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Correlations of symmetry planes are important observables used to quantify anisotropic flow phenomena
and constrain independently the properties of strongly interacting nuclear matter produced in the collisions
of heavy ions at the highest energies. In this paper, we point out current problems in measuring correlations
between symmetry planes and elaborate on why the available analysis techniques have a large systematic
bias. To overcome this problem, we develop the first estimator for true symmetry plane correlations, and we
introduce a new approach to approximate multiharmonic flow fluctuations via a two-dimensional Gaussian
distribution. Employing this approximation, we introduce a new estimator, dubbed the Gaussian estimator (GE),
to extract pure correlations between symmetry planes. We validate the GE by using the realistic event generator
iEBE-VISHNU and demonstrate that it outperforms all existing estimators. Based on event-shape engineering, we
propose an experimental strategy to improve the GE accuracy even further.
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I. INTRODUCTION

The past years have witnessed the advent of large-statistics
heavy-ion data sets at the Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) facilities, com-
prising events with very large multiplicities. It is therefore
becoming feasible to study the details of strongly interacting
nuclear matter produced in heavy-ion collisions with un-
precedented precision by employing multiparticle correlation
techniques. When two heavy ions collide at ultrarelativistic
energies a very rich and nontrivial sequence of stages emerges
in the evolution of the produced fireball. Since each of these
stages typically involves different underlying physics, ideally
they would be described separately in theoretical models and
probed one at a time in an experiment. To date, however, most
of the analyzed heavy-ion observables are final-state observ-
ables in the momentum space, which pick up cumulatively
the contributions from all stages in the heavy-ion evolution,
starting all the way down from the details of the initial colli-
sion geometry. To leading order, these stages can be divided
into the following categories: initial conditions, deconfined
quark-gluon plasma stage, hadronization, chemical freezeout,
rescatterings, kinetic freezeout, and, finally, free streaming.
An important program in the field is the development of new
observables which would be sensitive to only one particular
stage at a time in the heavy-ion evolution [1–3].

For an idealized description of the heavy-ion collision
geometry the initial volume containing interacting nucleons
is ellipsoidal in noncentral collisions. In this case, anisotropic
flow develops the shapes in the final-state momentum distri-
bution which can be captured solely with the even Fourier
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amplitudes v2n and only one symmetry plane �RP (the reac-
tion plane, spanned by the impact parameter vector and the
beam axis) [4–6]. However, in a more realistic description
of the collision geometry, the initial energy density profiles
fluctuate both in magnitude and in shape from one heavy-
ion collision to another. Such initial-state fluctuations are
also transferred into the final-state momentum fluctuations
via anisotropic pressure gradients which develop in the fire-
ball. Therefore, the full Fourier series expansion needs to
be employed to quantify the anisotropies in the azimuthal
distribution of emitted particles in the plane transverse to the
beam axis,

f (ϕ) = 1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ − �n)]

]
, (1)

where vn’s are anisotropic flow amplitudes, and �n’s the cor-
responding symmetry planes [7]. In the past, anisotropic flow
studies have focused mostly on the flow amplitudes vn. These
results helped a great deal in establishing the perfect fluid
paradigm about quark-gluon plasma properties [8,9]. From
the above Fourier series expansion it can be seen immediately
that, due to event-by-event flow fluctuations, vn’s and �n’s
are independent and equally important degrees of freedom
to quantify anisotropic flow phenomenon, and therefore both
sets of observables need to be studied and measured.

Before discussing the physics of vn and �n observables,
we summarize the most important formal mathematical prop-
erties, which are used later in the derivation of our main results
(additional details can be found in Appendix A). Solely from
the definition of Fourier series one can prove that v−n = vn

and �−n = �n, therefore in this paper we use them inter-
changeably. Bhalerao et al. have derived in Ref. [10] the most
general relation between flow degrees of freedom vn and �n
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and multiparticle azimuthal correlators, which is valid for any
number of azimuthal angles ϕ1, ϕ2, . . . , ϕk and for any choice
of harmonics n1, n2, . . . , nk :

va1
n1

. . . vak
nk

ei(a1n1�n1 +...+aknk�nk ) = 〈ei(a1n1ϕ1+...+aknkϕk )〉. (2)

The average on the right-hand side in the above expression
goes over all distinct tuples of k azimuthal angles in an
event. Compared to the original result in Ref. [10], we have
used a slightly different notation in the above expression by
introducing ai coefficients, which are by definition positive
integers. The precise meaning of the ai coefficient is the
following: ai is the number of appearances of harmonic ni

associated with different azimuthal angles in the azimuthal
correlator on the right-hand side of Eq. (2) (positive and
negative harmonics are counted separately). The advantage of
this more general notation is that harmonics ni in Eq. (2) are
now all unique by definition. In addition, ni and ai naturally
split off when associated with flow amplitudes on the left-
hand side of Eq. (2), which makes their physical interpretation
straightforward. It is easy to choose harmonics n1, n2, . . . , nk

in this general result in order to cancel the contribution from
symmetry planes �n and estimate solely the flow amplitudes
vn (e.g., the choice n1 = n, n2 = −n, nk = 0 for k > 2, a1 =
a2 = 1, yields the standard formula for two-particle azimuthal
correlation 〈cos[n(ϕ1−ϕ2)]〉 = v2

n). However, it is much more
of a challenge to derive an analogous expression that would
express multiparticle azimuthal correlators only in terms of
symmetry planes, i.e., the expression from which the prefac-
tors va1

n1
. . . vak

nk
in Eq. (2) would cancel out exactly.

The fundamental difference between vn and �n flow de-
grees of freedom lies in the fact that only vn’s are invariant
with respect to the arbitrary rotations of a laboratory coordi-
nate system in which azimuthal angles ϕ are measured. We
also remark that due to periodicity the symmetry plane angle
�n is uniquely determined only in the range 0 � �n < 2π/n
[11]. Therefore, in order to eliminate trivial periodicity of each
symmetry plane, and to ensure invariance of our observables
with respect to random event-by-event fluctuations of the im-
pact parameter vector, we arrive at the conclusion that the fun-
damental nontrivial observables involving symmetry planes
are the following correlators and constraints [10,12,13]:〈

ei(a1n1�n1 +...+aknk�nk )
〉
,

∑
i

aini = 0. (3)

The meaning of ai and ni is clarified in the text following
Eq. (2). In the rest of the paper, we call observables in Eq. (3)
symmetry plane correlations (SPCs). They can be estimated
precisely only in theoretical models in which it is possible to
compute each symmetry plane �n for each heavy-ion colli-
sion. The main purpose of this paper is to establish a reliable
experimental way to estimate SPCs indirectly by using only
the azimuthal angles of reconstructed particles, since only
they can be measured reliably in experiments.

The importance of SPCs in anisotropic flow measurements
has been fully acknowledged only in the LHC era, even
though the first results were obtained 20 years ago in the
E877 experiment [14]. The first results at the RHIC for
SPCs involving two symmetry planes were published by the
PHENIX Collaboration in Refs. [15,16], using the standard

event plane method with the subevent technique [11]. Both
the NA49 and the STAR collaborations have analyzed three-
particle azimuthal correlators in mixed harmonics, which
by definition do have contributions from symmetry planes,
but their contribution was neglected in these early analyses
[17,18]. The first SPC studies at the LHC provided only
binary statements on whether or not certain symmetry planes
are correlated, without providing quantitative details; in Ref.
[19] the ALICE Collaboration, using the carefully designed
five-particle azimuthal correlator (the technical details can
be found in Appendix H of [20]), has demonstrated that
the fluctuations of symmetry planes �2 and �3 are inde-
pendent in all considered centralities. Finally, the most thor-
ough experimental analysis to date, which includes also the
first measurements of correlations among three symmetry
planes, has been published by the ATLAS Collaboration in
Refs. [12,21,22], using the analysis technique discussed in
Refs. [13,23].

Theoretical studies have investigated SPCs separately in
coordinate (typically using the Monte Carlo Glauber model
[24] in combination with the event plane method) and mo-
mentum [12,13,23,25–30] space. In these studies the values of
symmetry planes are typically the direct output of the model
in each heavy-ion collision, and therefore they do not need
to be estimated indirectly by utilizing the azimuthal angles of
produced particles. A notable independent approach to SPCs
in terms of conditional probabilities has been established in
Ref. [31]. Other types of studies involving symmetry planes
which we do not discuss in our paper have been performed
in Refs. [32–36]. Finally, for the previous attempts to use
azimuthal correlators to estimate SPCs indirectly, we refer the
reader to [10,37–40].

This paper is organized as follows. After this introduction,
in Sec. II we present the ideal form of SPC measurements and
point out the inherent systematic biases that plagued the previ-
ous approaches. Section III discusses the concrete realization
of our new estimator, dubbed the Gaussian estimator (GE). In
Sec. IV we present a comparison with the theoretical models,
for both new and old SPC estimators, and indicate in which
regime our estimators outperform the existing ones. Finally,
in Sec. V we summarize our results and outline the next steps.
The technical details are provided in Appendixes A and B.

II. COMPARISON TO PREVIOUS METHODS

In this section we summarize the systematic biases of
previous analyses that used azimuthal correlators to estimate
SPCs and introduce our new approach, which improves on
those biases. SPCs were estimated previously using the scalar
product (SP) method [5,41] or event plane method [11],
both of which yield the theoretical results for SPCs only
in the absence of correlated fluctuations of different flow
magnitudes. Our new method, which we illustrate in the next
paragraphs and elaborate in detail in Sec. IV, provides a
further step forward in the sense that it yields the theoretical
result for SPCs also when such correlated fluctuations of flow
magnitudes are present in the data. In fact, at RHIC and LHC
energies correlations of event-by-event fluctuations of v2 and
v3, and of v2 and v4, are large, and if they are not taken
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into account and corrected for, the final results for SPCs can
exhibit large systematic biases, as we demonstrate in Monte
Carlo studies presented in Sec. IV.

As indicated in Sec. I, correlations between k symmetry
planes in unique harmonics n1, . . . , nk (i.e., correlations be-
tween �n1 , . . . , �nk ) can be investigated by the measurement
of the correlator 〈cos (a1n1�n1 + · · · + aknk�nk )〉, where the
coefficients ai have to be fixed in such a way that this expres-
sion is invariant with respect to the randomness of the reaction
plane. In theory, such correlators can be built from an event-
by-event ratio of two multiparticle azimuthal correlators. As
a concrete example, by using the analytic formula in Eq. (2),
one can derive the following result:

〈cos(2ϕ1 + 2ϕ2 − ϕ3 − ϕ4 − ϕ5 − ϕ6)〉
〈cos(2ϕ1 − 2ϕ2 + ϕ3 − ϕ4 + ϕ5 − ϕ6)〉

= v2
2v

4
1 cos 4(�2 − �1)

v2
2v

4
1

= cos 4(�2 − �1). (4)

This idea, which works only for correlators involving six or
more azimuthal angles, demonstrates that for general ratios
of this kind, the numerator consists of both flow amplitudes
and symmetry planes, while the denominator consists only
of the respective flow amplitudes, without any contribution
of symmetry planes. The correlators in the numerator and
denominator were carefully chosen so that the final expression
depends only on the symmetry planes, even in the case of large
correlated fluctuations of flow amplitudes v1 and v2.

We now generalize this starting example and write, in the
most general case,〈

cos
(
a1n1�n1 + · · · + aknk�nk

)〉
EbE

=
〈

va1
n1

. . . vak
nk

cos
(
a1n1�n1 + . . . + aknk�nk

) + δ

va1
n1 . . . vak

nk + δ′

〉
.

(5)

As such, this event-by-event ratio exhibits only the symmetry
planes. This remains true by definition also if the event-by-
event (EbE) fluctuations of flow amplitudes are correlated,
and it is precisely this point which is not satisfied for the
currently used estimators. Since both the numerator and the
denominator in Eq. (5) have to be estimated with different k-
particle azimuthal correlators (k � 6), they will have different
statistical errors, which we denote δ and δ′, respectively. Such
a direct event-by-event approach is at the moment experimen-
tally not feasible due to large statistical uncertainties which
prevent such a per-event ratio.

We overcome the limitation of the event-by-event estimator
in Eq. (5) by introducing a new approximate method to
estimate the SPC, which we refer to as the Gaussian estimator,
in the next section. By using the same notation we now clarify
the currently used approximation methods, hereby focusing
on the SP method. The explicit form of SP estimation is given
by [40]〈

cos
(
a1n1�n1 + · · · + aknk�nk

)〉
SP

=
〈
va1

n1
. . . vak

nk
cos

(
a1n1�n1 + · · · + aknk�nk

)〉√〈
v2a1

n1

〉
. . .

〈
v2ak

nk

〉 . (6)

The powers ai are chosen in such a way that the numerator
and the denominator are valid multiparticle correlators. We
demonstrate later that within the GE approximation the same
kind of powers ai appear, and we provide a set of constraints
which ai must satisfy in Appendix B. We see further that
in most cases, the SP method is not an accurate estimator
of the true SPC, since the denominator in Eq. (6) cannot be
written in the factorized form. This statement is supported
by experimental evidence of large correlations between the
flow amplitudes [42–45], which therefore leads in general
to the nonnegligible bias in the SP method. On the other
hand, estimators for SPCs from the event plane method are
plagued by finite resolutions in estimating each symmetry
plane directly event by event [12].

III. GAUSSIAN ESTIMATOR

Before introducing our new estimators, it could be illumi-
nating to briefly point out the distribution of monochromatic
flow vnein�n . It is known that, due to the central limit theorem,
the quantities vn,x = vn cos n�n and vn,y = vn sin n�n obey a
two-dimensional (2D) Gaussian distribution approximately.
The randomness of the reaction plane angle, however, forces
us to average out the angular part of the 2D Gaussian to obtain
the Bessel-Gaussian distribution, only for the flow amplitude
[7,46]. It is shown that considering the Bessel-Gaussian as an
approximate distribution for the flow harmonic, the cumulants
of the flow harmonic fluctuations, vn{2k} (k > 1), are estima-
tors of the genuine average of the flow harmonic originated
from the initial geometry [47]. Here, we follow a rather similar
concept to estimate SPCs.

Instead of focusing on only one harmonic, we study the
distribution of a product of flow harmonics. Let us define the
quantities

R = va1
n1

. . . vak
nk

,

� = a1n1�n1 + · · · + aknk�nk , (7)∑
aini = 0

or equivalent quantities in the Cartesian coordinate system,

Rx = R cos �, Ry = R sin �. (8)

One notes that only averages of quantities Rx and Ry are
experimentally accessible where we can write them in terms
of Eq. (2). In general, the nonvanishing 〈Rp

x Rq
y〉 (the angular

brackets indicate the average over events) can be expanded in
the basis spanned by the moments〈〈m〉(a1,n1 ),...,(ak ,nk )

〉 = 〈
va1

n1
. . . vak

nk
ei(a1n1�n1 +...+aknk�nk )

〉
,

m =
∑

ai, (9)

and estimated experimentally by employing multiparticle cor-
relation techniques [48–52] (the above notation is introduced
in the paragraph below Eq. (2)). For positive integers p and
positive even q, the moment 〈Rp

x Rq
y〉 = 〈Rp+q cosp � sinq �〉

is nonvanishing. The moments with odd q are 0 because of the
presence of the sin term with odd power. A simple example of
a nonvanishing moment 〈Rp+q cosp � sinq �〉 is the case k =
2, n1 = −n2 = n, and a1 = a2 = �, leading to R = v2�

n and
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� = 0. In this case, the moments 〈v2�
n 〉 have been extensively

studied over the past years. In the present study, the following
specific moments are employed:

〈Rx〉 = Re
〈〈m〉(a1,n1 ),...,(ak ,nk )

〉
,〈R2

x

〉 + 〈R2
y

〉 = ∣∣〈〈2m〉(2a1,n1 ),...,(2ak ,nk )
〉∣∣. (10)

The quantity 〈Rp
x Rq

y〉 is a moment of the p.d.f. P(Rx,Ry).
If we had been able to measure P(Rx,Ry), we could
have computed the moment 〈cos �〉 immediately. Although
P(Rx,Ry) is not experimentally accessible, we are still able
to approximately estimate the distribution as a 2D Gaussian
(normal) distribution, P(Rx,Ry) � N (Rx,Ry), where

N (Rx,Ry) = 1

2πσxσy
exp

[
− (Rx − μx )2

2σ 2
x

− R2
y

2σ 2
y

]
, (11)

and μx = 〈Rx〉, σ 2
x = 〈R2

x〉 − 〈Rx〉2, and σ 2
y = 〈R2

y〉. Simi-
larly to the 2D Gaussian distribution for one harmonic flow,
this estimation is based on the central limit theorem. Since
we are only interested in the angular part of the normal
distribution in Eq. (11), we integrate out the radial part. After
some algebra, we find

Nθ (�) =
∫

R dR N (R,�)

= σ 3
x σy e−μ2

x/2σ 2
x

πσ 2
θ

[
1 +

√
πμxσy eμ2

θ

σθ

[1 + erf(μθ )]

]
,

(12)

where

σθ (�) = σx

√
2σ 2

y cos2 � + 2σ 2
x sin2 �,

μθ (�) = μxσy cos �

σ�

. (13)

As a result, one can straightforwardly compute the average
〈cos �〉 by computing the integral

〈cos �〉GE =
∫

d� N�(�) cos �, (14)

which is the Gaussian estimator for the true value of 〈cos �〉.
To find an analytical result for our estimator, we still need
some simplifications as we discuss in the following.

The quantity σθ has no � dependence upon considering

σx ∼ σy ∼ σr/
√

2, where σr =
√

σ 2
x + σ 2

y . This leads to an

analytical result for the integral in Eq. (14) written in terms of
two first modified Bessel functions. By expanding the result in
terms of μx/σr and keeping only the leading term, we obtain

〈cos �〉GE �
√

π

4

(
μx

σr

)
. (15)

Using Eq. (10), the above approximation can be written
explicitly as〈

cos
(
a1n1�n1 + · · · + aknk�nk

)〉
GE

�
√

π

4

〈
va1

n1
. . . vak

nk
cos

(
a1n1�n1 + . . . + aknk�nk

)〉√〈
v2a1

n1 . . . v2ak
nk

〉 ,

(16)

where for the denominator we have used the fact that σr =√
〈R2

x〉 − μ2
x + 〈R2

y〉 �
√

〈R2
x〉 + 〈R2

y〉. The error we have

made in the second equality is of the order of (μx/σr )2.
The expression Eq. (16) is our main result and is experi-
mentally measurable. In order to avoid the nonflow effects
one can employ the rapidity gap technique in computing
particle correlations [37,53,54]. After comparing Eq. (16)
with Eq. (6), one finds that apart from a numerical factor,√

π/4 � 0.886, we have a joint moment of flow amplitudes in
the denominator. After introducing the technical details of the
GE approximation for SPCs, in the next section we validate
it by using realistic Monte Carlo simulation. We demonstrate
that although the above approximation works accurately for
most cases, there is still room to improve the accuracy by
employing event shape engineering.

IV. VALIDATION OF THE GAUSSIAN ESTIMATOR
AND ITS FURTHER IMPROVEMENT

A new estimator of the SPC has been introduced in the
previous section by assuming that the (Rx,Ry) fluctuation
is approximately described by a 2D normal distribution. The
accuracy and applicability of the method depend on this
assumption. To examine the estimator’s accuracy and in order
to study possible ways for its improvement, we employ the
realistic Monte Carlo event generator iEBE-VISHNU, which is
based on hydrodynamic simulation in 2 + 1 dimensions with
longitudinal boost-invariant symmetry [55]. We initiate the
events at τ = 0.6 fm/c by the Monte Carlo–Glauber model
[24] implemented in the iEBE-VISHNU. For the hydrodynamic
evolution DNMR [56,57] the causal hydrodynamic is solved
at a fixed shear viscosity over the entropy density η/s = 0.08,
while the Cooper-Frye freezeout [58] prescription has been
implemented in the model for the particleization stage. Evolu-
tion in the hadronic stage is not considered in our simulation.
For each centrality bin, 14 000 events of Pb-Pb collisions
(
√

sNN = 2.76 TeV) have been generated and the flow magni-
tudes vn and symmetry planes �n are computed in each event
for π±, K±, and p/p̄ in the final state. One notes that the flow
harmonics in the simulation are computed from a continuous
single-particle momentum distribution in each event. As a
result, there is no concern about the statistical uncertainty of
flow harmonics in a single event and consequently we have
access to the true value of the SPC at every single event.
The SPCs obtained from directly computed event-by-event
symmetry planes in the simulation are referred to as the true
values of the SPCs in the comparisons which we present next.
As has been pointed out, however, we need to perform many
event averages and employ suitable techniques for removing
nonflow effects in the real experiment.

Our first study in Fig. 1 shows eight different choices
for the correlation of two symmetry planes, and it demon-
strates that the true value of the SPC can be approximated
much better with the GE approach [Eq. (16)] than with the
SP estimator [Eq. (6)]. Especially in cases where the two
symmetry planes are strongly correlated [Figs. 1(a)–1(d)] due
to their geometric correlations that preexisted in the initial
state (e.g., between �2 and �4), our new method reproduces
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FIG. 1. Comparison of the GE and SP methods to the true value of the SPC between two symmetry planes in iEBE-VISHNU.

the true value very well in all centrality classes of interest.
This demonstrates clearly that the systematic bias caused
by neglecting correlations between the flow amplitudes in
the SP method is large and, therefore, cannot be neglected.
Only in a few cases can it be observed that the GE and
SP yield comparable results (e.g., for SPCs between �4 and
�3). We elaborate on this in more detail later and present a
way to improve the GE method even further. The centrality
dependence of each SPC in Fig. 1 presents strikingly different
features and, therefore, provides independent constraints for
the system properties. Further, we present results for corre-
lations between three symmetry planes (Fig. 2) as well as
between four symmetry planes (Fig. 3). It can be observed
clearly that for each SPC the GE approach outperforms the

SP estimator in most of the considered centralities, while for
the remaining few centralities the accuracy of the methods is
comparable.

Although the Gaussian estimator in Eq. (16) works ac-
curately in almost all cases, in contrast to the SP method,
which in most cases exhibits large systematic biases, there
are still minor discrepancies between our estimator and the
true value in a few cases [see, e.g., � = 2�2 + 3�3 − 5�5

in Fig. 2(d)]. To investigate the reason more deeply, we focus
on an extreme example: R = v2v4v6, � = 2�2 + 4�4 − 6�6

at 40% centrality [see Fig. 2(c)]. In this case, there is a
clear discrepancy between the true value and the Gaussian
approximation, Eq. (16). In Fig. 4, the iEBE-VISHNU outcome
for (Rx,Ry) fluctuations is shown. As shown in the figure,
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FIG. 2. Comparison of the GE and SP methods to the true value of the SPC between three symmetry planes iEBE-VISHNU.

there is a sharp peak at the center with a few events distributed
around it. The tail is elongated in the x direction. Although
there are far fewer events in the tail, it leads to inaccuracy in
our Gaussian estimation. Specifically, the events are mostly
concentrated symmetrically around the center, while the long
tail in the x direction leads to a large difference between σx

and σy. Also, it shifts the μx to the right. The GE would work
better if we could fit the Gaussian distribution around the peak
and remove the outliers.

Since we have no access to the 2D histograms in Fig. 4
experimentally, removing the outliers cannot be done easily.
Here, we briefly point out a potential strategy for removing
outliers by employing event shape engineering, which should
be based on experimentally accessible quantities such as μx,
σx, and σy. Dealing with more detailed experimental chal-
lenges and its efficiency will require a separate study in the
future. Knowing the value of flow magnitudes and symmetry

planes in each event in the simulation, one is easily able to
remove the outliers. We can locate the peak in the histogram
and fit a Gaussian distribution around it by ignoring events
away from the peak with a certain criterion. Here, however,
we try to introduce criteria that are model independent and
applicable also in experiments where the histogram is not
available. Before introducing our strategy, let us investigate
our simulation further as follows. We first compute σx and
σy from all events. After that we divide the events into two
classes: the low-R class, with the condition R � ασr ; and
the rest, the high-R class. We have found that by ignoring
the events at the tail of the distribution starting from twice the
width σr (α = 2), the GE is corrected very well, as we see
shortly. After event classification, we compute μx and σr for
the low-R class and estimate 〈cos �〉 by using Eq. (15). For
the specific case shown in Fig. 4(a), the ratio σx/σy computed
from all events in the given centrality class is around 3, while
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FIG. 3. Comparison of the GE and SP methods to the true value of the SPC between four symmetry planes iEBE-VISHNU.

if we compute the same ratio by using events in the low-R
class this ratio decreases to 1.7. The corrected histogram
with new μx, σx, σy, and σr values is depicted in Fig. 4(b).
Employing this strategy without using direct information from
histograms, the “corrected” Gaussian estimations 〈cos �〉 are
obtained and shown in Figs. 1–3 by open diamonds, indicating
an improvement in most cases. We should point out that α = 2
is chosen for all observables, and we have not tuned it from
one observable to the other.

Now we are in a position to introduce our experimen-
tal strategy. The low-R/high-R classification is simple in
the simulation because we are able to check the condition

R � ασr at each single event. In the experiment, however,
we have no access to the single-event information and need
to employ more sophisticated techniques such as event shape
engineering [59]. It is noteworthy that the low-R class in-
cludes 94% of all events in our simulation. This means that
by removing 6% of the high-R events the ratio σx/σy is
reduced by a factor of approximately 2. According to the
study mentioned above, the experimental strategy for finding
the “corrected” GE is the following: one needs to classify
events into low- and high-R classes, with ∼6% of events in
the high-R class. The classification percentile can be opti-
mized by comparing the low-R class ratio σx/σy with that
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FIG. 4. Distributions of v2v4v6 cos [2�2 + 4�4 − 6�6] and v2v4v6 cos [2�2 + 4�4 − 6�6] before (left) and after (right) correction by
rejection of events larger than R � ασr (α = 2).
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obtained from all events in the given centrality class. The
ratio σx/σy should be approximately robust against changes
of the suitably chosen classification percentile criterion. The
“corrected” GE is obtained from Eq. (15), where μx and σr

are computed in the low-R class events.

V. CONCLUSIONS

After introducing the new procedure to correct for cor-
related flow fluctuations of different flow magnitudes, we
have reduced significantly the systematic biases in the exist-
ing experimental techniques for symmetry plane correlations.
This correction emerged from the modeling of experimentally
accessible moments with a 2D Gaussian distribution. By using
this new method, dubbed the Gaussian estimator, we have
shown a significant improvement in estimating true values of
SPCs over existing measurements in most cases of interest.
We have demonstrated that, in combination with event shape
engineering, this new estimator can be optimized even further.

The precise measurements of SPCs in the future must
acknowledge the remaining small intercorrelation between
flow amplitudes and symmetry planes, which can still cause
a small bias in all available approximation methods for SPC
measurements.
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APPENDIX A: BASIC PROPERTIES
OF SYMMETRY PLANES

In this Appendix we outline in more detail the most im-
portant formal properties of symmetry planes. Besides the
version of the Fourier series presented in Eq. (1) (Sec. I), the
alternatively used form is

f (ϕ) = 1

2π

[
1 + 2

∞∑
n=1

(cn cos nϕ + sn sin nϕ)

]
, (A1)

with

cn =
∫ 2π

0
f (ϕ) cos(nϕ)dϕ , (A2)

sn =
∫ 2π

0
f (ϕ) sin(nϕ)dϕ. (A3)

The Fourier series parametrizations in Eqs. (1) and (A1) are
mathematically equivalent and can be interchanged by using
the following relations:

vn ≡
√

c2
n + s2

n, (A4)

�n ≡ (1/n) arctan
sn

cn
. (A5)

Relation (A5) can be used as a definition of the symme-
try plane �n. We discuss next some physical properties of
symmetry planes and establish the connection between them

and some commonly used observables in anisotropic flow
analyses.

The symmetry plane �n has an obvious geometri-
cal interpretation when the anisotropic distribution can be
parametrized with only one harmonic n, since then one can
show immediately that

f (�n + ϕ) = f (�n − ϕ) , (A6)
i.e., a symmetry plane �n is a plane for which it is equally
probable for a particle to be emitted above and below it. From
Eq. (A5) one can see that symmetry planes are meaningful
only when sn and cn are not both simultaneously 0. If the
Fourier series permits only the sin term sn (i.e., cn = 0), the
corresponding symmetry plane will be �n = ± π

2n (depending
on whether sn is positive or negative). In the case where the
Fourier series permits only the cos term cn (i.e., sn = 0),
all symmetry planes are equal to 0. However, if the flow
amplitude vn is 0 (because cn = sn = 0), the corresponding
symmetry plane �n does not exist.

Another symmetry of interest is f (ϕ) = f (−ϕ) due to
which sn = 0 for all n, and therefore from Eq. (A5) �n =
0 ∀n, i.e., all symmetry planes are the same and equal to
0. Physically, this means that a heavy-ion collision was de-
scribed in the laboratory frame with the coordinate system
oriented such that the impact parameter vector is aligned
with the x axis. The next symmetry which is satisfied to
leading order in noncentral heavy-ion collisions is f (ϕ) =
f (π + ϕ), due to which c2n+1, s2n+1 = 0, and therefore only
the even-symmetry planes �2n are well defined and nontrivial.
In principle, one could also consider the symmetry f (ϕ) =
f (π − ϕ) in midcentral collisions, but we were not able to
extract any new constraint on the symmetry planes which was
not already covered by the other symmetries. Finally, since we
assign to f (ϕ) the probabilistic interpretation [which implies
that f (ϕ) must be a positive definite function], we do not
consider symmetries like f (ϕ) = − f (−ϕ), which otherwise
could lead to additional constraints.

Another important physical interpretation of symmetry
planes can be drawn from their relation with the Q vector
[4,7,46], which is one of the most important objects in flow
analyses. For a set of M azimuthal angles ϕi, the Q vector in
harmonic n is defined as

Qn ≡
M∑
j=i

einϕ j ≡ |Qn|ein�n . (A7)

With this definition, one can easily demonstrate that the angle
of the Q vector is exactly the same as the symmetry planes �n

from the Fourier series defined in Eq. (A5), since

(1/n) arctan
sn

cn
= (1/n) arctan

〈sin nϕ〉
〈cos nϕ〉

= (1/n) arctan
MIm(Qn)

MRe(Qn)

= (1/n) arctan
|Qn| sin n�n

|Qn| cos n�n

= (1/n) arctan tan n�n

= (1/n)n�n

= �n . (A8)
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This relation is utilized in the standard event plane method,
where symmetry planes �n are estimated directly from Q
vectors in each event [11].

APPENDIX B: CHOICE OF CORRELATORS

In this Appendix we start from the most general form
of multiparticle correlators with nonunique harmonics, from
which we find constraints such that these correlators are
applicable for our GE method [Eq. (16)]. We see that from
there on, constraints for the ai will emerge naturally.

Consider two general multiparticle correlators 〈k〉n1,n2,...,nk

(k-particle correlator with a set of nonunique harmonics {n1,
n2, . . . , nk}) and 〈l〉p1,p2,...,pl

(l-particle correlator with a set
of nonunique harmonics {p1, p2, . . . , pl}). Focusing on the
general form of the GE approximation [Eq. (16)], their ratio
can in general be written as〈〈k〉n1,n2,...,nk

〉〈〈l〉p1,p2,...,pl

〉 ∝
〈
vn1 . . . vnk ei(n1�n1 +...+nk�nk )

〉√〈
vp1 . . . vpl e

i(p1�p1 +...+pl �pl )
〉 . (B1)

From this general ansatz the following constraints to achieve
the desired SPC emerge:

k∑
j=1

n j = 0. (B2)

l∑
j=1

p j = 0. (B3)

k∑
j=1

n j · �n j �= 0, (B4)

l∑
j=1

p j · �p j = 0, (B5)

k∏
i=1

v2
ni

=
l∏

i=1

vpi . (B6)

Constraints (B2) and (B3) satisfy the isotropy condition,
which has to hold true for any nontrivial multiparticle cor-
relator. Constraints (B4) and (B5) lead to a nonvanishing
contribution of symmetry planes in the numerator, while the
denominator does not depend on symmetry planes explicitly.
Constraint (B6) ensures that the flow amplitudes in the nu-
merator and denominator cancel each other exactly. Further,
from constraint (B6) it follows that l = 2k. Therefore, when
measuring a k-particle correlator in the numerator one has
to measure a 2k-particle correlator in the denominator, when
using the GE approximation. To obtain the SPC one has to
explicitly choose sets of correlators {n1, n2, . . . , nk} and {p1,
p2, . . . , pl} which satisfy constraints (B2)–(B6). We elaborate
on this now explicitly for the SPC between two symmetry
planes, �m and �n, and demonstrate how the coefficients ai

used in the text [see, e.g., Eq. (2)] emerge naturally and which
constraints ai have to fulfill themselves. This formalism can be
generalized for correlations between any number of symmetry
planes.

1. Correlators between two symmetry planes

Focusing now on the SPC between two symmetry planes
�m and �n and given constraints (B4) to (B6), the general
sets of correlators in harmonics m and n (where m �= n) are
schematically

⎧⎨
⎩ m︸︷︷︸

am times

, . . . , m, −n︸︷︷︸
an times

, . . . ,−n

⎫⎬
⎭ (numerator), (B7)

⎧⎨
⎩m,−m︸ ︷︷ ︸

2am times

, . . . , m,−m, n,−n,︸ ︷︷ ︸
2an times

, . . . , n,−n

⎫⎬
⎭ (denominator),

(B8)

where am, an ∈ N. Given constraints (B2) and (B3) the fol-
lowing constraints for am and an are valid:

am∑
j=1

m +
an∑

k=1

(−n) = amm − ann = 0 ⇒ am

n
= an

m
, (B9)

2am∑
j=1

(−1) j · m +
2an∑
k=1

(−1)k · n = 0 ⇒ 2am ∧ 2an even,

(B10)

where ∧ is the logical AND. This way, the constraints from
Eqs. (B4) and (B5) are satisfied as well. We see that constraint
(B10) will hold true for any am, an. Therefore, as a concrete
example one can choose am and an as

am = lmn

m
, (B11)

an = lmn

n
, (B12)

where lmn denotes the least common multiple between m and
n. The order of the particle correlator in the numerator is given
as

lmn

(
1

m
+ 1

n

)
, (B13)

and for the numerator twice the size, respectively. This
method of using the least common multiple presents the
lowest order of valid multiparticle correlators for the SPC
between two symmetry planes. Any other method exhibits
higher-order correlators. Given by this, the GE approach reads

〈cos[lmn(�m − �n)]〉GE ∝
〈
vam

m van
n cos[lmn(�m − �n)]

〉√〈
v2am

m v2an
n

〉 .

(B14)
Although the method of the least common multiple exhibits
the lowest possible order for an SPC with two planes, any
multiple k ∈ N of this method represents a valid correlator
as well. We can therefore always expand the set of correlators
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by changing am → kam and an → kan and then find in general

〈cos[klmn(�m − �n)]〉GE ∝
〈
vkam

m vkan
n cos[klmn(�m − �n)]

〉√〈
v2kam

m v2kan
n

〉 . (B15)

2. Correlators between three symmetry planes

A general choice for the set of correlators for three unique harmonics m, n, and p are schematically⎧⎪⎨
⎪⎩ m︸︷︷︸

am times

, . . . , m, −n︸︷︷︸
an times

, . . . ,−n, −p︸︷︷︸
ap times

, . . . ,−p

⎫⎪⎬
⎪⎭ (numerator), (B16)

⎧⎪⎨
⎪⎩m,−m︸ ︷︷ ︸

2am times

, . . . , m,−m, n,−n,︸ ︷︷ ︸
2an times

, . . . , n,−n, p,−p,︸ ︷︷ ︸
2ap times

, . . . , p,−p

⎫⎪⎬
⎪⎭ (denominator). (B17)

Following the general constraints presented above we find the following constraints on am, an, and ap:

am∑
j=1

m +
an∑

k=1

(−n) +
ap∑

l=1

(−p) = amm − ann − ap p = 0, (B18)

2am∑
j=1

(−1) j · m +
2an∑
k=1

(−1)k · n +
2ap∑
l=1

(−1)l · p = 0 ⇒ 2am ∧ 2an ∧ 2ap even. (B19)

Again, the latter constraint is fulfilled trivially. In general these kind of correlators will be of a high order, therefore limiting
experimental feasibility. We cannot reduce the problem of a 3-SPC into one single closed formula as has been the case for
two planes, as now more combinatorial possibilities exist. As a trivial example, in cases where m = n + p we can set trivially
am = an = ap = 1:

〈cos[m�m − n�n − p�p]〉GE ∝ 〈vmvnvp cos[m�m − n�n − p�p]〉√〈
v2

mv2
nv

2
p

〉 . (B20)
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