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Relativistic quantum molecular dynamics based on the relativistic mean field theory (RQMD.RMF) is
extended by including momentum-dependent potential. The equation of state (EoS) dependence of the directed
and the elliptic flow of protons in the beam energy range of 2.3 <

√
sNN < 20 GeV is examined. It is found

that the directed flow depends strongly on the optical potential at high energies,
√

sNN > 3 GeV, where no
information is available experimentally. The correlation between effective mass at saturation density and the
optical potential is found: smaller values of effective mass require smaller strengths of the optical potential to
describe the directed flow data. This correlation can also be seen in the beam energy dependence of the elliptic
flow at

√
sNN > 3 GeV, although its effect is rather weak. On the other hand, stiff EoS is required to describe the

elliptic flow at lower energies. Experimental constraints on the optical potential from pA collisions will provide
important information on the EoS at high energies. The proton directed and the elliptic flow are well described
in the RQMD.RMF model from

√
sNN = 2.3 to 8.8 GeV. In contrast, to reproduce the collapse of the directed

flow above 10 GeV, pressure has to be reduced, which indicates a softening of the EoS around
√

sNN = 10 GeV.

DOI: 10.1103/PhysRevC.102.024913

I. INTRODUCTION

High energy heavy-ion collisions provide a unique oppor-
tunity to explore the properties of strongly interacting QCD
matter for a wide range of temperatures and densities. In par-
ticular, collisions in the energy range of 2 <

√
sNN < 20 GeV

create high baryon density matter, and should be the best
place to search for the onset of a phase transition as well
as critical point in QCD matter. The ongoing beam energy
scan program (BES) [1,2] at the BNL-RHIC-STAR- and the
CERN-SPS-NA49 and NA61/SHINE experiments [3] have
measured beam energy, collision system, and centrality de-
pendence of observables such as collective flows, fluctuations
of conserved charges, which are expected to be sensitive to
a phase transition and/or critical point. Future experiments,
such as RHIC-BESII [4], STAR FXT, CBM and HADES at
FAIR [5,6], BM@N and MPD at NICA [7], HIAF at Canton,
as well as the proposed J-PARC-HI [8], will further offer
excellent opportunity to explore the highest density baryonic
matter sector of QCD, and determine the phase structure of
QCD with high statistics data.

To extract the information on the properties of high dense
QCD matter from heavy-ion experimental data, details of the
collision dynamics have to be understood. For this purpose,
the transport models, such as nonequilibrium microscopic
transport models [9–14], hydrodynamical models [15], and
hybrid models [16–22], have been used to simulate space-
time evolutions of hot and dense matter created in nuclear

collisions at high baryon density regions. It has been argued
for a long time the determination of the equation of state (EoS)
from collective flows such as directed as well as elliptic flow,
as they are sensitive to the EoS [23–30]. For instance, fluid
dynamics predicts negative directed flow of protons at the
vicinity of the softest point in the EoS with a first-order phase
transition [31–35], which is also confirmed by microscopic
transport model calculations [36–38]. The NA49 [39] and the
STAR [40,41] collaborations discovered the negative proton
directed flow at

√
sNN > 8 GeV, which locates rather higher

beam energies than the AGS energies that is expected to be a
softest point by most of the theoretical predictions.

The time evolution of heavy-ion collisions generally con-
sist of far from an equilibrium state to late possible equilib-
rium stage followed by a freeze-out process. Nonequilibrium
microscopic transport approach is a theoretical framework
to simulate a collision of nuclei from initial to final stages
in a unified way, and it has been widely used to describe
nuclear collisions from low to high energies, see Ref. [42]
for the recent comparison of heavy-ion transport codes. A
relativistic transport approach based on the relativistic mean-
field theory of Walecka type, called relativistic Boltzmann-
Uehling-Uhlenbeck (RBUU) has been formulated, and several
transport codes have been developed for heavy-ion collisions
[14,43–47]. On the other hand, the quantum molecular dy-
namics (QMD) [11,12,48,49] is an N-body approach, which
simulates multiparticle collision dynamics beyond the time
evolution of one-particle distribution function like RBUU
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models. Therefore, the QMD model can be applied to study,
for example, multifragmentations and event-by-event fluctua-
tions. The relativistic version of the QMD model (RQMD) has
been developed by the Lorentz scalar treatment of the Skyrme
potential [9,10,50–53]. RQMD with the relativistic mean-field
has been developed in Ref. [54] for the intermediate energy
heavy-ion collisions up to Elab = 2A GeV. Recently, RQMD
based on the relativistic mean-field theory (RQMD.RMF) [55]
has been implemented into the transport code JAM [56] to
simulate high energy nuclear collisions. It is shown that this
relativistic transport approach RQMD.RMF reproduces the
beam energy dependence of the directed as well as the elliptic
flow from

√
sNN = 2.4 GeV up to 8 GeV.

The importance of the momentum dependence of the
mean-field was realized for the extraction of the EoS from
heavy-ion collisions [57,58]. An extension of the RBUU
model by introducing an additional momentum-dependent
potential has been formulated in Ref. [59], which remedies
the problem of too repulsive potential in the Walecka model.
Numerical simulations of RBUU with momentum-dependent
interaction was performed at low and intermediate heavy-ion
collisions at Elab < 2A GeV within polynomial approximation
for the momentum-dependent potentials [60,61]. RBUU ap-
proach with momentum-dependent scalar and vector form fac-
tor was applied for the study of the beam energy dependence
of the directed and the elliptic flow [62].

RQMD approach with relativistic mean-field including
explicit momentum-dependent interactions have not been de-
veloped to date. In this paper, we extend our RQMD.RMF ap-
proach [55] by incorporating momentum-dependent potential
in line with Ref. [59], and apply it to high energy heavy-ion
collisions at 2.3 � √

sNN � 20 GeV (1 � Elab � 160A GeV)
to investigate the effects of momentum-dependence on the
collective flow. Optical potential has been extracted by exper-
iments up to the beam energy of Elab = 1 GeV. Therefore, we
test different strengths of the optical potential at Elab > 1 GeV
to study the sensitivity of the flows to the optical potential.

This paper is organized as follows. Section II describes
the nonlinear σ -ω model with momentum-dependent potential
and its implementation into the RQMD framework. Section III
presents the results for the beam energy dependence of the di-
rected and the elliptic flow, as well as the rapidity dependence
of the directed flow. The summary is given in Sec. IV.

II. MODEL

We first present our EoS from relativistic mean-field theory
with momentum-dependent potentials, and then describe how
to implement it into the framework of RQMD approach. This
approach has been realized in the transport code JAM, which
enables us to simulate nuclear collisions at high energies.

A. EoS from the relativistic mean-field with
momentum-dependent potential

A covariant treatment of the momentum dependence of
the relativistic potentials in the relativistic mean-field the-
ory was formulated in Ref. [59]. Here, we shall employ a
Lorentzian form of momentum-dependent potential which

depends only on the spacial part of momentum neglecting
the energy dependence, which is related to nonlocality in
time. This is consistent with our assumption of time-fixation
conditions specified below in our RQMD approach. Thus,
we introduce the following momentum-dependent scalar and
vector potential:

V MD
s = ḡ2

s

m2
s

∫
d3 p

m∗

p∗
0

f (x, p)

1 + (p − p′)2/�2
s

, (1)

V MD
μ = ḡ2

v

m2
v

∫
d3 p

p∗
μ

p∗
0

f (x, p)

1 + (p − p′)2/�2
v

, (2)

where f (x, p) is a phase space distribution function. At zero
temperature, it is given by

f (x, p) = gN

(2π )3
θ (pF − |p|), (3)

where pF is the Fermi momentum, and gN = 4 is the degen-
eracy factor for spin and isospin of nucleons. In the actual
implementation into the RQMD model, the arguments of the
momentum-dependent potentials are replaced by the relative
momentum in the two-body center-of-mass frame between
interacting particles to maintain the covariance of the theory.

The energy density for nuclear matter in the relativistic
mean-field theory with σ - and ω- meson-baryon interactions
with momentum-dependent potentials is given by [59]

e =
∫

d3 p p0 f (p) + U (σ )

+ 1

2

∫
d3 p

p∗
0

(
m∗V MD

s − p∗μVμ

)
f (p). (4)

Here, the vacuum mass m and canonical momentum pμ are
modified by the scalar potential S and the vector potential Vμ,
which define the effective mass m∗ and kinetic momentum p∗,
respectively:

m∗ = m − S = m − gsσ − V MD
s , (5)

p∗
μ = pμ − Vμ = pμ − gvωμ − V MD

μ . (6)

The mass-shell constraint p∗2 − m∗2 = 0 is consistent with
the single-particle energy as

p0 =
√

m∗2 + p∗2 + gvω0 + V MD
0 . (7)

For the scalar field, the following nonlinear self-interaction is
introduced [63]:

U (σ ) = m2
σ

2
σ 2 + g2

3
σ 3 + g3

4
σ 4 . (8)

The σ and ω field are obtained by solving the self-consistent
equations

m2
s σ + g2σ

2 + g3σ
3 = gsρs, m2

vω
0 = gvρv. (9)

Here, ρs = ∫
d3 pm∗

p∗
0

f (p) is the scalar density, and ρv =∫
d3 p f (p) is a zeroth component of the vector density.
In order to fix the parameters in the momentum-dependent

potentials, we fit the real part of the experimentally deter-
mined nucleon-nucleus optical potential [64] together with the
binding energy per nucleon E/A = p0(pF ) − mN = 16 MeV.
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TABLE I. Parameters for the relativistic mean-field theory with
nonlinear scalar interaction and momentum-dependent potentials. A
binding energy of E/A = −16 MeV at normal nuclear matter density
of ρ0 = 0.168 1/fm3, a σ mass of ms = 0.55 GeV, and an ω mass of
mv = 0.783 GeV are used.

NS1 NS2 NS3 MD1 MD2 MD3 MD4

K (MeV) 380 210 380 380 380 380 210
m∗/m 0.83 0.83 0.7 0.65 0.65 0.65 0.83
Uopt (∞) (MeV) 95 98 200 95 30 −0.4 67
gs 6.448 7.902 8.864 9.030 9.233 5.439 4.059
gv 6.859 6.859 10.07 6.740 3.888 0.0 5.632
g2 (1/fm) −38.0 44.31 2.191 4.218 4.012 −15.59 −160.3
g3 339.6 21.99 27.07 6.667 5.520 391.9 2684
ḡs − − − 3.186 2.502 7.711 5.544
ḡv − − − 8.896 10.43 11.22 3.926
�s (GeV) − − − 0.641 0.4897 1.702 0.704
�v (GeV) − − − 1.841 2.489 1.898 4.252

We define the optical potential by subtracting kinetic energy
from the single-particle energy of nucleon [65–67]

Uopt (p) = p0(p) −
√

m2
N + p2, (10)

where mN is the free nucleon mass. This optical potential
is similar to the Schrödinger-equivalent potential at low to
moderate momenta, but it approaches a constant value at
high-energy limit in contrast to the Schrödinger-equivalent
potential that linearly depends on the kinetic energy for
nonzero vector potential. Remaining parameters of the EoS
are determined by the condition that ground state is a mini-
mum in the EoS at the normal nuclear matter density ρB =
ρ0 = 0.168 1/fm3: P = ρ2

B∂ (e/ρB)/∂ρB|ρB=ρ0 = 0 for a given
incompressibility K = 9ρ2

B∂2(e/ρB)/∂ρ2
B|ρB=ρ0 and effective

nucleon mass m∗(ρ0) at the normal nuclear matter density.
The parameter sets are given in Table I for different in-
compressibilities, effective masses, and optical potentials to
investigate the influence of EoS on the collective flows.

In the upper panel of Fig. 1, we compare energy depen-
dence of the optical potential defined by Eq. (10) at normal
nuclear matter density with the parameters with and without
momentum-dependence. The parameter set NS3 (m∗/m =
0.7) reproduces the experimentally determined optical poten-
tial [64] up to Elab = 0.5 GeV, while NS1 (m∗/m = 0.83)
significantly underestimates the data. In contrast, the optical
potential of NS3 has much higher values than the data at
higher beam energies above Elab = 1 GeV, as is well known
that the Walecka type model has strong energy dependence.
Analysis of the directed flow data by the transport models with
σ -ω interactions found that the parameter set with m∗/m ≈
0.7 fits the flow data at lower beam energies Elab < 0.4A GeV,
while the parameter set with m∗/m ≈ 0.83 is favored by the
data above Elab ≈ 0.8A GeV [45,46,54,55]. This fact indicates
that the values of the optical potential may be close to those in
the parameter set NS1 at Elab � 1 GeV. Based on this obser-
vation, the parameter set MD1 is obtained by assuming values
of optical potential similar to those in the NS1 parameter
set at Elab > 1 GeV as shown in the dashed line in Fig. 1.

FIG. 1. Upper panel: optical potentials in normal nuclear matter
density as a function of incident energy. Lower panel: total energy
per nucleon as a function of the normalized baryon density at
zero temperature. The dashed, dot-dashed, and solid lines show the
results for the parameter set MD1, NS1, and NS3, respectively.
The hard EoS from Skyrme potential with K = 380 MeV is shown
by open circles. The full circles correspond to the results of the
global Dirac optical model fit to p-nucleus elastic scattering data by
Hama et al. [64].

Its asymptotic value is Uopt (∞) = 95 MeV as indicated in
Table I. The lower panel of Fig. 1 compares the energy per
nucleon at zero temperature

E

A
= e

ρB
− mN (11)

as a function of baryon density for different parameter sets.
As is well known, stiffness of the EoS with respect to baryon
density is mainly determined by the value of the effective
mass; smaller effective mass yields stiffer EoS. Baryon-
density dependence in the MD1 parameter set is similar to
the one in the set NS3 which overestimates the flow data,
while NS1, which reproduces the flow data, is softer than NS3
in terms of the baryon density as NS1 has a larger effective
mass. As a comparison, hard EoS (K = 380 MeV) from the
nonrelativistic Skyrme potential

Vsk = αρB + βρ
γ

B (12)

is plotted. The transport models with this Skyrme hard EoS
reproduce the elliptic flow data at Elab < 10A GeV [68,69].

There is no experimental information on the nucleon op-
tical potential at higher energies above Elab = 1 GeV. There-
fore, we consider different values of optical potential at high
energy limit as shown in the upper panel of Fig. 2, keeping
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FIG. 2. Same as Fig. 1, but for different parameter sets. The
dashed, solid, dotted, and dot-dashed lines show the results for the
parameter set MD1, MD2, MD3, and MD4, respectively. The soft
EoS from Skyrme potential with K = 210 MeV is also shown by
open circles.

the same baryon density dependence (MD1, MD2, and MD3)
assuming the same effective mass m∗/m = 0.65 and incom-
pressibility K = 380 MeV (see the lower panel of Fig. 2). We
also prepare the soft EoS MD4 (K = 210 MeV and m∗/m =
0.83), but its optical potential is almost flat at Elab > 1 GeV.
The baryon density dependence of the MD4 parameter set is
as soft as that of the non-relativistic Skyrme type potential
with K = 210 MeV as shown in the lower panel of Fig. 2.

B. Relativistic quantum molecular dynamics

We implement the relativistic EoS constructed above into
the microscopic N-body non-equilibrium transport approach
RQMD [9] which is formulated based on the constraint
Hamiltonian dynamics [70]. The manifestly covariant formu-
lation for the N-body dynamics uses 8N four-vectors qμ

i and
pμ

i (i = 1, . . . , N ) for the position and momentum coordinates
of particles, respectively. Thus, 2N constraints are employed
to reduce the number of dimensions from 8N to the physical
6N ,

φi ≈ 0, (i = 1, . . . , 2N ), (13)

where the sign ≈ stands for Dirac’s weak equality: this
equality has to be satisfied on the physical 6N phase space.
2N − 1 constraints should be Poincaré invariant, while the
2N th is not necessarily Poincaré invariant, since it determines
the evolution parameter τ . The Hamiltonian of the N-body
system is constructed as the linear combination of 2N − 1

constraints

H =
2N−1∑

j=1

u j (τ )φ j (14)

with the Lagrange multipliers uj (τ ). The equations of motion
are then given by

dqi

dτ
= [H, qi] ≈

2N−1∑
j=1

u j
∂φ j

∂ pi
,

d pi

dτ
= [H, pi] ≈ −

2N−1∑
j=1

u j
∂φ j

∂qi
, (15)

where the Poisson brackets are defined as

[A, B] =
∑

k

(
∂A

∂ pk
· ∂B

∂qk
− ∂A

∂qk
· ∂B

∂ pk

)
. (16)

We require that the constraints are conserved in time:

dφi

dτ
= ∂φi

∂τ
+ [H, φi] ≈ 0. (17)

As 2N − 1 constraints do not depend explicitly on τ , the
Lagrange multipliers ui are solved as

ui ≈ −∂φ2N

∂τ
C2N,i, (i = 1, . . . , 2N − 1), (18)

where C−1
i j = [φi, φ j]. In this way, the equations of motion

Eq. (15) and the Lagrange multipliers Eq. (18) uniquely
determine the trajectory of the coupled system of particles in
6N phase space.

For our relativistic scalar and vector interaction in the
RQMD.RMF approach, we choose the N on-mass shell con-
ditions
φi ≡ p∗2

i − m∗2
i = (pi − Vi )

2 − (mi − Si )
2, (i = 1, . . . , N )

(19)

for the ith particle, where V μ
i and Si are the single-particle

vector and scalar potential. The remaining N constraints fix
the time of N particles. Here, we use the same time fixation
constraints proposed in Refs. [51,71], which equate the all
time coordinates of particles in the reference frame:

φi+N ≡ â · (qi − qN ), (i = 1, . . . , N − 1),

φ2N ≡ â · qN − τ, (20)

where â is a unit-four-vector â = (1, 0) in the reference frame
[51]. A convenient choice may be â = P/

√
P2 with P =∑N

i pi, which equates the time coordinates of all particles in
the overall center-of-mass system [71].

We further make assumption that the arguments of the po-
tentials are replaced by the free ones [51]. Then, the equations
of motion for the ith particle are obtained as

ẋi = p∗
i

p∗0
i

+
N∑

j=1

(
m∗

j

p∗0
j

∂m∗
j

∂ pi
+ v∗

j · ∂Vj

∂ pi

)
,

ṗi = −
N∑

j=1

(
m∗

j

p∗0
j

∂m∗
j

∂ri
+ v∗

j · ∂Vj

∂ri

)
, (21)

where v
∗μ
i = p∗μ

i /p∗0
i .
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Within the RQMD approach, the scalar density and baryon
current are evaluated by employing the Gaussian wave packet:

ρs,i =
∑
j �=i

m j

p0
j

ρi j, Jμ
i =

∑
j �=i

B j

pμ
j

p0
j

ρi j . (22)

Here, Bj is a baryon number of the jth particle. Note that
we use a free mass mj and canonical momentum pμ

j to
compute the scaler density and the baryon current, since we
assumed that the arguments of potentials are replaced by
the free ones in the derivation of the equations of motion.
However, we found that even though the scalar density and
the baryon current are defined by using effective mass m∗

i and
kinetic momentum p∗μ

i , numerical results turn out to be almost
unchanged. The Gaussian ρi j is given by

ρi j = γi j

(2πL)3/2
exp

(
q2

T,i j/2L
)
, (23)

whereq2
T,i j is a distance squared measured in a certain frame,

and γi j is a Lorentz γ factor which ensures the correct
normalization of the Gaussian [72] in Eq. (23). We note that
this definition of ρi j is different from the so-called interaction
density by a factor of two which is defined by the overlap
of density with other Gaussian wave packets in the QMD
approach with Skyrme force. Throughout this work, the Gaus-
sian width is fixed at L = 1.0 fm2.

There are several choices for the reference frame to define
a Lorentz invariant distance squared q2

Ti j :

(1) overall center-of-mass frame,
(2) center-of-mass frame between particle i and j,
(3) rest frame of jth particle.

Two-body c.m. frame has been used in most of the
RQMD approach, while overall center-of-mass frame is used
in Ref. [71], which is convenient when simulations are per-
formed in the overall center-of-mass frame or box simula-
tions, since the relative distance qT,i j becomes identical to the
non-relativistic distance. This choice would be justified as far
as the Gaussian width parameter L is less than the order of the
initial Lorentz contraction of the colliding two-nuclei. The rest
frame of particle is employed in the RLV model [47] to define
the distance:

qT,i j = qi j − (qi j · u j )u j, (24)

where qi j = qi − q j and u j = p j/mj . For this choice, the γ

factor in the Gaussian becomes γi j = p0
j/mj which cancels the

factor in the scalar density in Eq. (22), and the scalar density
is explicitly Lorentz scalar:

ρs,i =
∑
j �=i

1

(2πL)3/2
exp

(
q2

i j − (qi j · u j )2

2L

)
. (25)

We have checked that all of three choices yield practically
identical results.

In RQMD.RMF with momentum-dependent potential, the
single particle scalar and vector potential for ith particle are
defined as

Si = 1

2
gsσi + V MD

s,i , Vi,μ = Bi

2
gvωi,μ + BiV

MD
i,μ . (26)

Here, the momentum-dependent potentials are given by

V MD
s,i = 1

2

ḡ2
s

m2
s

N∑
i �= j

m j

p0
j

ρi j

1 − p2
T,i j/�

2
s

, (27)

V MD
μ,i = 1

2

ḡ2
v

m2
v

N∑
i �= j

pμ, j

p0
j

B jρi j

1 − p2
T,i j/�

2
v

, (28)

where pT,i j is a relative momentum between ith and jth
particle in the two-body center-of-mass frame:

pT,i j = pi j − (pi j · Pi j )

P2
i j

Pi j, (29)

where pi j = pi − p j and Pi j = pi + p j .
In the actual simulations, the nonlinear σ field, as well as

the ω field at ith particle’s position, is evaluated by using a
local density approximation [14,43,44], which neglects the
derivatives of the scalar and the vector meson field:

m2
s σi + g2σ

2
i + g3σ

3
i = gsρs,i, m2

vω
μ
i = gvJμ

i . (30)

This approximation is widely applied to the simulations of
high energy nuclear collisions [73–75]. See Ref. [76] for the
study of the effects of the meson field radiation and retardation
effects within the RBUU approach.

C. Collision term

Mean-field propagation by the Hamiltonian is combined
with Boltzmann type collision term. Two-body collision terms
are applied by the Monte Carlo method to simulate particle
productions as well as decays by using the transport code
JAM. Particle productions are modeled by the excitation of
hadronic resonances and strings followed by their decays. A
detailed discussion of the collision term treatment is found
in Refs. [56,77]. In JAM, free cross sections are used in the
two-body collisions. In order to take into account in-medium
threshold effects in two-body collisions, we evaluate the cross
section with

√
sfree = √

s∗ − (m∗
1 − m1) − (m∗

2 − m2) , (31)

where mi and m∗
i are the free and effective hadron mass,

respectively, and s∗ = (p∗
1 + p∗

2)2, as employed in the RBUU
calculations [14].

Collision term changes the momentum of particles, thus
breaks energy conservation if momentum-dependent poten-
tials are included, although total momentum is strictly con-
served at each collision. However, the violation of energy
conservation is found to be about 3–5 % level when
momentum-dependent potentials are included. We have
checked the effects of the energy conservation by recovering
total energy as follows by using the same method in Ref. [78]:
First, go to the center-of-mass frame, then all momenta of
the particles are scaled with the same factor a such that
Etot = ∑

i(
√

m∗2
i + (ap∗

i )2 + V 0
i ), where Etot is the total en-

ergy that we need to recover. We obtain the factor a by the
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iteration

a′ = aEtot∑
i

(√
m∗2

i + (ap∗
i )2 + V 0

i

) (32)

until the desired accuracy is achieved. It is expected that
this procedure has little effect on the flows, since only the
magnitude of momenta is iterated. Energy conservation is
recovered at each two-body collision in the JQMD model
[52], which employs a different algorithm than the one used
in JAM for the treatment of collision term and decay. In
this case, however, we have to update the collision list of
all particles in JAM. In order to avoid this complication, we
recover total energy at each Hamiltonian time step where the
collision list of all particles has to be updated. This should be
a good approximation, if time step is small and the number
of collisions or decay is not so large within each time step.
We have checked that, when energy conservation is recovered
until it reaches within 0.1% accuracy, we still get the same
results. In order to save computational time, all results in this
paper are obtained without this option.

III. RESULTS

In this section, we present the results for sideward, di-
rected, and elliptic flow in midcentral Au + Au and Pb +
Pb collisions from the RQMD.RMF model using different
equations of state described above.

The centrality cuts in the experimental data usually refer to
cuts in the measured multiplicity distributions. The centrality
cuts in the calculations are usually done by the analogous cuts
in the impact parameter distributions. In the present paper,
directed flow (v1) and elliptic flow (v2) are analyzed at mid-
central collisions, which correspond to the impact parameter
range (and multiplicity range) where the v1 flow is rather
close to its maximum. The E895 collaboration [79,80] finds
that their multiplicity- selected centrality class corresponds
to impact parameters between 5 and 7 fm. The STAR FXT
collaboration [81] selects, at

√
sNN = 4.5 GeV, their centrality

cut so that it comes close to the E895 one. Then the impact
parameter range 5 to 7 fm corresponds to the 10–25 % mid-
central multiplicity cut in the STAR experiment. The STAR
collaboration uses, at higher energies [40,82], a considerably
wider multiplicity cut, namely 10–40 % centrality, which
consequently corresponds to a considerably wider impact
parameter range of 4.4 < b < 9.5 fm. The NA49 midcentral
data [39] correspond to an impact parameter range of 5.5
to 9.1 fm. The FOPI collaboration’s centrality cut on their
v2 data [83] is M3, corresponding to b = 5.5–7.5 fm. How-
ever, in Ref. [83], FOPI shows another cut, b = 7.5–9.5 fm
(M4), with nearly identical v2 values as in the more central
M3 cut—hence, all these experimental observations suggest
a “midcentral impact parameter range” of 4.6 < b < 9.4 fm.
This range was previously used to analyze directed flow by
the UrQMD hybrid model collaboration [84]. This finding
suggests using that same “midcentral” impact parameter range
for calculations at all beam energies, at least up to

√
sNN <

100 GeV. We have checked that also a “midcentral” cut of 5
to 7 fm yields nearly the same flow value—hence, the correct

c.m. c.m.

FIG. 3. Rapidity dependence of proton sideward flow 〈px〉 in
midcentral Au + Au collision at

√
sNN = 2.7, 3.3, 3.8, and 4.3 GeV

(Elab = 1.85, 4, 6, 8 A GeV) from the parameter set MD1 (dashed
line), MD2 (solid line), MD3 (dotted line), and MD4 (dotted-dashed
line) are compared with the E895 experimental data [79]. The results
of MD4 are not visible because it is nearly identical to the results of
MD2.

results do depend only weakly on the precise values of the
impact parameter cut.

A. Directed flow

Let us first study the optical potential dependence of the
sideward flow 〈px〉 by comparing the parameter sets MD1,
MD2, and MD3. All of them have the same incompressibility
K = 380 MeV and the effective mass m∗/m = 0.65, but dif-
ferent strengths of the optical potential above Elab > 1 GeV.
Figure 3 shows the rapidity dependence of the sideward flow
in midcentral Au + Au collisions at

√
sNN = 2.7, 3.3, 3.8,

and 4.3 GeV with different parameter set MD1, MD2, and
MD3. The full squares represent the experimental data from
the E895 collaboration [79]. It is seen that all parameter sets
yield similar results at

√
sNN = 2.7 GeV, since EoS at 2.7 GeV

is almost the same among MD1, MD2, and MD3, due to the
constraints from experiments. As the beam energy increases,
the difference among EoS becomes visible indicating the
sensitivity of the sideward flow to the optical potential. We
note that the results from the set MD4 is identical to the results
from MD2 indicating that directed flow data is insensitive to
the stiffness of the EoS.

To obtain free protons, we identify nuclear cluster based
on the phase space distribution of nucleons at the end of the
simulation by using a minimum distance chain procedure; two
nucleons are considered to be bound in the same cluster if the
relative distance and momentum between nucleons are less
than 4 fm and 0.3 GeV/c, respectively. We have found that
the effects of the nuclear cluster as well as the weak decay of
hyperons on the sideward flow shown in Fig. 3 are very small.
However, nuclear cluster effects are large close to the target
and projectile rapidities.
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FIG. 4. Rapidity dependence of proton sideward flow 〈px〉 in
midcentral Au + Au collision at

√
sNN = 4.86 GeV from MD1

(dashed line), MD2 (solid line), MD3 (dotted line), MD4 (dotted-
dashed line), and MD2 + attractive orbit are compared with the E877
experimental data [85].

We expect that the optical potential dependence of the side-
ward flow may become significant at higher beam energies.
In Fig. 4, sideward flow from various EoS are compared for
midcentral Au + Au collision at

√
sNN = 4.864 GeV. Strong

sensitivity of the sideward flow to the optical potential is seen.
The MD1 set overestimates the data which has a value of
optical potential similar to that of the NS1 set that has almost
flat optical potential as a function of kinetic energy. The MD2
set reproduces the data which has approximately twice smaller
optical potential of Uopt ≈ 30 MeV than that of the set MD1
at Elab = 10 GeV. However, the set MD4 (K = 210 MeV,
m∗/m = 0.83) can also fit the data with the optical potential
Uopt ≈ 70–90 MeV. Thus, this analysis shows that effective
mass parameter and the optical potential correlate to each
other; smaller effective mass needs smaller optical potential
to reproduce the sideward flow data. Therefore, determination
of the optical potential by experiments should give important
constraint on the information about the properties of excited
hadronic matter.

The phase transition to a quark-gluon plasma is connected
to the softening of the EoS, and the signal may be observed
in the directed flow; the slope of proton directed flow at
midrapidity becomes negative [33]. The effects of the soft-
ening of the EoS can be efficiently simulated by selecting
attractive orbit in every two-body scattering in a micro-
scopic transport simulation [37,38]. The result of MD2 +
attractive orbit calculation is also plotted in Fig. 4. The
rapidity dependence of the directed flow for this calculation
is similar to the prediction by the hydrodynamic calculation
in Ref. [33], and the slope at midrapidity becomes negative.
However, experimental data do not indicate such softening of
the EoS at

√
sNN = 4.86 GeV. See Ref. [86] for the directed

flow at midrapidity from the E877 collaboration, which shows
positive slope for protons.

Figure 5 shows the rapidity dependence of the directed flow
v1 = 〈px/pT 〉 in midcentral Au + Au collisions at

√
sNN =

4.5 GeV from RQMD.RMF simulations with different param-
eter sets, which are compared with the STAR preliminary data
[81] and E895 data [79]. It is also seen that directed flow is
sensitive to the EoS. The results of the MD2 and MD4 param-

FIG. 5. Rapidity dependence of proton directed flow v1 in mid-
central Au + Au collisions at

√
sNN = 4.5 GeV from MD1 (dashed

line), MD2 (solid line), MD3 (dotted line), and MD4 (dotted-dashed
line) are compared with the E895 [79] and STAR data [81]. The
momentum cut 0.4 < pT < 2.0 GeV is imposed, and only ‘free’
protons are selected in v1 after nuclear coalescence.

eter set, which fit the E895 sideward flow data, are consistent
with the STAR data. However, MD2 and MD4 overestimate
the E895 directed flow data. We note that this discrepancy
has been already discussed within three-fluid dynamics (3FD)
simulations [35]. 3FD reproduces the sideward flow 〈px〉 at
AGS energies, while the agreement of the calculated directed
flow v1 with the E895 data is worse than the calculated
sideward flow. It seems that STAR FXT data may clarify the
inconsistency of the old AGS data.

Let us look at the directed flow at higher beam energies.
Figure 6 compares the rapidity dependence of the proton
directed flow from the RQMD.RMF calculations in midcen-
tral Au + Au at

√
sNN = 7.7, 11.5 GeV and Pb + Pb at√

sNN = 8.87, 17.3 GeV with STAR [40] and NA49 data [39].
The RQMD.RMF result with the EoS parameter set MD2 is

FIG. 6. Rapidity dependence of proton directed flow v1 in mid-
central Au + Au at

√
sNN = 7.7, 11.5 and Pb + Pb collisions at 8.87,

17.3 GeV from MD1 (dashed line), MD2 (solid line), MD3 (dotted
line), and MD2 + attractive orbit simulations (thick dashed line) are
compared with the NA49 [39] and STAR experimental data [40].
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in good agreement with the data at
√

sNN = 7.7 GeV, while
its slope at midrapidity is slightly higher than that of data at√

sNN = 8.87 GeV, which indicates the onset of the softening
of the EoS. This is clearly seen at

√
sNN = 11.5 and 17.3 GeV,

where all calculations with the ‘normal’ EoS predict strong
positive slope in contrast to the data which show negative
slope. We note that the rapidity dependence of the directed
flow from the MD4 parameter set is the same as that of the
MD2 parameter set.

We also compare the results from the attractive orbit sim-
ulation with the MD2 EoS which mimics a softening of the
EoS [37,38]. As shown in Ref. [37], the pressure due to the
attractive orbit is reduced as low as the one in a typical EoS
with a first-order phase transition. It is seen that the attractive
orbit simulations predict significant reduction of the directed
flow slope, and their results are close to the data at

√
sNN =

11.5 and 17.3 GeV. On the other hand, it is inconsistent with
the data at

√
sNN = 7.7 GeV. Note that the proton negative

flow at higher energies
√

sNN > 30 GeV, where secondary
interactions start after two nuclei pass through each other,
can be understood by the geometrical effects [87,88]. It
is very important to notice, however, that this geometrical
interpolation is not applicable at

√
sNN < 30 GeV, because

secondary hadronic interactions alter the dynamics during the
overlapping times of the colliding nuclei as hadronization time
is less than the crossing time [89]. Thus, negative proton slope
at

√
sNN < 20 GeV cannot be explained by the geometrical

effects. Therefore, our analysis support that the collapse of
the directed flow around

√
sNN ≈ 10 GeV discovered by the

experiments is an evidence of the softening of the EoS. We
note that the directed flow data is in favour of the crossover
EoS within the 3FD calculations [34,35,90].

B. Elliptic flow

We now examine the beam energy dependence of the
elliptic flow v2 = 〈cos 2φ〉. Figure 7 displays the beam energy
dependence of the elliptic flow at midrapidity in midcentral
Au + Au collisions at

√
sNN < 5 for protons, and at

√
sNN >

6 GeV for charged hadrons. Experimental data for the elliptic
flow is consistent with the strong repulsive interactions in
RQMD.RMF with the MD1 and MD2 parameter set, which
generate strong out-of-plane emission (squeeze-out), while
the parameter set MD3 which has weak optical potential pre-
dicts less out-of-plane emission. The soft EoS MD4 generates
weaker elliptic flow at lower beam energies. Thus, elliptic
flow data exclude very weak optical potential and a soft EoS
at low energies.

If there is a first-order phase transition, out-of-plane emis-
sion is suppressed, and enhancement of v2 and v4 is pre-
dicted within the cascade model with modified scattering style
[91,92]. To see such softening effects in our approach, we plot
in Fig. 7 the results from MD2 parameter set with attractive
orbit simulation. MD2 with attractive orbit simulations yield
less out-of-plane emission at AGS energies, while they do not
change the elliptic flow much at SPS energies. Experimental
data for elliptic flow, however, do not support the softening
of the EoS at AGS energies. There is no data between 5 <

FIG. 7. Beam energy dependence of elliptic flow v2 of proton
(
√

sNN < 5 GeV) and charged hadron (
√

sNN > 5 GeV) in midcentral
Au + Au collision from MD1 (triangles), MD2 (circles), MD3
(squares), MD4 (diamond), and MD2 + attractive orbit (open circles)
are compared with the experimental data FOPI [83], E895/E877
[80], and STAR [82]. The STAR data [82] for v2 are for charged
hadrons.

√
sNN < 7.7 GeV. A new data at

√
sNN ≈ 6 GeV should

provide further confirmation about the EoS.
Our hadronic approach predicts less elliptic flow at√

sNN = 11.5 GeV. The elliptic flow at higher energies in-
creases due to strong in-plane emission, which is consistent
with hydrodynamical calculations [17,22], and microscopic
transport models with partonic phase [93–95].

IV. SUMMARY

We have extended a relativistic quantum molecular dy-
namics model based on the relativistic mean-field theory
by including momentum-dependent potentials. This approach
has been implemented into the JAM transport code to study the
heavy-ion collisions at high baryon density region. We found
that the directed flow is very sensitive to the optical potential,
and there is a correlation between the effective mass parameter
at the normal nuclear matter density and the strength of
the optical potential. Namely, smaller effective mass requires
smaller optical potential to reproduce the directed flow data
at 3 <

√
sNN < 8 GeV. Thus experimental information on the

optical potential from pA collisions at these energy ranges will
allow us to constrain EoS.

It is also shown that the beam energy dependence of the
elliptic flow at midrapidity is well described by the same
parameter set which reproduces the directed flow data. On
the other hand, stiff EoS is required to describe the strong
squeeze-out at lower beam energies of

√
sNN < 3 GeV, which

is consistent with the transport calculations within the Skyrme
type potential in Refs. [29,69,80,83,96] and the RBUU calcu-
lations [61,62]. Within the nonrelativistic QMD models with
the nonrelativistic Skyrme potentials, the kaon production
at the Bevalac and at GSI’s SiS18 was studied by Fuchs,
Aichelin, Hartnack et al. [97–100] They suggest that soft EoS
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with K = 210 MeV can be extracted from the analysis of the
data at beam energies below Elab = 2A GeV. Also, v1 and v2

are consistent—within the nonrelativistic IQMD model with
a nonrelativistic soft EoS [101,102]. Hence, the claim is that
the EoS extracted from the data at these moderate energies,
Elab < 2A GeV, is soft; with K = 210 MeV, independent of
input parameters which are not precisely known. Our results
are quantitatively not consistent with these IQMD results
[97–102]. The present paper, which does not investigate kaon
yields at Elab < 2A GeV, focusses on baryon flow. Standard
free-space elastic and inelastic scattering cross sections are
used, without in-medium modifications, and without change
of meson properties. Nonrelativistic codes do not have differ-
ent relativistic transformation laws for scalar effective mass
attraction and vector repulsion. Hence, this systematic differ-
ence may the origin for the difference between nonrelativistic
IQMD and relativistic codes RQMD.RMF.

Our approach reproduces the directed and the elliptic flow
data at 2.3 <

√
sNN < 8 GeV simultaneously with the param-

eter set MD2. In contrast, this approach does not describe the
collapse of the proton directed flow at 8 <

√
sNN < 20 GeV

unless taking into account the effects of a softening of the
EoS. We simulate effectively a softening of the EoS by impos-
ing attractive orbit at each two-body collision. This method
provides a good description of the directed flow at

√
sNN >

8 GeV. However, we still cannot explain the beam energy
dependence of the directed flow in a single consistent frame-
work. We note that most of the theoretical calculations pre-
dict the collapse of the directed flow below

√
sNN ≈ 6 GeV.

Thus, it remains to be understood why softening is seen at
10 <

√
sNN < 20 GeV, if the collapse of the directed flow

is certainly due to the softening of the EoS. Furthermore, it
is still premature to make an unambiguous conclusion that
the collapse of the directed flow is a signature of a first-
order phase transition. Theoretically, mean-field approach is
a favored method to study EoS dependence in a dynamical
simulation. As a future work, it would be interesting to
simulate chiral phase transition within the RQMD approach
based on chiral mean field model [103].
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APPENDIX: EQUATION OF MOTION

In RQMD, scalar density and vector potential are com-
puted by using the Gaussian ρi j :

ρsi =
∑
j �=i

f jρi j, V μ
i = CvBi

∑
j �=i

B ju
μ
j ρi j, (A1)

where f j = mj

p0
j
, uμ

j = pμ
j

p0
j
, and Bj is a baryon number of

particle j. The Gaussian ρi j is given by

ρi j = γi j

(2πL)3/2
exp

[
q2

T,i j

2L

]
. (A2)

The equations of motion Eq. (21) can be computed as

ṙi = p∗
i

p∗0
i

+
∑
j �=i

[
Di j

∂ρi j

∂ pi
+ Dji

∂ρ ji

∂ pi

+
(

Dj
∂ fi

∂ pi
+ Aμ

j

∂uiμ

∂ pi

)
ρ ji

]
(A3)

ṗi = −
∑
j �=i

[
Di j

∂ρi j

∂ri
+ Dji

∂ρ ji

∂ri

]
, (A4)

where

Di j = Di f j + Aμ
i ju jμ, (A5)

Di = m∗
i

p∗0
i

∂Si

∂ρsi
, (A6)

Aμ
i j = CvBiBjv

∗μ
i . (A7)

When the two-body or overall center-of-mass frame is used
to define qT,i j , the Gaussian ρi j is symmetric: ρi j = ρ ji. For
the momentum-dependent potentials, we need derivatives of
an additional terms

ρ̄i j = D
(
p2

i j

)
ρi j, D

(
p2

i j

) = C̄

1 + p2
i j/�

2
. (A8)

In the case of the nonlinear σ field

m2
σ σi + g2σ

2
i + g3σ

3
i = gsρsi. (A9)

The derivatives ∂Si/∂ρsi can be obtained by

∂Si

∂ρsi
= −gs

∂σi

∂ρsi
= −g2

s

m2
σ + 2g2σi + 3g3σ

2
i

. (A10)
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