selected for the averaging. We find
that such a procedure generates an additional uncertainty of
≈5% which is added in quadrature to the statistical one, and
quoted in Table VI below of GFMC results.

A. Weak transitions in A = 6–10 nuclei

In this section, we present results for the GT reduced
matrix element (RME) defined as

RME =
√

2 Jf + 1

gA

〈Jf M| jz
5,±|JiM〉

〈JiM, 10|Jf M〉 , (17)

where jz
5,± is the z component (at vanishing momentum trans-

fer) of the charge-raising/lowering current with j5,± = j5,x ±
i j5,y, and 〈JiM, 10|Jf M〉 is a Clebsch-Gordan coefficient.

Results for the GT RMEs in A = 6–10 nuclei based on
variational wave functions are reported in Table V for the
eight different NV2+3 interactions discussed above, namely
the NV2+3-Ia/b, NV2+3-IIa/b, and corresponding starred
models. The one-body axial current at LO, illustrated in
Fig. 1(a), leads to contributions to the matrix elements re-
ported in the third column of Table V. One-body relativistic
corrections (N2LO-RC) and two-body currents of one-pion
range (N2LO-�) at N2LO, displayed in Figs. 1(b) and 1(c),
are added up and given in the fourth column of Table V
labeled with N2LO-(RC+�). A rough estimate of the size
of the RC corrections can be obtained suppressing each LO
term by a factor of (Q/m)2 ≈ 0.01, where we used a “typical”
nucleon’s low-momentum Q ≈ 100 MeV. Contributions at
N3LO are given in the columns labeled by N3LO-OPE and
N3LO-CT, corresponding to the one-pion range and contact
currents [and displayed in Figs. 1(d) and 1(e)]. The cumulative

contributions are given in the next to last column, while the
contributions beyond LO only in the column labeled “Total–
LO.” Experimental data from Refs. [75–79] are reported in the
last column of Table V.

All the calculations use axial currents at tree-level which
are consistent with the specific NV2+3 model used to gen-
erate the VMC wave functions. VMC results based on dif-
ferent nuclear Hamiltonians are qualitatively in agreement. In
particular, for the A = 3, 6, 7, and 10 systems the LO contri-
bution provides about 97% of the total matrix elements with
currents beyond LO giving the remaining �3% correction.
This correction adds up constructively to the LO contribution
for all nuclei being considered, but for the A = 10 transition.
For this last transition, we find that the contributions beyond
LO give a correction that quenches the LO results obtained
with all the starred models, and with the unstarred NV2+3-IIb
interaction. More details about this calculation will be given
in the following section. We emphasize that the “Total–LO”
column includes, in addition to two-body contributions, also
a small correction resulting from the one-body N2LO-RC
current.

Transitions involving A = 8 nuclei exhibit a large sup-
pression at LO. This behavior is attributable to the fact that
the initial and final VMC wave functions are characterized
by different dominant spatial symmetries, which make their
overlap small compared to cases in which both the initial
and final states display the same dominant spatial symmetry.
As a consequence, in these cases the LO term is only about
≈40–50% of the total matrix element, with two-body cur-
rents providing a large correction. Two-body currents, while
improving the agreement with the experimental values, are
insufficient to fully explain them. Because of the reduced
overlap between dominant components in the wave functions,
these matrix elements are particularly sensitive to small com-
ponents, which are poorly constrained and model dependent.
This can be appreciated by looking at the one-body transition
densities, ρ1b(ri ), defined as

RME(1b) = RME(LO) = 4 π

∫
dri r2

i ρ1b(ri), (18)

where ri is the distance of nucleon i from the center-of-mass
of the system.

In Figs. 4 and 5, we show one-body densities for two
transitions, namely the ε capture of the 7Be ground state
to the 7Li ground state and the 8Li β decay. The former,
involves initial and final states with the same [43] (dominant)
spatial symmetry, while for the latter the initial state is in a
[431] spatial symmetry configuration and the final state is in a
[44] one. The densities are calculated using the NV2+3-Ia/b
and NV2+3-IIa/b interactions. From the figures we can see
that the A = 7 one-body densities are well constrained and
essentially model independent, while the A = 8 ones are par-
ticularly sensitive to the nuclear Hamiltonian used to generate
the wave functions. Of course, these considerations are based
on VMC results. A GFMC propagation might mitigate the
observed model dependence.

In all the cases we studied, the contactlike current at N3LO
provides a correction that quenches the LO terms, while
the currents of one-pion range at N2LO and N3LO add up
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TABLE V. Gamow-Teller RMEs in A = 6, 7, 8, and 10 nuclei obtained with chiral axial currents [4] and VMC wave functions
corresponding to the NV2+3-Ia/b and NV2+3-IIa/b (NV2+3-Ia/b* and NV2+3-IIa/b*) Hamiltonian models [1,2,4,37]. Columns labeled
with LO, N2LO-(RC+�), N3LO-OPE, and N3LO-CT refer to the contributions given by the diagrams illustrated in Figs. 1(a) and 1(b) plus
Figs. 1(c), 1(d) and 1(e), respectively. The cumulative results are reported in the column labeled “Total,” while results including only corrections
beyond LO are listed under “Total–LO.” Experimental values from Refs. [75–79] are given in the last column. The dominant spatial symmetries
of the VMC wave functions are reported in the first column. Statistical errors associated with the Monte Carlo integrations are not shown but
are below 1%.

Transition Model LO N2LO-(RC+�) N3LO-OPE N3LO-CT Total–LO Total Expt.

6He(0+;1)→ 6Li(1+;0) Ia (Ib) 2.200 (2.254) 0.022 (0.056) 0.039 (0.064)–0.005 (–0.068) 0.056 (0.052) 2.256 (2.306) 2.1609(40)
[42]→[42] IIa (IIb) 2.207 (2.212) 0.027 (0.043) 0.043 (0.055)–0.034 (–0.082) 0.036 (0.016) 2.243 (2.228)

Ia* (Ib*) 2.192 (2.256) 0.021 (0.056) 0.038 (0.063)–0.054 (–0.097) 0.005 (0.022) 2.197 (2.279)
IIa* (IIb*)2.202 (2.218) 0.027 (0.044) 0.043 (0.056)–0.057 (–0.090) 0.014 (0.010) 2.216 (2.228)

7Be( 3
2

−
; 1

2 ) → 7Li( 3
2

−
; 1

2 ) Ia (Ib) 2.317 (2.294) 0.099 (0.162) 0.076 (0.118)–0.010 (–0.148) 0.165 (0.133) 2.482 (2.427) 2.3556(47)
[43]→[43] IIa (IIb) 2.293 (2.309) 0.102 (0.153) 0.078 (0.113)–0.070 (–0.190) 0.110 (0.076) 2.403 (2.385)

Ia* (Ib*) 2.327 (2.307) 0.098 (0.161) 0.076 (0.117)–0.121 (–0.212) 0.053 (0.066) 2.380 (2.373)
IIa* (IIb*)2.296 (2.316) 0.103 (0.154) 0.078 (0.114)–0.120 (–0.210) 0.061 (0.058) 2.357 (2.374)

7Be( 3
2

−
; 1

2 ) → 7Li( 1
2

−
; 1

2 ) Ia (Ib) 2.157 (2.119) 0.066 (0.122) 0.063 (0.100)–0.009 (–0.125) 0.121 (0.096) 2.278 (2.215) 2.1116(57)
[43]→[43] IIa (IIb) 2.128 (2.145) 0.069 (0.111) 0.065 (0.095)–0.059 (–0.162) 0.074 (0.044) 2.202 (2.189)

Ia* (Ib*) 2.158 (2.124) 0.065 (0.119) 0.063 (0.099)–0.103 (–0.180) 0.025 (0.038) 2.183 (2.162)
IIa* (IIb*)2.131 (2.148) 0.067 (0.111) 0.064 (0.095)–0.101 (–0.178) 0.030 (0.028) 2.161 (2.176)

8Li(2+;1)→ 8Be(2+;0) Ia (Ib) 0.147 (0.092) 0.032 (0.028) 0.011 (0.011)–0.001 (–0.014) 0.041 (0.031) 0.188 (0.123)0.284 Ref. [78]
[431]→[44] IIa (IIb) 0.144 (0.101) 0.031 (0.033) 0.010 (0.011)–0.008 (–0.019) 0.033 (0.025) 0.177 (0.126)0.190 Ref. [79]

Ia* (Ib*) 0.148 (0.099) 0.032 (0.033) 0.010 (0.012)–0.016 (–0.020) 0.026 (0.025) 0.174 (0.124)
IIa* (IIb*)0.124 (0.121) 0.032 (0.037) 0.010 (0.013)–0.014 (–0.023) 0.028 (0.027) 0.152 (0.148)

8B(2+;1)→ 8Be(2+;0) Ia (Ib) 0.146 (0.092) 0.032 (0.032) 0.011 (0.011)–0.001 (–0.014) 0.042 (0.030) 0.188 (0.122) 0.269(20)
[431]→[44] IIa (IIb) 0.144 (0.102) 0.031 (0.033) 0.010 (0.011)–0.008 (–0.019) 0.033 (0.026) 0.177 (0.128)

Ia* (Ib*) 0.148 (0.098) 0.032 (0.034) 0.010 (0.012)–0.016 (–0.020) 0.026 (0.025) 0.174 (0.123)
IIa* (IIb*)0.126 (0.118) 0.032 (0.037) 0.010 (0.013)–0.014 (–0.022) 0.028 (0.027) 0.154 (0.145)

8He(0+;2)→ 8Li(1+;1) Ia (Ib) 0.386 (0.363) 0.030 (0.034) 0.009 (0.012)–0.001 (–0.014) 0.038 (0.032) 0.424 (0.396) 0.512(6)
[422]→[431] IIa (IIb) 0.465 (0.370) 0.032 (0.034) 0.012 (0.011)–0.009 (–0.017) 0.035 (0.028) 0.500 (0.398)

Ia* (Ib*) 0.362 (0.377) 0.031 (0.034) 0.009 (0.014)–0.010 (–0.022) 0.029 (0.026) 0.391 (0.402)
IIa* (IIb*)0.481 (0.364) 0.033 (0.035) 0.012 (0.012)–0.017 (–0.019) 0.029 (0.028) 0.510 (0.391)

10C(0+;1)→ 10B(1+;0) Ia (Ib) 1.940 (2.118) 0.003 (0.026) 0.044 (0.068)–0.006 (–0.081) 0.041 (0.011) 1.981 (2.129) 1.8331(34)
[442]→[442] IIa (IIb) 2.157 (2.176) -0.002 (0.026) 0.046 (0.072)–0.042 (–0.120) 0.002 (–0.022) 2.159 (2.154)

Ia* (Ib*) 2.015 (2.123) 0.024 (0.022) 0.059 (0.069)–0.119 (–0.117)–0.037 (–0.028)1.978 (2.095)
IIa* (IIb*)2.071 (2.143) 0.015 (0.031) 0.061 (0.072)–0.126 (–0.123)–0.050 (–0.020)2.021 (2.123)

constructively to the LO contributions (see Table V). The main
difference between the un-starred and starred calculations is
observed in the size of the contact contribution. In particular,
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FIG. 4. One-body density—defined in Eq. (18)—of the 7Be to
7Li(gs) GT RME obtained with models NV2+3-Ia/b and NV2+3-
IIa/b (see text for explanation).

starred models are characterized by a larger value of z0 (see
Table III), which in turns leads to a larger (in magnitude)
N3LO-CT correction.

We performed GFMC propagations only for the NV2+3-
Ia and NV2+3-Ia* models. GFMC results are reported in
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FIG. 5. Same as Fig. 4 but for the 8Li to 8Be GT RME.
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TABLE VI. Gamow-Teller RMEs in A = 6, 7, 8, and 10 nuclei obtained with chiral axial currents [4] and GFMC (VMC) wave functions
corresponding to the NV2+3-Ia and NV2+3-Ia* Hamiltonian models [1,2,4,37]. Results corresponding to the one-body current at LO (column
labeled “LO”), and to the sum of all the corrections beyond LO (column labeled “Total–LO”) are given, along with the cumulative contributions
(column labeled “Total”) to be compared with the experimental data [75–79] reported in the last row. Results from Ref. [6] based on the
AV18+Il7 nuclear Hamiltonian are also shown where available. Statistical errors associated with the Monte Carlo integrations are not shown,
but are below 1%. Transitions to 8Be are affected by an additional systematic error of ≈5%, see text for explanation.

Transition Model s.s. LO Total–LO Total Expt.

6He(0+;1)→ 6Li(1+;0) Ia [42]→[42] 2.130(2.200) 0.070(0.056) 2.201(2.256) 2.1609(40)
Ia* 2.107(2.192) 0.011(0.005) 2.118(2.197)

Ref. [6] 2.168(2.174) 0.037(0.030) 2.205(2.211)
7Be( 3

2

−
; 1

2 ) → 7Li( 3
2

−
; 1

2 ) Ia [43]→[43] 2.273(2.317) 0.164(0.165) 2.440(2.482) 2.3556(47)
Ia* 2.286(2.327) 0.052(0.053) 2.338(2.380)

Ref. [6] 2.294(2.334) 0.061(0.050) 2.355(2.384)
7Be( 3

2

−
; 1

2 ) → 7Li( 1
2

−
; 1

2 ) Ia [43]→[43] 2.065(2.157) 0.103(0.121) 2.168(2.278) 2.1116(57)
Ia* 2.061(2.158) 0.009(0.025) 2.070(2.183)

Ref. [6] 2.083(2.150) 0.046(0.046) 2.129(2.196)
8Li(2+;1)→ 8Be(2+;0) Ia [431]→[44] 0.074(0.147) 0.029(0.041) 0.103(0.188) 0.284 Ref. [78]

Ia* 0.096(0.148) 0.025(0.026) 0.120(0.174) 0.190 Ref. [79]
8B(2+;1)→ 8Be(2+;0) Ia [431]→[44] 0.091(0.146) 0.035(0.042) 0.125(0.188) 0.269(20)

Ia* 0.102(0.148) 0.024(0.026) 0.126(0.174)
8He(0+;2)→ 8Li(1+;1) Ia [422]→[431] 0.262(0.386) 0.040(0.038) 0.302(0.424) 0.512(6)

Ia* 0.297(0.362) 0.025(0.029) 0.322(0.391)
10C(0+;1)→ 10B(1+;0) Ia [442]→[442] 1.928(1.940) 0.050(0.041) 1.978(1.981) 1.8331(34)

Ia* 2.086(2.015) –0.031(–0.037) 2.055(1.978)
Ref. [6] 2.032(2.062) 0.016(0.015) 2.048(2.077)

Table VI, where, for completeness, we also show the corre-
sponding VMC values in parentheses along with the GFMC
results from Ref. [6]. We summarize the GFMC results in

NV2+3-Ia
NV2+3-Ia*
AV18+IL7

0.4

0.96 1 1.04 0.96 1 1.04 0.96 1 1.04 0.96 1 1.04

0.6 0.8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1 1 1.1

3H β-decay 6He β-decay 7Be ε-cap(gs) 7Be ε-cap(ex)

8Li β-decay 8B β-decay 8He β-decay 10C β-decay

FIG. 6. Ratios of GFMC to experimental values of the GT RMEs
in the 3H, 6He, 7Be, 8B, 8Be, 8He, and 10C weak transitions.
Theory predictions correspond to the χEFT axial current at LO
(empty symbols) and up to N3LO (filled symbols) obtained with
the NV2+3-Ia and NV2+3-Ia* models. Results from Ref. [6] based
on the AV18+IL7 nuclear Hamiltonian and N4LO currents from
Ref. [5] are also shown. Results for the 3H weak transition were
reported in Ref. [4].

Fig. 6 and compare them (where possible) to the results of
Ref. [6] based on the AV18+IL7 nuclear Hamiltonian.

The effect of the GFMC propagation in imaginary time is
to reduce the VMC results by �4% in all selected transitions
(but for the A = 10 transition obtained with the NV2+3-Ia*
model). The agreement with the data, after the inclusion of
two-body currents, is at the ≈2% (�2%) level for the A =
6 transition with the NV2+3-Ia (NV2+3-Ia*) model; and at
the �4% (�1%) level for the A = 7 cases with the NV2+3-
Ia (NV2+3-Ia*) model. These results are in agreement with
those obtained for the same transitions in the calculations of
Ref. [6] which were based on the AV18+IL7 interactions. The
NV2+3 models lead to a more satisfactory agreement with
the data for the A = 6 RME primarily because, with these
interactions, the LO term is 2% smaller than obtained using
AV18+IL7 model.

The largest discrepancy generated by the use of different
nuclear Hamiltonians, including AV18+IL7, is observed in
the A = 10 transition. This can be appreciated looking at both
Table V and Table VI. From the former, we observe a rather
large cutoff dependence (models a vs. models b), and also a
large sensitivity to the class (either I or II) used to generate the
nuclear wave functions. From Table VI, we see that the results
of Ref. [6], based on the AV18+IL7 Hamiltonian, lie between
models Ia and Ia*. This large model and cutoff dependence
can be traced back to the existence of two nearby Jπ = 1+
excited states in 10B, the lower one a predominantly 3S1[442]
state and the upper one a 3D1[442] state (in LS coupling),
which are only 1 MeV apart. The transition from the 10C(0+)
state, which is predominantly 1S0[442], is large in the S →
S components, but about five times smaller in the S → D
components. This makes the GT matrix element particularly
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sensitive to the exact mixing of the 3S1 and 3D1 components
in the two 10B(1+) states produced by a given Hamiltonian. It
would appear that none of the interactions models studied here
gets quite the right mixing of these components. In particular,
results based on the NV2+3-Ia and NV2+3-Ia* interactions
overpredict the data by ∼7% and 12%, respectively, which
gives an indication of the spread of the theoretical estimates.

Predictions for the RMEs of A = 8 transitions are the first
QMC calculations for these systems that include corrections
from two-body axial currents. As discussed above, RMEs
are suppressed at leading order which gives only ≈50% and
≈40% of the experimental values for the 8B → 8Be and
8He → 8Li transitions. Two-body currents provide about 20–
30% correction in the right direction which is, however, still
insufficient to reach agreement with the experimental data.
These transitions are challenging not only from the theoretical
but also from the experimental point of view. For example,
in Tables V and VI we quote two results for the RME of
the 8Li → 8Be decay obtained from the log( f t) values of
Ref. [78] and Ref. [79] via the following formula [77]

RME(EXPT) = 1

gA

√
2Ji + 1

√
6139 ± 7

f t
, (19)

where Ji is the angular momentum of the parent nucleus. The
Fermi transition strength is small enough in this case that
it can be neglected in the above formula. We then obtain
two values, namely, RME (Ref. [78]) = 0.284, and RME
(Ref. [79]) = 0.190. We note that Refs. [76,80], report a
different overall factor of 6147 instead of 6139 in the formula
given above. In our estimate we used gA = 1.2723. Despite
this additional uncertainty in the deduced experimental val-
ues, our predictions still severely underestimate the data. For
example, the calculated Ia* RME provides only ≈40% and
≈60% of the experimental values given in Ref. [78] and
Ref. [79], respectively.

B. Two-body transition densities

In order to have a better understanding of the two-body
terms in the axial current and their contributions, it is helpful
to study the associated two-body transition densities, which
we define as [81]

RME(2b) = 4 π

∫ ∞

0
dr r2 ρ2b(r) , (20)

where r is the interparticle distance, and 2b = N2LO-�,
N2LO-OPE, and N2LO-CT.

Two-body transition densities, calculated for selected nu-
clei with variational wave functions corresponding to the
Hamiltonian models NV2+3-Ia (Ia) and NV2+3-Ia* (Ia*),
are presented in Fig. 7. These models produce similar N2LO-
� and N3LO-OPE densities, since they are based on the
same underlying NV2 interaction and only differ in the NV3
interaction. Specifically, what differs is the strength z0 of
the contact current—linked to the (contact) three-nucleon
interaction via the relation in Eq. (16). Because of the dif-
ferent methodologies adopted in constraining cD and cE (the
LECs parametrizing the contact piece of the three-nucleon

interaction), z0 turns out to be much larger for Ia* than for
Ia, see Table III. Since the contact current is proportional to
z0, this also explains why the corresponding density for Ia* is
much larger (in magnitude) than for Ia. Note that they are both
negative. As a consequence, the total density (black symbols
in Fig. 7) develops a node at around 1 fm in the case of
model Ia*.

Another interesting feature of Fig. 7 is the difference
between the N2LO-� and N3LO-OPE densities at separations
r � 2 fm for the transitions in the larger systems, especially
those involving the A = 8 resonant states. In the limit of
vanishing momentum transfer we are considering here, the
corresponding currents have the same operator structure [4],
up to a momentum dependent term, absent in the N2LO-�
current, which, however, we have explicitly verified to give a
numerically small contribution by direct calculation. Exami-
nation of Eqs. (2.9) and (2.10) of Ref. [4] shows that this com-
mon operator structure involves two independent correlations
functions I (1)(μi j ; αp) and I (2)(μi j ; αp) with μi j = mπ ri j ,
proportional to different combinations of LECs, denoted by
α1 (α�

1 ) and α2 (α�
2 ) in the OPE (�) current, with

α�
1

α1
= c�

4

c4 + 1/(4 m)
≈ 0.89,

α�
2

α2
= c�

3

c3
≈ 3.6,

α�
1

α�
2

= −1

4
,

α1

α2
≈ −1.0, (21)

using the values in Tables I and II (m is the average nucleon
mass). Here c�

3 = −h2
A/(9 m�N ) and c�

4 = h2
A/(18 m�N ).

Indeed, the N2LO-� current reads

jN2LO
� = −(τ i × τ j )aσ i × O(1)

i j − τ j,a O(2)
i j + (i � j), (22)

with

O(p)
i j = I (1)(μi j ; α

�
p ) σ j + I (2)

(
μi j ; α

�
p

)
r̂i j σ j · r̂i j . (23)

A similar expression holds for jN3LO
π with αp replacing α�

p .

There are cancellations between the terms proportional to O(1)
i j

and O(2)
i j in each of these currents, and these cancellations are

sensitive to the values of the ratios α�
1 /α�

2 and α1/α2, and to
the overlap between the wave functions of the states involved
in the transition.

To gain insight into how short-range physics impacts these
weak transitions across different nuclei, we display in Fig. 8
the densities corresponding to the individual two-body contri-
butions, each normalized as 4πr2ρ2b(r)/(4πr2ρ2b)max, where
(4πr2ρ2b)max is the maximum attained value (in magnitude);
so all curves peak at 1. We also display the total densities and
note that, since both a positive peak and a negative valley are
present in this case, each curve is normalized so that the value
of the positive peak is 1.

The universal behavior exhibited by the N2LO-�, N3LO-
OPE, and N3LO-CT densities is quite striking, as the curves
corresponding to different nuclei and different Hamiltonian
models, essentially overlap for r � 1/mπ . (It is even more
striking when the weighing r2 factor is not included). Such
behavior can be understood as follows.

In a charge-raising process the two-body weak transition
operators primarily convert a pn pair with total spin/isospin
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FIG. 7. Two-body transition density—see Eq. (20)—for selected nuclei obtained with the NV2+3-Ia and NV2+3-Ia* models (see text for
explanation).

FIG. 8. Two-body transition density for selected nuclei (see text for explanation). Different colors indicate different transitions. Results
obtained from calculations using the NV2+3-Ia model are represented with open circles and results obtained from calculations employing the
NV2+3-Ia* model results are represented by solid stars.
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FIG. 9. Pair densities in (a) total spin/isospin S/T = 1/0 and 0/1 and (b) S/T = 0/0 and 1/1 obtained with VMC wave functions
corresponding to model Ia*. All curves have been rescaled so as peak at 1. Only central values are shown; statistical Monte Carlo errors are
below a few percent.

S/T = 1/0 (nn pair with S/T = 0/1) to a pp pair with
S/T = 0/1 (pn pair with S/T = 1/0) [81]—of course, similar
considerations apply to a charge lowering process. These
operators, at least in light systems, do not couple T Tz =
10 and 00 to T Tz = 11 in a significant way, since P-wave
components are small in that case. At separations �1/mπ ,
where these transitions operators are most effective, the pair
wave functions with S/T = 1/0 and 0/1 in different nuclei are
similar in shape and only differ by a scale factor [82]—those
corresponding to the Ia* model are illustrated in Fig. 9. This
is the origin for the universal behavior observed in Fig. 8.
Note that in Fig. 9 we also show the densities of pairs in
S/T = 0/0 and 1/1, which do not scale. A complete analysis
and interpretation of these results—in particular, of the role
played by the tensor component of the nuclear interaction in
shaping these densities—can be found in Ref. [82].

However, at separations r � 1/mπ , the N2LO-� and
N3LO-OPE densities (especially the former) do not scale,
particularly in the case of the heavier systems with A � 8,
presumably due to delicate cancellations between the terms
proportional to the operators O(1)

i j and O(2)
i j present in these

currents (P-wave components in the wave functions of these
systems may also play a significant role). As a matter of fact,
because of the different long-range behavior present in the
A � 8 transitions (note, e.g., how the N2LO-� density in the
10C transition assumes negative values at large separations, all
the other densities being positive), and because of the rather
large size of the contact contribution in the Ia* model, the
total densities exhibit nodes when calculated with the starred
interactions, which leads to nontrivial cancellations.

VI. CONCLUSIONS

In this work, we reported on a detailed study of weak
matrix elements in A = 3–10 systems based on chiral
(two- and three-nucleon) interactions and associated (one- and
two-body) axial currents at high orders in the chiral expansion.
A summary of our results is displayed in Fig. 6. Agreement
with the experimental data is obtained when correlated nu-

clear wave functions are adopted. For these transitions the
contribution of corrections beyond LO in the axial current
is typically at the ≈2% level of the value calculated with
the LO Gamow-Teller operator. These findings are in line
with those reported in the hybrid study of Ref. [6] for the
same transitions. Here, we also present calculations of matrix
elements entering the rates of the 8Li, 8B, and 8He β decays.
These matrix elements are found to be suppressed at LO,
and N2LO and N3LO currents provide a large correction
(≈20–30%) which is, however, insufficient to explain the
experimental data. We attribute the large suppression at LO to
the fact that the Gamow-Teller operator is, in these transitions,
connecting large to small components of the initial and final
wave functions. Improving on these calculations will require
the development of more sophisticated wave functions with
better constrained small components.

Finally, we also reported on a careful analysis of one- and
two-body transition densities shown in Figs. 4–8. The latter
are especially interesting because they allow us to under-
stand the spatial distributions of the various two-body current
operators, that is their behavior as functions of interparticle
distance. We have shown that, for each set of interactions
and consistent currents (either NV2+3-Ia or NV2+3-Ia*),
the two-body transition densities exhibit a universal behavior
at short distance across all nuclei we have considered in the
present study.
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