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We investigate the measurement of Hanbury Brown–Twiss (HBT) photon correlations as an experimental
tool to discriminate different sources of photon production. To showcase that HBT correlations can distinguish
between such sources, we consider two different scenarios in which we enhance the yields from standard
hydrodynamical simulations. In the first, additional photons are produced from the early preequilibrium stage
computed from the “bottom-up” thermalization scenario. In the second, the thermal rates are enhanced close
to the pseudocritical temperature Tc ≈ 155 MeV using a phenomenological ansatz. We compute the correlators
for relative momenta qo, qs, and ql for different transverse pair momenta, K⊥, and find that the longitudinal
correlation is the most sensitive to different photon sources. Our results also demonstrate that including
anisotropic preequilibrium rates enhances non-Gaussianities in the correlators, which can be quantified using
the kurtosis of the correlators. Finally, we study the feasibility of measuring a direct photon HBT signal in the
upcoming high-luminosity runs at the CERN Large Hadron Collider. Considering only statistical uncertainties,
we find that with the projected ≈1010 heavy-ion events a measurement of the HBT correlations for K⊥ < 1 GeV
is statistically significant.
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I. INTRODUCTION

Relativistic nuclear collision experiments explore the
physics of dense and hot QCD matter, also known as the
quark-gluon plasma (QGP) [1]. The bulk properties of this
new state of matter are inferred indirectly from the yields
and correlations of the produced hadrons. However the QCD
degrees of freedom participate in the strong interaction and
are subject to the effects of multiple rescatterings and non-
perturbative physics of hadronization, which tend to erase
information about the earlier stages of the collision. Electro-
magnetic probes, e.g., photons and dilepton production, are
therefore often championed as penetrating probes of the QGP
dynamics [2]. Although it is true that photons escape virtually
unscathed from the medium, the continuous electromagnetic
emission makes it very hard to discriminate between different
photon sources. Further information about photon sources
would be highly valuable to resolve open questions. For in-
stance, in the standard hydrodynamical picture, it is challeng-
ing to simultaneously describe the measured photon yields
and their azimuthal anisotropy, which is commonly referred
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to as the direct-photon puzzle [3–8]. A better experimental
access to the system’s spatio-temporal evolution would be
important to be able to identify possible mechanisms for its
resolution.

In this paper, we explore two-photon interferometry, called
in this context femtoscopy, as a tool to untangle the space-
time evolution of the QGP and in order to shed light on the
direct-photon puzzle. This addresses the question whether we
can devise suitable observables to investigate if direct photons
in a heavy-ion collision (HIC) originate predominantly from
the early or the late stage of the collision. Specifically, we
use Hanbury Brown–Twiss (HBT) correlations, which are the
only known way to directly extract space-time information
from the particles measured in heavy-ion collision experi-
ments [9]. HBT correlations, originally introduced to measure
the radii of stars from the incoming photons [10,11], have
been used extensively across physics, from atomic gas correla-
tions in cold atom experiments [12,13] to pion interferometry
in heavy-ion collisions experiments [14–16]. Interferometry
of direct photons as a tool to study the space-time evolution
of a heavy-ion collision was theoretically explored by several
authors; see [17–24] and references therein. So far only one
measurement in Pb-Pb collisions at

√
sNN = 17.3 GeV at the

CERN Super Proton Synchrotron (SPS) has been reported
[25]. In view of the upcoming high-luminosity runs at the
CERN Large Hadron Collider (LHC) [26], we expect further
photon measurements at the TeV energy scale and therefore
present theoretical and experimental analysis of the HBT
signal.
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In this work we study HBT correlators in different sce-
narios. First, we compute the yield and HBT correlators for
a hydrodynamically expanding quark-gluon plasma and the
subsequent hadronic stage using realistic 2+1-dimensional
(2+1D) event-by-event simulations of a heavy-ion collision.
We then consider two additional sources of photons, coming
from early and late stages of the expansion respectively. At
early times we supplement the thermal yield by including
a preequilibrium contribution, which was found in previous
work to be on par with the thermal one [27–29]. Motivated
by the idea that thermal rates might be enhanced around
the pseudocritical temperature by confining modes during
hadronization [30,31], we add another source for photons at
late times. We present a detailed analysis of photon HBT
signal sensitivity to different photon sources and make a
realistic estimate of experimental statistics needed to measure
these signals with the ALICE detector.

II. HBT CORRELATIONS

Quantum statistical effects can be used to understand the
space-time distribution of particle sources [9,32–34]. In the
context of HIC experiments, we are interested in finding the
spatial extension of the photon source in the fireball. For this,
we use the normalized HBT correlator,

C(p1, p2) =
Ep1

Ep2

dN
d3 p1d3 p2

Ep1

dN
d3 p1

Ep2

dN
d3 p2

, (1)

where the numerator is given by the two-photon distribution,
which can be expressed in terms of asymptotic states, i.e.,
creation and annihilation operators of a gauge field:

dN

d3 p1d3 p2
=

∑
λ1,λ2

〈
a†

p1,λ1
a†

p2,λ2
ap2,λ2

ap1,λ1

〉
. (2)

Here, pn and λn are, respectively, the spatial momenta of the
detected photons and polarization mode of the nth photon. In
a field theoretical language, this can be computed generally
from a four-point correlator of gauge fields in momentum
space, for equal incoming and outgoing momenta. The de-
nominator is the product of the invariant yields, and can be
expressed with asymptotic states as

dN

d3 p
=

∑
λ

〈a†
p,λap,λ〉. (3)

We can further simplify Eq. (1) by splitting the four-point
function into connected and disconnected parts. The photon
fields during a HIC are not expected to be highly occupied
in medium. This renders the electromagnetic sector to be a
dilute gas of particles, for which the photon-photon interaction
vertex is very small. In this case we can loose the connected
part, and Wick’s theorem states that〈

a†
p1,λ1

a†
p2,λ2

ap2,λ2
ap1,λ1

〉
� 〈

a†
p1,λ1

ap1,λ1

〉〈
a†

p2,λ2
ap2,λ2

〉
+〈

a†
p1,λ1

ap2,λ2

〉〈
a†

p2,λ2
ap1,λ1

〉
. (4)

From this it can be seen that the two-photon correlator
splits into a trivial (diagonal) part and nontrivial (off diagonal)
part. It was shown in Ref. [9] that these correlators can be
directly related to scalar Wigner density functions S(x, K )
(also called emission function in the literature), where the
information over polarization of the sources can simply av-
eraged out using the Ward-Takahashi identity. The correlator
is found to be

C(q, K ) = 1 + 1

2

|S(q, K )|2
S(0, p1)S(0, p2)

, (5)

where S(q, K ) is the Fourier transform of the emission func-
tion,

S(q, K ) =
∫

d4x eix·q S(x, K ). (6)

The result is a version of the scalar HBT correlator, modified
only by a relative degeneracy factor of 1/2. The new variables,
q = p1 − p2 and K = (p1 + p2)/2, are the relative and aver-
age momenta for two photons, respectively. In what follows,
both S(q, K ) and the photon invariant yield, S(0, p), will be
calculated by associating the Wigner function with photon
emission rates, that is

S(x, K ) ↔ EK
dN

d4x d3K
. (7)

A. Variables and approximations

The detected photons are on shell, and we express the
photon’s four-momenta

pμ = (p⊥ cosh y, p⊥ cos ϕ, p⊥ sin ϕ, p⊥ sinh y) (8)

with rapidity y, transverse momentum p⊥, and azimuthal
angle ϕ. For the average and relative momentum variables,
q and K , defined above, we choose a coordinate system such
that

Kμ = (K0, K⊥, 0, Kz ),

qμ = (q0, qo, qs, ql ), (9)

i.e., K lies in the x-z plane, with z being the beam direction.
The q components are called the longitudinal, outward, and
side momenta. We can express them using

qo = (q⊥ · K⊥)/K⊥,

qs = |q⊥ − (q⊥ · K⊥)K⊥/K2
⊥|,

ql = qz.

(10)

Since both photons are on shell, both the pair and relative
momenta will be off shell, and for two identical particles they
satisfy

qμKμ = 0 ⇒ q0 = q · K
K0

. (11)

In the case of pion-pion interferometry, two approxima-
tions are taken to further simplify the computation of the
HBT correlator. In the literature they are commonly referred
as the on-shell and smoothness approximations [9,23]. For
the former, the pair momenta itself is taken to be on shell,
K0 ≈ |K| + O(q2). In hadron interferometry, this can be
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FIG. 1. Comparison of the invariant yield of direct photons from different sources to ALICE measurements in central (0–20%) Pb-Pb
collisions at

√
sNN = 2.76 TeV [6]. On the left we show photon contributions from prompt (dotted line), thermal (dash-dotted line) and

early-time preequilibrium (dashed line) sources. The total result (sum of prompt, thermal, and preequilibrium photons) is shown by the solid
line. On the right we compare the combined prompt and thermal photon yield (dash-dotted line) with the late-time pseudocritical enhancement
(LE) scenario (solid line).

used to good approximation because of the large masses of
hadrons. Even for pions, the subleading terms are suppressed
by EK for all average momenta. In general, in such calcu-
lations, if the corrections are not suppressed by powers of
q2/K2, they are controlled by the group velocity β = K/K0

[9,23]. However, photons are massless, and this expansion
will break at |q|/(2|K|) ≈ 1. Unfortunately, in experimentally
realizable settings at the LHC, the direct photon signal is
contaminated by photons from decays, which form the vast
majority of the signal. This leaves direct photons with a
deficiency in statistics. As a consequence, photon pairs cannot
be correlated for infinitesimal |q|, with reasonable confidence
(see Sec. V). This means that in general |q| and |K| will be
of the same order of magnitude. Nonetheless, for a single
Gaussian source, the correlator half-widths can be computed
using this approximation without any problem. For such a
source, the correlator will be perfectly Gaussian and the radii
can be directly extracted by fitting the curves [35], or by
computing the curvature of the correlator at q = 0. In the
case of direct photons, we will have photons from different
sources (stages of the fireball) which will present different
scales. Thus, the condition |q|/(2|K|) 
 1 cannot be met for
all the kinematic regime. Furthermore, the Wigner function
in Eq. (6) is generally given for any combination of momenta.
The function can be evaluated off shell [9,23], and therefore to
avoid unexpected deviations coming from uncontrolled terms
we choose to not use it.

The other approximation normally used in the literature
is called the smoothness approximation, which consists of
neglecting the q dependence in the denominator of Eq. (5),
via S(0, p1,2) → S(0, K ). The correlator is given in this

limit as

C(q, K ) = 1 + 1

2

∣∣∣∣ S̃(q, K )

S̃(0, K )

∣∣∣∣
2

≡ 1 + 1

2
|〈eiq·x〉|2, (12)

=10 for which we will introduce the commonly used aver-
aging notation [23]

〈 f (x)〉 =
∫

d4x f (x) S(x, K )∫
d4x S(x, K )

. (13)

The smoothness approximation is accurate if the curvature
logarithm of the one-particle distribution is small [36], which
is not true for photons at small momentum (see Fig. 1).
In reference [23] it was found that the convergence of the
smoothness approximated to the full correlator is restricted
for values of |q| < 2 |K|. This is the same scale that signals
the breakdown of the on-shell approximation. We use this
approximation for the case of 1D slices for qo and qs, where
the other directions of q are set to zero. In this case, the qo and
qs directions look Gaussian, and the explored K⊥ values will
be larger than the inverse half-width of the correlator, which
makes this approximation safe.

B. Homogeneity radii

We can get a general form of C(q, K ) for an arbitrary
Gaussian source around the origin in q space:

C(q, K ) = 1 + 1
2 exp[−qμ R̃μν qν]. (14)

For sources with relatively small non-Gaussianities this ap-
proximation is still valid, since the perturbations around C
increase only at high q values [37]. The half-width tensor,
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R̃μν = R̃μν (K ), is a function of the pair momentum. To clean
the notation, we avoid writing its K dependence. Using the
orthogonality relationship, Eq. (11), we can reduce this ex-
pression to

C(q, K ) = 1 + 1
2 exp[−qi Ri j q j] (15)

by redefining Ri j ≡ β i β j R00 + 2 β i R0 j + Ri j . Because of
symmetry, Ri j = R ji, we only get six independent compo-
nents. Using the relative momentum parametrization intro-
duced above, we can express it as

Ri j (K ) =

⎡
⎢⎣

R2
o R2

os R2
ol

R2
os R2

s R2
sl

R2
ol R2

sl R2
l

⎤
⎥⎦. (16)

In this work we only focus on the diagonal of this matrix.
While it has been shown that for longitudinally expanding
sources the Ros term is relevant [38], it is also true that numer-
ically calculating such cross-terms is more computationally
complex.

To compute the radii in Eq. (16), we use the method of
moments, which is stable for correlators with strong non-
Gaussianities [32]. We use the moments of the true correlator
C(q, K ) − 1 in relative momentum space,

〈〈qiq j〉〉 =
∫

d3q qi q j g(q; K ) ≡ 1

2
(R−1)i j, (17)

where R−1 is the inverse matrix of Eq. (16). We have defined
the distribution function

g(q; K ) ≡ C(q, K ) − 1∫
d3q

[
C(q, K ) − 1

] (18)

to ensure correct normalization. Because of the symmetry
properties of the correlator, we can safely assume the one-
point functions vanish, 〈〈qi〉〉 = 0. For simplicity, and because
we do not explore the off-diagonal elements, we will keep the
notation one-dimensional. That means that the homogeneity
radii are going to be given by

R2
i = 1

2

〈〈
q2

i

〉〉−1
with i ∈ {l, o, s}. (19)

It is important to clarify that this method requires the
correlator to be highly localized around q = 0, to give sen-
sible results for the characteristic scale. In other words, the
correlator needs to decay faster than a power-law. We can use
also this method to quantify the deviations from Gaussianity
by computing the normalized excess kurtosis,

�i =
〈〈

q4
i

〉〉
3
〈〈

q2
i

〉〉2 − 1, (20)

which, as expected, vanishes in the Gaussian limit. In theoret-
ical calculations of HBT correlations, going to higher values
of qi requires only better numerical precision. However, it
may be problematic for experiments, where high relative
momentum values will suffer from statistic limitations.

III. MODELING THE PHOTON SOURCES

As stated in the Introduction, we calculate the thermal
photon observables, which are enhanced by the inclusion

of early- and late-time photon sources. The thermal base is
calculated from hydrodynamic simulation using the VISHNU

package [39,40], from which realistic space-time evolution
of temperature and velocity fields was obtained. Using the
default model parameters tuned to the experimental data, we
simulated 200 Pb-Pb collision events at the center-of-mass en-
ergy

√
sNN = 2.76 TeV in the 0–20% centrality class. The ini-

tial conditions at τhydro = 0.6 fm1 were provided by the two-
component Monte Carlo–Glauber model [42]. The relativistic
hydrodynamic simulation was then performed using fixed
shear viscosity over entropy ratio η/s = 0.08 until the energy
density in all fluid cells dropped below e = 0.1 GeV/fm3. The
space-time evolution of transverse velocities vx and vy and
temperature T was recorded on a coarsened grid with spacing
dx = dy = 0.4 fm and dτ = 0.2 fm (xmax = ymax = 25.2 fm).
The final time τmax varied depending on the initial conditions,
but at least 100 recorded events had τmax � 15.8 fm. We
calculate photon emission for each event separately and then
do the ensemble average.

Direct photons can be emitted from the QGP and hadron
resonance gas (HRG) epochs of the evolution of the fire-
ball. The transition from the QGP production to the HRG
is signaled by a switch at 160 MeV. It is assumed that the
emission threshold for thermal photons is at a temperature of
120 MeV . In addition, two possible sources for enhancing the
invariant photon yield are discussed. The first is the inclusion
of a preequilibrium source based on the first stage of the
bottom-up thermalization scenario [27,41]. The second source
is a phenomenological enhancement of the thermal rates near
a pseudocritical temperature Tpc, presented first in Ref. [30].
We discuss these and other photon contributions below.

A. Prompt photons from the initial stage

During the initial stage of the collision, prompt photons
are produced via hard scattering of the partons from the indi-
vidual nucleons. The photon cross-section for the NN → γ X
process can be calculated using perturbative QCD (pQCD)
[43,44], which is then scaled by the number of binary colli-
sions, Ncoll, via the relation

dNprompt

d2 p⊥dy
= Ncoll

σ NN
inel

dσ NN→γ X

d2 p⊥dy
. (21)

Here σ NN
inel is the total inelastic collision for a collision of two

nucleons. We compute Ncoll using the optical Glauber model.
For collisions in the 0–20% bin, the scale factor Ncoll/σ

NN
inel =

19.77 mb−1. For the computation of the full photon invariant
yield we need to extend the pQCD computation to smaller p⊥
values. We do so by taking the same parametrization used by
PHENIX [3] to fit the pQCD data [43,44] at LHC energies.
The fit function is given by the functional form

dσ pp

d2 p⊥dy
= App

(
1 + p2

⊥
P0

)−n

. (22)

1The photon emission of the prehydro stage 0.1 < τ < 0.6 fm will
be modeled using the bottom-up scenario [27,41]. See Sec. III D.
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where P0 = 0.628 GeV2, App = 0.095 mb GeV−2 and n =
2.375 are the values obtained for ALICE at 2.76 TeV. Because
this contribution takes into account incoherent production of
single photons, we do not include prompt photons in the
calculation of the HBT correlator, but add them to the total
photon yield.

B. Photon emission from the quark-gluon plasma

To compute the photon contribution due to the thermal
QGP we use the full leading order2 (LO) computation,
parametrized in Ref. [46]. This rate contains not only the two-
to-two contributions, which dominate at higher momenta, but
also near-collinear bremsstrahlung and the inelastic pair an-
nihilation, thereby fully including the Landau-Pomeranchiuk-
Migdal (LPM) effect, which can be understood as suppression
of emission owing to interference of multiple scatterings
[47–49]. The parametrization used in this work is given ex-
plicitly in the Appendix.

C. Photon emission from the hadron resonance gas

For the thermal photon emission rate from the hadron
resonance gas phase the parametrizations of Ref. [50] are
used. The given parametrizations agree within 20% with
the microscopic calculated values. Microscopic calculations
have already been performed [51,52], but, as pointed out in
[50], the results cannot be easily used in models like the
one described here. Two different parametrizations for the
photon emission rate are given: one for the contribution from
the in-medium ρ mesons and one for the contribution from
bremsstrahlung originating from ππ scattering. They can be
applied to photons with energies q0 between 0.2 and 5 GeV,
which are produced from chemically equilibrated matter with
a temperature between 100 and 180 MeV and baryon chemical
potentials of 0 to 400 MeV. In the case of ALICE, vanishing
chemical potential is assumed.

D. Photon production from preequilibrium

Using the “bottom-up” thermalization scenario [41], recent
estimates [27,53] show the preequilibrium contribution pho-
tons to be non-negligible. The central idea in this estimate is
that gluon saturation takes place at energies available at the
BNL Relativistic Heavv Ion Collider (RHIC) and at the LHC,
which means that, during the initial stage of a collision, the
nuclei behave as macroscopic fields, and undergo very strong,
nonlinear interactions. After a parametrically short time given
by the saturation scale, τ0 ∼ Q−1

s , the gluon fields get highly
occupied and undergo three stages of relaxation. During the
first stage, hard modes with p⊥ ∼ Qs completely dominate
the system. These modes are approximately conserved, yet
diluted thanks to Bjorken expansion. During this stage, hard
modes scatter via two-to-two scatterings, which produce a
broadening of the distribution in the pz direction. The second

2We note that next-to-leading order (NLO) calculations are avail-
able [45]. However, in the relevant momentum range the NLO
correction is only 10–20%, which we neglect in the current analysis.

stage starts once the occupation of the gluon modes falls
below unity, where the typical longitudinal momentum of
hard gluons saturates at a finite value. In this stage, hard
gluons still dominate the total gluon number, while the typical
interactions are taken over by the soft sector. Finally, we
arrive at the third stage of the bottom-up scenario, where the
numbers of soft and hard gluons become comparable. Soft
gluons thermalize rapidly via two-to-two scatterings, which
creates a bath to which hard gluons quickly lose energy via
minijet quenching. The system has then fully thermalized.

We fix the initial characteristic scale of the IP-Glasma
model [54], which combines the geometry of the Monte
Carlo–Glauber model [55] with the IP-Sat model [56,57],
while the bottom-up scenario gives the time dependence of
the rates. We use as well experimental data to constrain
the needed parameters; the thermalization time was found
in Ref. [27] to be τth ≈ 2.24 fm for LHC and RHIC en-
ergies. Since the bottom-up scenario does not account for
the transverse expansion, such late thermalization poses a
phenomenological problem, as the photons will not be able
to build up enough anisotropy, creating tension with data.
To avert this, we will only evolve the preequilibrium stage
up to the end of the first stage of the bottom-up scenario,
τhydro = 0.6 fm.3 From the field theoretical point of view, in
this stage, the gluon medium approaches a nonthermal fixed
point [59–61], where the gluon occupation is given by

fg(τ ; p⊥, pz ) = 1

αS

(
τ

τ0

)− 2
3

fS

(
p⊥, pz

(
τ

τ0

) 1
3

)
. (23)

Here, αS is the strong coupling, and fS is a scaling function,
which can be parametrized from the results of classical statis-
tical simulations [59] as follows:

fS (p⊥, pz ) = f0
Qs

p⊥
exp

[
−1

2

p2
z

σ 2
0

]
Wr[p⊥ − Qs]. (24)

Here, Wr[p⊥, Qs] stands for a suppression function, inspired
by the classical statistical simulations. It depends on a free
suppression parameter, r, and it is given by

Wr[p⊥, Qs] = θ (Qs − p⊥) + θ (p⊥ − Qs) e− 1
2 ( p⊥−Qs

r Qs
)2

. (25)

At the end of this stage, the system is assumed to instanta-
neously thermalize, and we match the energy densities in the
preequilbrium and hydro stages at τhydro,

εearly(τhydro, x⊥) = εhydro(τhydro, x⊥), (26)

which gives also the spatial profile of the saturation scale
Qs(x⊥). In the preequilibrium stage, most of the energy
density resides in the gluonic sector. Using Eq. (23) and the
QGP energy density, one can obtain

Qs(x⊥)

T (x⊥)
=

[√
2

π

37π2(2π )2αS

30(1 + √
2π r + 2 r2)

τhydro

τ0 f0 s

]1/4

, (27)

3The photon spectra from all three stages of the bottom-up thermal-
ization is studied in Ref. [58].
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where τ0 is taken to be the spatially averaged saturation scale,
〈Qs〉, and can be determined parametrically using the method
described in Ref. [27].

It is important to note here that even when our current
modeling of the preequilibrium source of photons allows for
energy density fluctuations, it does not allow the photons
to have a dynamical access to the evolution of the flow.
This means that including such a source would in principle
decrease the measured v2. Nevertheless, in a more realistic
modeling of the preequilibrium stage, we expect this not to
be the case. In a dynamical description, such as in Ref. [62],
pressure gradients are built in the prehydro stage. Starting the
hydro with nonvanishing gradients and transverse velocities
would allow it to establish flow earlier on.

For the rate, we will use a kinetic rate, generally given by

E
dN

d4Xd3 p
= 1

2 (2 π )12

∫
d3 p3

2E3

d3 p2

2E2

d3 p1

2E1
|M|2

× (2 π )4 δ4(P1 + P2 − P3 − P)

× f1(p1) f2(p2)[1 ± f3(p3)], (28)

where the processes included are the two-to-two annihila-
tion, qq → gγ , and Compton scattering, qg → qγ . Because
the computation at each space-time point of such rate re-
quires a five-dimensional integral, we simplify the rate using
the small-angle approximation. For massless mediators, hard
scatterings present collinear enhancement, which will dom-
inate the integrals in Eq. (28). Expanding in the exchange
momentum of the mediator and keeping only the leading term,
one finds the simplified rate [27,63]

E
dN

d4 xd3 p
= 10

9π4
α LQ2

s κg

(
τ0

τ

)
fq(τ, p) (29)

where α is the electromagnetic coupling, κg = c (2Nc)−1,
where Nc is the number of colors and c is the gluon liberation
factor described in Ref. [64]. The quark distribution fq is taken
from hard splitting of gluons in medium, namely fq ∼ αS fg.
That is, using this parametrization, we assume the quark dis-
tribution inherits the scaling properties of the parent gluons.
To avoid breaking fermion statistics, we suppress the quark
distribution for low p⊥ values, so that fq = 1/2 at its highest
value. The L term is called the Coulomb logarithm, and it is a
regulator that relates the UV and IR scales, two cutoffs which
are needed for this approximation. In the thermal case, the
UV scale can be related to the temperature, T , while the IR
scale can be related to the Debye mass, mD ∼ gT . Using this
identification, the leading-log (LL) thermal rate from Ref. [65]
can be found from the small-angle approximated rate.

Nevertheless, at the full leading order (LO) limit of the
photon rate [46], it was shown that in a thermal setting
photon rates are dominated by near-collinear bremsstrahlung
for photon energies of p � 2 T , while at 2 T � p � 10 T the
two-to-two terms are of the same order as the near-collinear
contributions. The modification for the rate is applied then by
making the substitution of the prefactor in Eq. (29)

L → νLO(x), (30)

where x = E/T in the thermal case and νLO(x) is given in
Eq. (A3). We expect a similar behavior to the pre-equilibrium
stage, with one difference. During this stage, the characteristic
momentum scale is taken to be the saturation scale Qs, mak-
ing the near-collinear contributions during the early stages
dominant at p � 2 Qs, which for the center-of-mass energy
at ALICE is most of the kinematic window at which direct
photons are observed. We therefore also use the modification
of Eq. (30) in Eq. (29), for x → x′ = E/Qs.

E. Critical enhancement at late times near Tc

To account for the missing photons one could naively push
the initial time to smaller values. Nevertheless, doing so hard-
ens the spectrum, which creates tension with the experimental
results [30,66]. If one has to increase the thermal rate, it
has to be done by increasing the weight of photons coming
from later times.This is in line with the idea suggested in
Refs. [30,31,67,68], where it is conjectured that the thermal
rates are enhanced near a pseudocritical temperature Tc,

E
dNenh

d4x d3 p
≡ h(T ) E

dNthermal

d4x d3 p
, (31)

by the fact that, close to the transition to hadronic degrees
of freedom, one has to account for interactions related to
confinement. This means that the partonic cross-sections will
see a rise which cannot be accounted for by perturbative
physics [69]. For the purpose of this paper, however, we
choose to model the enhancement factor, h(T ), as follows:

h(T ) = 1 + h0 e− (T −Tc )2

d2 (32)

where the pseud-critical temperature is set to be Tc =
155 MeV. The enhancement parameters are set to be h0 = 3
and d = 50 MeV. The enhancement factor is tuned such that
the enhancement matches the experimental results from the
ALICE Ccollaboration; see Fig. 1.

IV. RESULTS

We computed the total yield for the thermal baseline, and
include as well both enhancement scenarios, which can be
seen in Fig. 1. The preequilibrium photon spectrum shows a
structure around p⊥ ≈ 2.5 GeV. This shoulder comes directly
from the parametrization of the quark function. Nevertheless,
the specific value at which we can find the peak is given by
averaging the space dependence of Qs(x⊥). The preequilib-
rium spectrum is found to be dominant for 2 < p⊥ � 3 GeV,
while being relatively small in the IR sector. Summing over
the prompt, preequilibrium, and thermal contributions, we
find good agreement with ALICE data for central collisions,
0–20% (Fig. 1, left). On the other hand, applying the enhance-
ment to the thermal rates, Eqs. (31) and (32), just as expected,
we see an overall increase of the spectrum, particularly strong
for low-p⊥, photons. It can be seen that both scenarios are
compatible with the error bars, which means that distinguish-
ing such cases experimentally is not possible using only the
invariant yield.

The full HBT correlator, Eq. (5), was computed for midra-
pidity pairs, Kz = 0, along the three diagonals, i.e., qi with
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FIG. 2. The HBT signal for ql and qs = qo = 0 for thermal
(dashed line), thermal and preequilibrium (solid line), and ther-
mal photons with late enhancement (dash-dotted line), for K⊥ =
0.5, 1.0, 1.5 GeV. Deviation from the thermal stage can be seen
increasing with K⊥ for both enhancement scenarios.

q j = qk = 0 for i �= j �= k. We focus on 0–20% central col-
lisions in ALICE, with

√
sNN = 2.76 TeV, where the aver-

age saturation scale is 〈Q2
s 〉 = 2.9 GeV2. As expected, the

longitudinal curves are the most sensitive to the inclusion of
both enhancements, which are presented in Fig. 2 for different
values of K⊥. Although the correlators around the sideward
and outward diagonals (see Fig. 3) show a difference with the
inclusion of both enhancements, the effect is noticeably small.
This can be seen better for the diagonal radii, Rl, Ro, and Rs

(see Fig. 4), which were computed using the characteristic
scale method and the aforementioned correlators.

Just as expected from the correlators, the change in the
longitudinal radius, Rl, is the largest one. The change induced
in Ros by the inclusion of the scenarios was found it to be
in the 10–20% range for the outward direction, and 0–10%
for the sideward direction. The small change in the transverse
radii will make using them to discriminate models difficult.
Nevertheless, this gives an interesting case for predictions.
Take, for example, the preequilibrium case: If preequilibrium
photons are relevant at the yield level, and the assumption
that the preequilibrium stage does not create enough pressure

FIG. 3. Outward (top) and sideward (bottom) correlators, for
K⊥ = 0.5 GeV (solid lines), K⊥ = 1.0 GeV (dotted lines) and K⊥ =
1.5 GeV (dashed lines).

gradients is correct, thermal models will be able to reproduce
the Ros but may undershoot significantly Rl. On the other hand,
a consistent increase with K⊥ on the three radii may indicate
that photons come from the late stages.

We also computed the normalized excess kurtosis, Eq. (20),
for the three diagonals. A clear hierarchy is found, where ql

breaks Gaussianity the most, followed by qo and qs. We find
that the sideward direction is to good approximation Gaussian
(see Fig. 5). The non-Gaussianities, as explained above and
in Ref. [23] arise from the longitudinal expansion of the
fireball. In the case of massless particles these effects will be
considerably more important than for, e.g., pions. Addition-
ally, volume emission will further enhance these effects, as
opposed to Cooper-Fry surface emission. Non-Gaussianities
are quite intuitive to understand in the case of the ql direction,
since the boosting from longitudinal expansion is largest for
the ql variable. However, the easiest way to see how the
outward direction gets contributions from the expansion is the
definition Ri j ≡ β i β j R00 + 2 β i R0 j + Ri j . From this formula
we see that, for the outward direction, Ro gets a nonzero
contribution from βot = tK⊥/K0, while the sideward direc-
tion, by the definition, will not. This means that the outward
homogeneity radius depends not only on the spatial size of
the source, but also on the lifetime of emissions [9]. As can be
seen in Fig. 5, the normalized excess kurtosis can be used as
an observable complementary to the radii. This is particularly
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FIG. 4. Left: HBT radii as a function of the pair momenta, calculated using the method of moments. Right: Percentage change of the radii
for the two scenarios.

true for K⊥ < 0.5 GeV, where the big difference in �l could
be used to differentiate the scenarios.

V. EXPERIMENTAL FEASIBILITY

Measuring direct-photon Hanbury Brown–Twiss correla-
tion is a challenging task. At the LHC, the ALICE experiment
measures photons at low transverse momentum (�3 GeV)
[6,7]. Significantly improved data-taking rates in the upcom-
ing LHC Runs 3 and 4 make it possible to collect a sample
of Pb-Pb collisions corresponding to an integrated luminosity
of 10 nb−1, or O(1010) collision events. In this section we
estimate up to what photon pair transverse momentum K⊥ a
direct-photon HBT measurement might be possible.

We concentrate on the longitudinal momentum difference
ql. Statistical uncertainties for measurements of qo and qs are
very similar. For a Gaussian parametrization the correlation
function C of direct photons for qo = qs = 0 is given by

C = 1 + λ exp
(−R2

l q2
l

)
(33)

with λ = 1/2. The total number of photons, however, is
dominated by photons from neutral pion and eta meson de-
cays. Owing to the long lifetime of the neutral pion and the
eta mesons the decay photons are not correlated with the
direct photons and dilute the measured correlation function,

resulting in

λ = 1

2
r2
γ , rγ = Ndir

Ninc
(34)

for the correlation strength of pairs of inclusive photons.
Here Ndir denotes the number of direct photons and Ninc the
number of inclusive photons, i.e., the sum Ninc = Ndir + Ndec

of the number of direct and decay photons. We assume a
p⊥-independent fraction of direct photons of Ndir/Ninc ≈ 0.1
corresponding to λ = 0.005 [6].

The basis for our estimate is the direct-photon spectrum
in 0–20% Pb-Pb collisions at

√
sNN = 2.76 TeV measured by

ALICE [6]. We parametrize the spectrum by

1

2π p⊥Nevt

d2Ndir

d p⊥dy

∣∣∣∣
y=0

= A exp
(
− pT

T

)
, (35)

where the inverse slope parameter is set to T = 0.3 GeV; see
Fig. 6.

From this simple parametrization of the measured direct-
photon spectrum we calculate the number Ndir

p,u of uncorrelated
pairs of direct photons per event in a given ql bin. We
consider a measurement of C(ql ) in 10 MeV wide bins for
|qo| < 30 MeV and |qs| < 30 MeV in various intervals of pair
transverse momentum K⊥.

The statistical uncertainty of the total number C NevtN inc
p,u

of pairs of inclusive photons should be much smaller than
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FIG. 5. Normalized excess kurtosis for the qi direction, with
i = l, o, s. The strongest difference from Gaussianity is seen in the
longitudinal direction, followed by the outward direction. Finally, the
sideward direction is approximately Gaussian.

the number of pairs (C − 1)NevtN inc
p,u above the uncorrelated

background. Here Nevt denotes the number of considered Pb-
Pb collisions. This corresponds to√

CNevtN inc
p,u 
 Nevt (C − 1)N inc

p,u . (36)

Neglecting the small
√

C term on the left-hand side, the
criterion for a significant measurement in the considered bin
reads

σ inc
rel 
 C − 1 = 1

2 r2
γ , (37)

where

σ inc
rel = 1√

NevtN inc
p,u

= rγ√
NevtNdir

p,u

. (38)

Results for the statistical uncertainty σ inc
rel of the measured

correlation C(ql ) for inclusive photons for Nevt = 1010 are
given in Table I. This table also shows the ratio s = 2σ inc

rel /r2
γ .

1 1.5 2 2.5 3
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2−10

1−10

1
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 (
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di
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N2 d

ev
t

N
p

π
2

1

exponential parameterization

 = 2.76 TeV, 0-20%NNsALICE data, Pb--Pb at 

FIG. 6. Simple exponential parametrization of the direct-photon
spectrum in 0–20% Pb-Pb collisions at

√
sNN = 2.76 TeV [6]. The

chosen inverse slope parameter is T = 0.3 GeV.

A value s 
 1 corresponds to a significant measurement. We
consider the case of a full photon detection efficiency (1) and
the case of a limited detection efficiency (2). From Table I one
can conclude that with Nevt = 1010 Pb-Pb collisions there is
enough statistics to measure direct-photon HBT correlations
up to a pair transverse momentum of K⊥ ≈ 1 GeV. For this
value of K⊥ we illustrate the projected statistical uncertainties
of C measured for pairs of inclusive photons in black in Fig. 7.
For comparison the distribution is also shown in red for K⊥ ≈
0.5 GeV, which has much smaller projected statistical uncer-
tainties. This provides a motivation to experimentally explore
photon HBT correlation in the upcoming high-luminosity
LHC runs [26] and to study in detail all sources of systematic
uncertainties which might affect the measurement.

TABLE I. Projected relative statistical uncertainties for C(ql )
measured for pairs of inclusive photons in a 10 MeV wide ql bin
in 1010 Pb-Pb collisions (centrality 0–20%) at 2.76 TeV in one
unit around midrapidity (|y| < 0.5). The other two components of
the pair momentum difference are constrained to |qo| < 30 MeV
and |qs| < 30 MeV. The uncertainty σ inc

rel,1 corresponds to a 100%
photon detection efficiency. For σ inc

rel,2 a photon detection efficiency of
ε = pconv × εreco = 0.04 is assumed, where pconv = 0.08 and εreco =
0.5 roughly correspond to the photon conversion and reconstruction
efficiencies in the photon conversion measurements of the ALICE
experiment [6]. The table also shows the ratio s = 2σ inc

rel /r2
γ for these

two cases. For a significant measurement s needs to be significantly
smaller than unity.

K⊥ (GeV) σ inc
rel,1 (%) s1 σ inc

rel,2 (%) s2

0.15–0.25 0.001 0.002 0.021 0.043
0.45–0.55 0.002 0.005 0.057 0.114
0.95–1.05 0.012 0.024 0.299 0.600
1.45–1.55 0.063 0.127 1.580 3.170
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FIG. 7. Projected statistical uncertainties for a measurement of
C(ql ) in 10 MeV wide bins for two pair transverse momentum ranges
0.45 < K⊥ < 0.55 GeV (in red) and 0.95 < K⊥ < 1.05 GeV (in
black) in 1010 Pb-Pb collisions at

√
sNN = 2.76 TeV in the centrality

range 0–20%. The other components of the momentum difference
are constrained to |qo| < 30 MeV, |qs| < 30 MeV. The shown corre-
lation function corresponds to a Gaussian parametrization [Eq. (33)]
with an arbitrarily chosen radius Rl = 2 fm.

VI. SUMMARY AND CONCLUSION

In this work, we present a case study of photon interfer-
ometry exploring the space-time evolution of the fireball to
investigate possible new photon sources. In addition to stan-
dard thermal and prompt photons, we consider two different
scenarios: one in which additional photons are produced from
the early preequilibrium stage, and one in which the thermal
rates are enhanced close to the transition. In both cases the
mid-rapidity direct photon yields agree with ALICE results in
central (0–20%) Pb-Pb collisions at

√
sNN = 2.76 TeV.

We then compute the HBT correlators in the diagonal di-
rections, qo, qs, and ql, for different transverse pair momenta.
In general, including photon emission from the preequilibrium
stage widens the correlation because of a more compact
emission source at early times. Conversely, the late-time en-
hancement makes the two-photon correlation narrower. From
these correlators we extract the HBT radii Rl, Ro, and Rs. The
longitudinal radius exhibits the largest difference between the
thermal and the other two scenarios, namely ≈80% and ≈20%
for early- and late-time enhancements. In comparison, the Ro

and Rs radii are only mildly affected, with ≈20% and ≈5%
changes respectively.

Direct photons see the entire space-time evolution
of the expanding fireball, which results in pronounced
non***nobreakdash-Gaussianities in the photon HBT signal.
To quantify these effects, we compute the normalized excess
kurtosis, which we find to be largest for the longitudinal di-
rection and significantly smaller in the outward and sideward
directions. At small transverse momentum, the significant
differences in the observed longitudinal non-Gaussianities
provide a striking new signature sensitive to the different
photon emission sources.

In view of the potential of two-photon correlation measure-
ments, we perform an experimental feasibility study. With the
projected count of ≈1010 heavy-ion events at the upcoming
LHC Runs 3 and 4, we determine the statistical uncertainties
of the experimental signal. Owing to the photons from neutral
meson decays, the HBT signal is attenuated to a percent
level. For transverse momenta K⊥ � 0.5 GeV statistics will
be sufficient for the measurement of the correlation function.
However, the differences between the early- and late-time
scenarios are most pronounced at higher photon-pair mo-
menta, where statistical uncertainties are large. Therefore, it
is unlikely that the photon interferometry alone can be used to
identify the correct photon emission scenario. Nevertheless,
we show that the photon HBT signal is an experimentally
accessible observable with sensitivity to photon production
physics. In conjunction with other observables, e.g., elliptic
flow, HBT correlations could be used to rule out certain
models and, therefore, motivate further theoretical studies and
experimental estimates of systematic errors.
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APPENDIX: THERMAL RATES

After the thermalization of the colored medium, photons
either can be emitted from a thermalized quark-gluon plasma
or can be produced by hadronic processes in the hadron
resonance gas phase. In the following we will summarize the
rates used in this work to compute the radiation from the
thermal phases.

1. Thermal rate for quark-gluon plasma

As indicated above, to emit photons from the thermal QGP
phase we will use the full LO rate of Ref. [46], which was
computed using weak-coupling expansion in a thermal QFT.
The rate used is

E
dN

d4X d3 p
= A(p) νLO

(
p

T

)
(A1)

with the leading-log coefficient A(p), which is given by

A(p) = 2 α

(2π )3
dF

[∑
c

q2
c

]
m2

D fq,eq

(
E

T

)
. (A2)

The remaining part of this rate is given by

νLO(x) ≡ 1
2 ln (2x) + C2↔2(x) + Cbrem(x) + Cannih(x) (A3)

with the Fermi distribution function n f (k) =
[exp(k/T ) + 1]−1. The dimension of the quark representation
is dF, which is 3 in our case. Summing over the charges
of quarks, qs, one gets dF

∑
s q2

s = 3 × [1 × (2/3)2 + 2 ×
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(1/3)2] = 3 × 6/9. The leading-order asymptotic thermal
quark-mass m∞ is given by [70] to be

m2
∞ = CFg2

sT
2

4
(A4)

with the quadratic Casimir of the quark representation CF,
which is CF = 4/3 for QCD, and the strong coupling gs =√

4π αs. Using the running coupling prescription,

αs(Q) = 12π

(11Nc − 2Nf ) ln
(
Q2/�2

QCD

) , (A5)

where the cutoff scale �QCD = 0.2 GeV. For SU(3), with
Nc = 3 and three flavors, Nf = 3, we get that for ALICE
energies αs ≈ 0.3. The functions that describe the two-to-two
particle processes (C2↔2) and the in-medium bremsstrahlung
(Cbrem) and annihilation (Cannih) processes are

C2↔2 = 0.041x−1 − 0.3615 + 1.01e−1.35x,

Cbrem + Cannih �
√

1 + 1

6
Nf

×
[

0.548 ln(12.28 + 1/x)

x2/3

+ 0.133x√
1 + x/16.27

]
(A6)

with x = p/T for three flavors, Nf = 3. These functions were
obtained by approximating the full kinetic kernels. The full
prefactor, Eq. (A3) will also be used to enhance the nonequi-
librium rate, with the substitution x = E/T → x′ = E/Q.

2. Photon emission from the hadron resonance gas

For the hadron resonance gas (HRG) phase, we use the
parametrization of the thermal photon emission rate given in
Ref. [50]. This parametrization has an underlying error of
no more than 20% with the microscopic calculated values
[51,52]. We use this parametrization since the inclusion of the
full cross section into a phenomenological model is not practi-
cal, and is very computationally expensive [50]. Two different
contributions are included: one from the meson channel
ππ → ππγ and another one including the emission from

in-medium ρ mesons. These parametrizations can be applied
to photons with energies q0 between 0.2 and 5 GeV, at temper-
atures of T = 100–180 MeV and baryon chemical potentials
of μB = 0–400 MeV. For these investigations we will set
μB = 0.

The contributions from in-medium ρ mesons, including
channels like πN → πNγ and NN → NNγ , are universally
given by [50]

q0
dRρ

γ

d3q
(q0; T ) = exp

[
a(T )q0 + b(T ) + c(T )

q0 + 0.2

]
. (A7)

Here, and in the following, q0 and T are given in units of GeV.
We will use the fitted parameters given in Ref. [50],

a(T ) = −31.21 + 353.61T − 1739.4T 2 + 3105T 3,

b(T ) = −5.513 − 42.2T + 333T 2 − 570T 3, (A8)

c(T ) = −6.153 + 57T − 134.61T 2 + 8.31T 3.

Nevertheless, this contribution does not include meson-
meson bremsstrahlung, strongly dominated by the ππ →
ππγ channel. The contribution from πK scattering is sub-
leading, and will not be included, since it comprises at most
an increase of 20%. The following fit function is used:

q0
dRBrems

γ

d3q
(q0; T ) = exp

{
αB(T ) + q0 βB(T )

+ γB q2
0 + δB(T )(q0 + 0.2)−1

}
(A9)

with the fitted parameters

αB(T ) = −16.28 + 62.45T − 93.4T 2 + 7.5T 3,

βB(T ) = −35.54 + 414.8T − 2054T 2 + 3718.8T 3,

γB(T ) = 0.7364 − 10.72T + 56.322 − 103.5T 3,

δB(T ) = −2.51 + 58.152T − 318.24T 2 + 610.7T 3. (A10)

In the HRG, these two contributions are relevant for different
kinematic windows of the photons. For a temperature of
150 MeV, soft photons (q0 < 0.4 GeV) are strongly domi-
nated by ππ scattering. On the other hand, the contribution
form ρ-meson decays is an order of magnitude larger for
q0 > 1 GeV [52].
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