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Cascade solutions of the Boltzmann equation suffer from causality violation at high densities and/or scattering
cross sections. Although the particle subdivision technique can reduce the causality violation, it alters event-by-
event correlations and fluctuations and is also computationally expensive. Here we evaluate and then improve
the accuracy of the ZPC parton cascade for elastic scatterings inside a box without using parton subdivision. We
first test different collision schemes for the collision times and ordering time and find that the default collision
scheme does not accurately describe the equilibrium momentum distribution at large opacities. We then find a
specific collision scheme that can describe very accurately the equilibrium momentum distribution as well as
the time evolution towards equilibrium, even at large opacities. We also calculate the shear viscosity and the
η/s ratio of the parton systems and confirm that the new collision scheme is more accurate. In addition, we use
a novel parton subdivision method to obtain the “exact” evolution of the system. This subdivision method is
valid for such box calculations and is so much more efficient than the standard subdivision method that we use a
subdivision factor of 106 in this study.
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I. INTRODUCTION

In high-energy heavy-ion collisions such as those at the
Relativistic Heavy Ion Collider and the Large Hadron Col-
lider, quark-gluon plasma (QGP) with deconfined parton de-
grees of freedom is formed [1,2]. Interactions among the par-
tons, which reflect the properties of the quark-gluon plasma,
could significantly affect many final state observables such as
the hadron spectra, collective flows, and fluctuations [3–7]. A
parton cascade model provides a microscopic description of
the space-time evolution of the partonic phase of relativistic
heavy-ion collisions. Both elastic and inelastic parton cascade
models, such as VNI [8], ZPC [9,10], MPC [11], and BAMPS
[12,13], have been constructed to model parton interactions.
For example, recent studies from a multiphase transport
(AMPT) model [3,4], which includes the ZPC elastic parton
cascade [14], have shown that even a few parton scatterings in
a small system are enough to generate significant momentum
anisotropies [15,16]. This concerns the origin of collectivity
and the difference between kinetic theory and hydrodynamics
in heavy-ion collisions, particularly in small systems [17,18].
It is therefore important to ensure that the parton cascade
solution is accurate in solving the corresponding Boltzmann
equation.

The ZPC elastic parton cascade [9,10] solves the Boltz-
mann equation by the cascade method. A scattering happens
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when the closest distance between two partons is less than the
range of interaction

√
σ/π , where σ is the parton scattering

cross section. It is well known that causality violation [19,20]
is inherent in cascade simulations due to the geometrical inter-
pretation of cross section. This leads to inaccurate numerical
results at large opacities, i.e., at high densities and/or large
scattering cross sections. For example, a recent study [21] has
shown that the effect of causality violation on the elliptic flow
from the string melting version of the AMPT model [14] is
small but nonzero. This is mainly because the parton density is
very high [22] even though the cross section is small (∼3 mb).
Causality violation also leads to the fact that different choices
of doing collisions and/or the reference frame can lead to
different numerical results [23–25]. These numerical artifacts
due to the causality violation can be reduced or removed
by the parton subdivision technique (i.e., the test particle
multiplication method) [11,12,20,23,26–30]. However, parton
subdivision alters the event-by-event correlations and fluctu-
ations, the importance of which has been more appreciated
in recent years [31]; parton subdivision is also much more
computationally expensive.

Therefore the goal of this work is to find a parton cas-
cade algorithm that is accurate enough without using parton
subdivision. We investigate different collision schemes for
the ZPC parton cascade for elastic scatterings in a box with
periodic boundaries and then compare the results with either
the theoretical expectation or the “exact” results from ZPC
with parton subdivision. The paper is organized as follows. In
Sec. II we give a brief introduction to the ZPC parton cascade.
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TABLE I. Different collision schemes for ZPC when the closest approach distance is calculated in the two-parton center-of-mass frame.
ct1 and ct2 represent the collision times of the two scattered partons after the transformation back to the global frame.

Collision time

Ordering time ct1 & ct2 min(ct1, ct2) (ct1 + ct2 )/2 max(ct1, ct2)

min(ct1, ct2) A B (new scheme) C D
(ct1 + ct2)/2 E F G (default ZPC scheme) H
max(ct1, ct2) I J K L

We then discuss the parton subdivision technique in Sec. III.
Numerical results of the pT distribution and the shear viscosity
including the η/s ratio for several cases are presented and
discussed in Sec. IV. Finally, we conclude in Sec. V.

II. THE ZPC PARTON CASCADE

The ZPC parton cascade [9,10] includes two-body elastic
parton scatterings such as gg → gg by solving the Boltzmann
equation, where the on-shell phase-space density f (r, p, t )
evolves as

pμ∂μ f (r, p, t ) = C[|M|2 f1(r1, p1, t ) f2(r2, p2, t )]. (1)

In Eq. (1), the collision term C[·] includes the integral over
the momenta of the other three partons with an integrand con-
taining factors such as a δ function for the energy-momentum
conservation. The differential cross section of parton scatter-
ings is given by the matrix element as dσ/dt̂ ∝ |M|2.

The default differential cross section in ZPC for two-parton
scatterings, based on the gluon elastic scattering cross section
as calculated by leading-order QCD, is given by [10,14]

dσ

dt̂
= 9πα2

s

2

(
1 + μ2

ŝ

)
1

(t̂ − μ2)2
, (2)

where αs is the strong-coupling constant, ŝ and t̂ are the
standard Mandelstam variables, and μ is a screening mass to
regulate the total cross section. This way the total cross section
has no explicit dependence on ŝ as

σ = 9πα2
s

2μ2
. (3)

Equation (2) represents forward-angle scatterings. We also
test isotropic scatterings in this study, where dσ/dt̂ is in-
dependent of the scattering angle. For this study we take
αs = √

2/9 [10] unless specified otherwise.
In ZPC one can take different choices or collision schemes

to implement the cascade method [10], and ZPC already
provides several different choices. With the closest approach
criterion for parton scatterings, the closest approach distance
may be calculated either in the two-parton center-of mass-
frame or in the global frame of the whole parton system
of each event. Two partons may collide when their closest
approach distance is smaller than

√
σ/π , and at a given global

time all such possible collisions in the future are ordered in
a collision list with the ordering time of each collision, so
that they can be carried out sequentially. The collision list is
updated continuously after each collision, and for expansion
cases the parton system dynamically freezes out when the
collision list is empty. For box cases in this work, we terminate

the parton cascade at a global time that is large enough
so that the parton momentum distribution changes little af-
terwards. When the closest approach distance is calculated
in the two-parton center-of-mass frame, the collision time
of a scattering in that frame is a well-defined single value.
However, because of the finite σ the two partons have different
spatial coordinates in general, therefore this collision time in
the two-parton center-of-mass frame becomes two different
colliding times in the global frame (called here ct1 and ct2,
respectively, for the two colliding partons) after the Lorentz
transformation. Note that each of the two partons involved in
a scattering changes its momentum at its collision time at the
corresponding position in the global frame.

We report in Table I a dozen different collision schemes
for the case of calculating the closest approach distance in the
two-parton center-of-mass frame, where a collision scheme
refers to a given choice of the collision time(s) and the
ordering time. These schemes include the ones that choose the
collision time(s) in the global frame as separate values (i.e., as
ct1 and ct2), the earlier time min(ct1, ct2), the average time
(ct1 + ct2)/2, or the later time max(ct1, ct2), in combination
with choosing the collision ordering time in the global frame
as either the earlier time, the average time, or the later time.
On the other hand, for the case of calculating the closest
approach distance in the global frame, it is natural to choose
the single collision time as the collision ordering time (both in
the global frame); this is called collision scheme M here.

We first test these different collision schemes for the case
of 4000 massless gluons in a box with a cross section of
σ = 2.6 mb for forward-angle scatterings. The box size is
chosen such that the gluon density n is the same as that for
a thermalized gluon system at temperature T = 0.5 GeV, i.e.,
n = dgT 3/π2 with gluon degeneracy factor dg = 16. Since we
do not include quantum statistics in the collision kernel of
Eq. (1), the final-state momentum distribution of the gluon
system should be given by the Maxwell-Boltzmann distribu-
tion at this temperature.

We use an off-equilibrium initial condition that is uniform
in the coordinate space, which is obtained by first generating
the Maxwell-Boltzmann momentum distribution and then de-
creasing each parton’s initial pz by a factor of 2 while keeping
its initial 3-momentum the same. Such off-equilibrium initial
momentum distribution is used for all the calculations of
the pT spectra in Sec. IV A, while the equilibrium initial
momentum distribution is used for calculations of the shear
viscosity in Sec. IV B. Also, note that the ZPC results in this
study are obtained without using parton subdivision unless
specified otherwise, and typically a few thousand events are
used for each case while each event simulates the scatterings
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FIG. 1. Final pT distributions from different collision schemes
for elastic gluon scatterings in a box with T = 0.5 GeV and forward-
angle scatterings at σ = 2.6 mb.

of at least 4000 massless gluons. The number of gluons for
each case is chosen so that the cell size in ZPC is no smaller
than the interaction length, to ensure the numerical accuracy.

Figure 1 shows the final pT distributions from different
collision schemes for the above case in comparison with the
initial distribution (thin solid curve) and the expected final
state distribution (thick solid curve). Note that each final
distribution in Fig. 1 is obtained by running the ZPC parton
cascade for a global time of 6.1 fm/c, when the pT distribution
has become very stable (as shown in Fig. 5). We see that
the numerical solution of ZPC depends significantly on the
collision scheme in this case. In addition, the distributions
from collision schemes with the same ordering time (i.e.,
schemes A to D, or schemes E to H, or schemes I to L) are
relatively close to each other. Collision scheme G, which uses
(ct1 + ct2)/2 as both the collision time and the ordering time,
is the default collision scheme of ZPC [10] and also used in
the AMPT model [14], so we label it the default ZPC in this
study. We see that the final pT distribution from the default
ZPC scheme in Fig. 1 deviates considerably from the expected
thermal distribution, and so do the results from most collision
schemes. However, the final pT distribution from collision
scheme B, which uses min(ct1, ct2) as both the collision time
and the ordering time, is the closest to the expected thermal
distribution. Therefore we focus on collision scheme B and
call it the new scheme.

Currently our finding that the collision scheme using time
min(ct1, ct2) best preserves the equilibrium momentum distri-
bution is a numerical observation. More generally the ordering
time or the collision time in the global frame can be chosen as
a function of ct1 and ct2. Indeed we could fine-tune the new
collision scheme by choosing a point [near min(ct1, ct2)] on
the linear interpolation line between ct1 and ct2 to preserve
the equilibrium momentum distribution even better. Causality
violation usually suppresses the collision rates, which is the
case for the default ZPC scheme as shown in Fig. 3. Therefore
we can expect that choosing the time min(ct1, ct2) instead of
(ct1 + ct2)/2 enhances the collision rates and alleviates the

effect of causality violation. Other than this, we find no clear
theoretical arguments on why the new scheme works better to
suppress the causality violation. It may be related to correlated
functions in theories such as the Kadanoff-Baym equations
[32,33]. However, the various collision schemes in Table I
are only different at finite opacities, where causality violation
complicates the theoretical analysis of different schemes.

III. PARTON SUBDIVISION

Naively a parton cascade is only correct in the dilute limit
to preserve causality and Lorentz covariance [11,23,24,29],
where the particle range of interaction is much smaller than
the mean free path. Their ratio can be written as [23]

χ =
√

σ

π
/λ = n

√
σ 3

π
, (4)

where n is the parton density and λ is the mean free path. We
can use χ to represent the opacity of the parton system, and
the dilute limit means χ � 1. Above the dilute limit, a parton
cascade may suffer from the causality violation [19,20,23–
25], which is an artifact of the geometrical interpretation of
the cross section in the cascade method. This is why we
see the differences in the numerical solutions from differ-
ence collision schemes in Fig. 1, which case corresponds
to χ = 2.0.

The parton subdivision technique [23,30] can be used to
reduce the numerical artifact from the causality violation, and
the numerical solution of a parton cascade will be correct in
the limit of large parton subdivision factor. This is because the
Boltzmann equation in Eq. (1) may be expressed as

pμ∂μ f (r, p, t ) ∝ σ f1(r1, p1, t ) f2(r2, p2, t ). (5)

Therefore the following transformation keeps the above equa-
tion invariant,

f (r, p, t ) → l × f (r, p, t ), σ → σ/l, (6)

but it reduces the opacity as

χ → χ/
√

l. (7)

In the above, l is the subdivision factor, typically an integer
much greater than 1. Therefore at large enough l the trans-
formed parton system will reach the dilute limit and thus the
cascade solution for its evolution will be accurate.

We emphasize that the angular distribution of the cross
section must not be changed when performing the subdivi-
sion transformation, Eq. (6), to ensure the invariance of the
Boltzmann equation; this can be clearly seen from the term
|M|2 in Eq. (1). Therefore the exact transformation for parton
subdivision is the following:

f (r, p, t ) → l × f (r, p, t ),
dσ

dt̂
→ dσ

dt̂
/l. (8)

This is especially relevant for forward-angle scatterings, be-
cause for them the total cross section as well as the angular
distribution is determined by the screening mass μ as shown in
Eqs. (2) and (3). When parton subdivision requires a decrease
in the forward-angle cross section of Eq. (3), one should not
do that by increasing μ by a factor of

√
l because that would
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FIG. 2. (a) Final pT distribution, (b) time evolution of 〈pT〉/T , and (c) time evolution of var(pT)/T 2 from the new scheme, the default ZPC
scheme, and two parton subdivision methods in a low-opacity test at αs = 0.20, T = 0.2 GeV for forward-angle scatterings at σ = 0.48 mb.
Stars represent the theoretical values at late times.

change the angular distribution of the scatterings. Instead one
can decrease the αs parameter by a factor of

√
l in Eqs. (2) and

(3), which decreases the total scattering cross section while
maintaining its angular distribution.

In the standard subdivision method one increases the initial
parton number per event by factor l while decreasing the cross
section by the same factor. This method can be schematically
represented by the transformation

N → l × N, V unchanged, (9)

where N is the initial parton number in an event and V is the
initial volume of the parton system. For box calculations of
elastic scatterings in this study, of course the parton number
in an event and the volume do not change with time. Since the
number of possible collisions scales with l2, the subdivision
method is very expensive in terms of the computation time,
which roughly scales with l2 per subdivision event or with
l per simulated parton. However, for box calculations where
the density function f (r, p, t ) is spatially homogeneous, we
can realize parton subdivision with a different method. This
new subdivision method can be schematically represented by

N unchanged, V → V/l, (10)

where we decrease the volume of the box by factor l while
keeping the same parton number and momentum distribution
in each event. Because the parton number per event does
not change, this subdivision method is much more efficient
than the standard subdivision method, therefore we can afford
a huge subdivision factor such as 106 (instead of the usual
value of up to a few hundreds). For all parton subdivision
calculations in this study, we use this new subdivision method
with l = 106 under the default ZPC scheme (unless specified
otherwise).

To explicitly show the importance of keeping the same
scattering angular distribution when implementing the parton
subdivision method, as shown by Eq. (8), we apply the ZPC
parton cascade to a dilute limit. For this case we simulate
for each event 4000 gluons at T = 0.2 GeV with an off-
equilibrium momentum distribution. We set μ = 3.47 fm−1

and αs = 0.201, which then gives a forward-angle scattering
cross section σ = 0.48 mb and χ = 0.01 (a dilute system).
Figure 2 shows the results of the final pT distribution, time

evolution of 〈pT〉/T , and time evolution of var(pT)/T 2 from
different cascade methods, where 〈pT〉 is the mean transverse
momentum of each parton and

var(pT) = 〈
p2

T

〉 − 〈pT〉2 (11)

is the variance of the final pT distribution. The results include
those from the new scheme, the default ZPC scheme, the
parton subdivision method at l = 106 with an unchanged
scattering angular distribution (i.e., by decreasing αs while
keeping μ the same), and the parton subdivision method at
l = 106 with a changed scattering angular distribution (i.e., by
increasing μ). Note that these two parton subdivision calcula-
tions are performed with the default ZPC scheme; however,
the choice of schemes no longer affects the numerical results
here because the large l value for the parton subdivision has
essentially eliminated the causality violation.

We first see in Fig. 2 that the results from the new scheme
(solid curves) and the default ZPC scheme (dashed curves)
agree with each other very well; this is because the effect of
causality violation and thus the dependence on the collision
scheme are very small in this dilute limit. We also see that
they agree with the parton subdivision method that keeps
the same scattering angular distribution (dotted curves) but
their time evolutions disagree with the parton subdivision
method that changes the scattering angular distribution (dot-
dashed curves), thus verifying the parton subdivision method
of Eq. (8). We use this method for parton subdivision for all
the remaining calculations. In addition, the time evolutions of
〈pT〉 and var(pT) are both faster for the parton subdivision
method that changes the scattering angular distribution; this
is because the subdivision scaling μ → √

l μ used in this
“wrong” subdivision method makes the angular distribution
more isotropic and thus leads to a higher transport cross
section [29] than the “correct” subdivision method (dotted
curves). The stars in Figs. 2(b) and 2(c) represent the theo-
retical values at late times (or in equilibrium) for the mean
value (scaled by 1/T ) and the variance (scaled by 1/T 2) of
the pT distributions, respectively, where

〈pT〉 = 3πT

4
, var(pT) =

(
8 − 9π2

16

)
T 2. (12)
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At late times all four ZPC calculations in Fig. 2 reach the
correct equilibrium values for this dilute case.

We also check the collision rates per volume [23] in Fig. 3,
which shows the results for cases with different cross sections
and temperatures for both forward-angle and isotropic scatter-
ings. The horizontal line represents the (scaled) expected rate
per volume for a massless gluon system at equilibrium, which
is given by [23]

W = 8σT 6

π4
F

(
2m

T

)
with F (x)=

∫ ∞

x
dyy2(y2−x2)K1(y).

(13)
In the above, K1(y) is the modified Bessel function, and
F (0) = 16 for massless gluons that we consider in this study.
We see that, as expected, the small-opacity results (symbols
at T = 0.2 GeV) from the new scheme and the default ZPC
scheme for both forward-angle and isotropic scatterings are
almost the same. For large opacities, however, the results
(symbols at T = 0.5 and 0.7 GeV) depend significantly on the

collision scheme; they also depend on the scattering angular
distribution in some cases. In particular, the collision rate per
volume from the default ZPC scheme gets much lower than
the theoretical expectation for large cross sections or parton
densities (which scales as T 3). On the other hand, the collision
rates per volume from the new scheme are much closer to the
theoretical value, even at large opacities. Also, it is no surprise
that the parton subdivision results agree with the theoretical
expectation. Note that the collision rates per unit volume
are essentially the same when we use the equilibrium initial
condition instead of the off-equilibrium initial condition.

IV. MAIN RESULTS AND DISCUSSION

A. The pT distribution and its time evolution

We now use different cases to test the new collision scheme
in comparison with the default ZPC scheme and exact results
for the momentum distribution. As noted before, the initial
momentum distribution in each of these calculations is off-
equilibrium so that we can better observe the time evolution
and equilibration of the momentum distribution.

We start with a test of forward-angle scatterings at low
opacity, where σ = 2.6 mb and T = 0.2 GeV, which corre-
spond to χ = 0.13. Figure 4 shows the final pT distributions,
the time evolutions of 〈pT〉/T , and the time evolutions of
var(pT)/T 2. In Fig. 4(a) we see no obvious difference between
the final pT distributions of the three methods of doing the
parton cascade, i.e., the new scheme, the default ZPC scheme,
and the parton subdivision method, at l = 106. They are also
consistent with the thermal distribution, which is expected
because the small χ value here means that the effect from
causality violation should be quite small. Furthermore, the
time evolutions of the mean transverse momentum in Fig. 4(b)
also show little difference among the three methods. However,
we observe some difference in the time evolutions of the
variance of the pT distributions in Fig. 4(c); in particular, the
variance from the default ZPC scheme is obviously smaller
than the other two results soon after the start of the parton cas-
cade, meaning that the pT distribution from the default ZPC
scheme is somewhat narrower in width, even at late times. In
addition, Figs. 4(b) and 4(c) indicate that the pT distributions
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FIG. 5. Same as Fig. 4, but at T = 0.5 GeV for forward-angle scatterings at σ = 2.6 mb (χ = 2.0).

from the new scheme and from the parton subdivision method
follow a similar time evolution and at late times they agree
with the theoretical expectations (stars).

The results of two cases of higher opacities, one at T =
0.5 GeV and σ = 2.6 mb and the other at T = 0.7 GeV and
σ = 10 mb, for forward-angle scatterings are shown in Fig. 5
and Fig. 6, respectively. The first case, as shown in Fig. 5,
corresponds to χ = 2.0; we see that the pT distribution and
its variance from the default ZPC scheme both deviate signif-
icantly from the “exact” parton subdivision results, although
the time evolutions of 〈pT〉 are close to each other. On the
other hand, results from the new scheme are very close to
the parton subdivision results, which agree with theoretical
expectations at late times. The second case, as shown in Fig. 6,
corresponds to χ = 41, which serves as an example of ex-
treme opacity. We see qualitatively the same features as shown
in Fig. 5, but the results from the default ZPC scheme are
now much farther away from the parton subdivision results,
including its time evolution of 〈pT〉. Again, results from the
new scheme are quite close to the subdivision results or the
theoretical expectations even at this extreme opacity.

We have also tested isotropic scatterings and reached sim-
ilar conclusions. As an example, Fig. 7 shows the results for
isotropic scatterings for the case of T = 0.5 GeV and σ = 2.6
mb (i.e., χ = 2.0). We see the same features as those shown
in Fig. 5 for forward-angle scatterings, e.g., the results of the
new scheme are close to the subdivision results while the
default ZPC scheme gives very different results that are far

from the theoretical expectations at late times. Therefore we
conclude that for box calculations the new collision scheme
(i.e., scheme B in Table I) is very accurate over a large range
of opacities and much better than the default ZPC collision
scheme.

To characterize the accuracy of the final pT distribution
from the new collision scheme, we may compare the final
〈pT〉/T and var(pT)/T 2 with the corresponding theoretical
values in Eq. (12). However, we can see from the figures that
the final 〈pT〉 value at late times from every box calculation in
this study agrees with Eq. (12); this is due to the momentum
isotropy in equilibrium and the energy conservation because
the average energy per parton (3T ) does not depend on the
collision scheme or method. Therefore we choose to use the
ratio between the final var(pT)/T 2 value and the theoretical
value to represent the accuracy of the new collision scheme.
The values of this ratio for different cases are shown in Fig. 8
as functions of the opacity parameter χ . We see that the ratio
is essentially unity at low opacities, indicating that there the
new scheme is very accurate as expected. At moderate to high
opacities, the deviations of the variance of the pT distribution
are quite small, up to about 3%. Also, an interesting feature
for isotropic scatterings is that the maximum deviation in the
variance does not occur at the highest opacity shown but at a
moderate opacity.

We see in Figs. 5–7 that the time evolutions of 〈pT〉 from
the new scheme (dashed curves) are somewhat different from
the parton subdivision results, although the 〈pT〉 values at
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FIG. 6. Same as Fig. 4, but at T = 0.7 GeV for forward-angle scatterings at σ = 10 mb (χ = 41).
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FIG. 7. Same as Fig. 5, but for isotropic scatterings.

late times agree well with the theoretical value of Eq. (12).
Therefore we may ask the question, At what equivalent cross
section will the parton subdivision method give the same time
evolution of 〈pT〉 as the new scheme? For example, Fig. 7(b)
shows that the time evolution from the new scheme (solid
curve) is slower than the subdivision result at the same cross
section of 2.6 mb (dotted curve); thus we expect that the
subdivision result at a smaller cross section could better match
the time evolution of the new scheme. For this purpose, we can
write schematically a new subdivision transformation,

f (r, p, t ) → l × f (r, p, t ),
dσ

dt̂
→ fσ × dσ

dt̂
/l, (14)

where fσ is the effectiveness factor of the cross section. We
then determine the fσ factor by minimizing the difference
between the time evolution from the new scheme and that
from the above parton subdivision method. More specifically,
we minimize the average absolute difference between the
〈pT〉 values at about a dozen selected time points from the
new scheme and the corresponding 〈pT〉 values from the
subdivision method of Eq. (14), where the selected time points
are usually taken as the positions of the symbols on the curves
from the new scheme in Figs. 4–7.
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FIG. 8. Ratio between the final var(pT) from the new scheme
and the theoretical value versus the opacity parameter χ for different
cases.

Figure 9 shows the average absolute difference in 〈pT〉
versus the fσ value for several different cases, where we can
find the minimum position for each case. The optimal fσ
value, i.e., the value that gives the minimum 〈pT〉 difference,
is listed for each case in Table II. We can see that the optimal
fσ value is 1.00 for the low-opacity case (at T = 0.2 GeV and
σ = 2.6 mb), which is expected because of the small causality
violation. On the other hand, the largest deviation of the opti-
mal fσ from unity occurs for the case of isotropic scatterings
at a moderate opacity (at T = 0.7 GeV and σ = 2.6 mb).
Note that this is also the case for the largest deviation of the
final var(pT)/T 2 value from the theoretical value, as shown
in Fig. 8. Also shown in Figs. 5–7 are the results from the
subdivision method of Eq. (14) after using the corresponding
optimal fσ values (dot-dashed curves), which nicely match the
time evolutions of 〈pT〉 from the new scheme. For example,
the optimal value fσ = 0.93 in Fig. 6 means that the new
collision scheme for forward-angle scatterings at σ = 10 mb
(and T = 0.7 GeV) is effectively equivalent to the “exact”
parton subdivision method that uses the cross section σ = 9.3
mb (with the same scattering angular distribution).
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FIG. 9. Average absolute difference in 〈pT〉 versus fσ , the effec-
tiveness factor of cross section, for different cases.
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TABLE II. Effectiveness factor of the cross section, fσ , for different cases.

fσ for T & σ values

0.2 GeV & 2.6 mb 0.5 GeV & 2.6 mb 0.7 GeV & 2.6 mb 0.7 GeV & 10 mb
(χ = 0.13) (χ = 2.0) (χ = 5.5) (χ = 41.)

For forward-angle scatterings 1.00 0.98 0.98 0.98
For isotropic scatterings 1.00 0.90 0.84 0.98

B. Shear viscosity and the η/s ratio

Transport coefficients such as the shear viscosity η repre-
sent important properties of the created matter [34]. It is thus
useful to evaluate the effect of our new collision scheme on
the shear viscosity η and its ratio over the entropy density η/s.
The Green-Kubo relation [35,36] has been applied [37–41] to
calculate the shear viscosity at or near equilibrium. Therefore
we start with an equilibrium initial condition for shear viscos-
ity calculations in this section.

We calculate the shear viscosity according to the following
form of the Green-Kubo relation [37]:

η = V

T

∫ ∞

0
dt 〈π̄ xy(t + t ′) π̄ xy(t ′)〉. (15)

Here 〈·〉 represents the time (t ′) and ensemble average, and
π̄ xy(t ) represents the volume-averaged xy component of the
energy momentum tensor πμν :

πμν (r, t ) = 1

(2π )3

∫
d3 p

pμ pν

p0
f (r, p, t ). (16)

Since we do not consider parton potentials in the ZPC parton
cascade here, the volume average of π xy at a given time t can
be written as

π̄ xy(t ) = 1

V

N∑
i=1

px
i py

i

p0
i

, (17)

where the sum is over all partons in the box at time t .
It is known that the correlation function in Eq. (15) damps

exponentially with time [37,38,40],

〈π̄ xy(t + t ′) π̄ xy(t ′)〉 = 〈π̄ xy(t ′) π̄ xy(t ′)〉 e−t/τ , (18)

with τ being the corresponding relaxation time. Also, the
average variance of π̄ xy at equilibrium is given by

〈π̄ xy(t ′) π̄ xy(t ′)〉 = 4

15

εT

V
, (19)

where ε = 3dgT 4/π2 is the energy density of massless gluons
at equilibrium. We then have

η = 4
15ετ. (20)

So we extract the relaxation time τ from the calculation of
the correlation function in Eq. (18). Specifically, the time and
ensemble average of the correlation function in our numerical

calculations is obtained as [37,40]

〈π̄ xy(t + t ′) π̄ xy(t ′)〉 =
〈

1

Tt

∫ Tt

0
π̄ xy(t + t ′) π̄ xy(t ′) dt ′

〉

�
〈

1

Nt

Nt −1∑
j=0

π̄ xy(i
t + j
t ) π̄ xy( j
t )

〉
.

(21)

In the above, Nt = Tt/
t , t = i
t , and each of the last
two 〈·〉 symbols represents the ensemble average. Here we
typically choose Tt ∼ 30τ , Nt ∼ 200 and extract τ from a fit
to the normalized correlation function over the the range t ∈
[0,∼2τ ]. Note that 〈π̄ xy(t + t ′) π̄ xy(t ′)〉 is often abbreviated
〈π̄ xy(t ) π̄ xy(0)〉 in studies that use the Green-Kubo relation
[37–41]. In addition, for isotropic elastic collisions the shear
viscosity and the corresponding relaxation time of a massless
Maxwell-Boltzmann gas at equilibrium can be calculated in
the Navier-Stokes approximation as [42,43]

ηNS � 1.265
T

σ
, τNS � 1.582

nσ
. (22)

We show in Fig. 10 the normalized correlation functions
for the case of T = 0.5 GeV and σ = 2.6 mb, which corre-
sponds to opacity χ = 2.0. All the numerical results show
the expected exponential damping with time. For isotropic
scatterings, we see that the result from the subdivision method
is almost the same as the Navier-Stokes expectation. On the
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FIG. 10. Normalized correlation functions from different colli-
sion schemes for isotropic scatterings and forward-angle scatterings
at T = 0.5 GeV and σ = 2.6 mb; the solid line represents the Navier-
Stokes expectation for isotropic scatterings.
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tistical error bars) versus opacity χ for different cases in comparison
with the theoretical value for equilibrium (solid line). (b) The η/s
ratio for different cases versus opacity; the solid curve represents the
Navier-Stokes expectation for isotropic scatterings.

other hand, the ZPC result without parton subdivision using
either the new collision scheme or the default collision scheme
damps a bit more slowly, which will lead to a bit larger relax-
ation time and η value than those from the parton subdivision
method. For forward-angle scatterings, Fig. 10 also shows that
the ZPC results without parton subdivision damp a bit more
slowly than the result from parton subdivision. Furthermore,
for both isotropic and forward-angle scatterings, the damping
rates from the new scheme are closer to the subdivision results
than those from the default scheme.

We also check our results for the average variance
〈π̄ xy(t ′) π̄ xy(t ′)〉 in Fig. 11(a) from different cases for both
isotropic and forward-angle scatterings. The average variance
has been multiplied by the factor V/(ε T ) because then its
theoretical value is 4/15 (solid line). The cases included in
Fig. 11 are the same as those shown in Fig. 8 except for the
omission of the case of T = 0.7 GeV with σ = 2.6 mb (at
χ = 5.5). We see that in general the results from the subdivi-
sion method agree well with the theoretical expectation from
low to very high opacities. The results from the new collision
scheme also agree with the theoretical value rather well. On
the other hand, the average variance from the default ZPC
collision scheme deviates significantly from the theoretical
value at finite opacities (up to ∼16% at the extreme opacity
of χ = 41).

Figure 11(b) shows our η/s results for these cases as
functions of opacity χ . For isotropic scatterings of a massless
Maxwell-Boltzmann gluon gas at equilibrium (where s = 4n),

we have the Navier-Stokes expectation(η

s

)NS
� 0.4633

d1/3
g χ2/3

= 0.1839

χ2/3
, (23)

which depends only on the opacity χ . We see in Fig. 11(b)
that the subdivision results agree well with the Navier-Stokes
expectation (solid curve) for isotropic scatterings, similar to
the observation in Figs. 10 and 11(a). In addition, the results
from the new collision scheme are very close to the subdivi-
sion results for both forward-angle scatterings and isotropic
scatterings from small to large opacities. On the contrary, the
extracted η and η/s values from the default ZPC scheme can
be significantly higher than the Navier-Stokes expectation or
the parton subdivision results at large opacities, consistent
with its lower collision rates at finite opacities as shown in
Fig. 3. However, the extracted η value from the new scheme
can also be somewhat higher than the Navier-Stokes expec-
tation where the corresponding collision rate is not lower
than the theoretical value, for example, for the case shown in
Fig. 10. Therefore in the presence of causality violation at fi-
nite opacities there are additional factors besides the collision
rate that affect the shear viscosity of the parton system.

V. CONCLUSIONS

We have evaluated and then improved the accuracy of
the ZPC parton cascade for elastic scatterings inside a box.
It is well known that cascade solutions of the Boltzmann
equation such as ZPC suffer from the causality violation at
high densities and/or parton scattering cross sections (i.e.,
large opacities) and that the parton subdivision technique can
be used to solve this problem. However, parton subdivision
alters event-by-event correlations and fluctuations and is also
computationally very expensive. In this work we have found
a collision scheme that is accurate enough without parton
subdivision and much better than the default ZPC collision
scheme. We first test a dozen different collision schemes for
the collision time(s) and ordering time of ZPC and find that
the default collision scheme does not accurately describe the
equilibrium momentum distribution at large opacities. We
then find that a particular collision scheme, the scheme that
uses the minimum of the two collision times as both the
collision time and the ordering time in the global frame while
calculating the closest approach distance in the two-parton
center-of-mass frame, can describe very accurately the equi-
librium momentum distribution as well as the time evolution
towards equilibrium, even at high opacities. In addition, we
apply the Green-Kubo relation to calculate the shear viscosity
and the η/s ratio for different cases, which also show that the
new collision scheme is more accurate than the default scheme
and agrees well with the theoretical expectation for isotropic
scatterings. Furthermore, we use a novel parton subdivision
method to obtain the “exact” time evolution of the momentum
distribution towards equilibrium. This subdivision method is
valid for such box calculations, and it is so much more effi-
cient than the traditional subdivision method that we typically
use a subdivision factor of 106. This work is the first step
towards the validation and improvement of the ZPC parton
cascade for scatterings in three-dimensional expansion cases.
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