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Coupled-reaction-channel study of the 12C(α,8Be) reaction and the 8Be + 8Be optical potential
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Background: Given the established 2α structure of 8Be, a realistic model of four interacting α clusters must
be used to obtain a 8Be + 8Be interaction potential. Such a four-body problem poses a challenge for the
determination of the 8Be + 8Be optical potential (OP) that is still unknown due to the lack of the elastic 8Be + 8Be
scattering data.
Purpose: To probe the complex 8Be + 8Be optical potential in the coupled-reaction-channel (CRC) study of the
α transfer 12C(α,8Be) reaction measured at Eα = 65 MeV and to obtain the spectroscopic information on the
α + 8Be cluster configuration of 12C.
Method: The three- and four-body continuum-discretized coupled-channel (CDCC) methods are used to
calculate the elastic α + 8Be and 8Be + 8Be scattering at the energy around 16 MeV/nucleon, with the breakup
effect taken into account explicitly. Based on the elastic cross section predicted by the CDCC calculation, the
local equivalent OP’s for these systems are deduced for the CRC study of the 12C(α,8Be) reaction.
Results: Using the CDCC-based OP’s and α spectroscopic factors given by the cluster model calculation, a good
CRC description of the α transfer data for both the 8Be + 8Be and 8Be + 8Be∗

2+ exit channels is obtained without
any adjustment of the (complex) potential strength.
Conclusion: The α + 8Be and 8Be + 8Be interaction potential can be described by the three- and four-body
CDCC methods, respectively, starting from a realistic α + α interaction. The α transfer 12C(α,8Be) reaction
should be further investigated not only to probe of the 4α interaction but also the cluster structure of 12C.

DOI: 10.1103/PhysRevC.102.024622

I. INTRODUCTION

The α-cluster structure established for different excited
states in several light nuclei like 12C or 16O has inspired
numerous experimental and theoretical studies, especially,
the direct nuclear reactions measured with 12C as projectile
and/or target [1]. Given the cluster states above the α-decay
threshold of 12C, some direct reactions with 12C were shown
to produce both the free α particle and unstable 8Be in the exit
channel [2–4]. Consequently, the knowledge of the α + 8Be
and 8Be + 8Be interaction potentials should be important for
the studies of such reactions within the distorted-wave Born
approximation (DWBA) or coupled-reaction-channel (CRC)
formalism.

Given a well-established 2α-cluster structure of the un-
bound 8Be nucleus, the 8Be + 8Be interaction potential poses
a four-body problem which is a challenge for the determina-
tion of the 8Be + 8Be optical potential (OP) that cannot be
deduced from a standard optical model (OM) analysis because
of the lack of the elastic 8Be + 8Be scattering data. The knowl-
edge about the α + 8Be and 8Be-nucleus OP’s should be also
important for the studies of those direct reaction processes that
produce 8Be fragments in the exit channel [5–7]. Although
the α-nucleus and nucleus-nucleus OP’s are proven to be well
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described by the double-folding model (DFM) using the accu-
rate ground-state densities of the colliding nuclei and a realis-
tic density-dependent nucleon-nucleon (NN) interaction (see,
e.g., Refs. [8–12]), the DFM cannot be used to calculate the
α + 8Be and 8Be + 8Be OP’s because of a strongly deformed,
extended two-center density distribution of 8Be. In general,
one could think of the triple- and quadruple folding models for
the α + 8Be and 8Be + 8Be potentials, respectively, but these
will surely be complicated and involve much more tedious
calculation in comparison with the standard DFM method.
Although some phenomenological OP’s are available in the
literature for 7Li and 9Be, two nuclei neighboring 8Be, a
strongly (two-center) deformation of the unstable 8Be nucleus
casts doubt on the extrapolated use of these potentials for the
8Be + 8Be and 8Be-nucleus systems.

Given a very loose (unbound) 8Be nucleus that breaks up
promptly into 2α particles, we determine in the present work
the 8Be + 8Be OP using the continuum-discretized coupled-
channel (CDCC) method which was developed to take into
account explicitly the breakup of the projectile and/or target.
A textbook example is a direct reaction induced by deuteron,
which is loosely bound and can be, therefore, easily broken up
into a pair of free proton and neutron. Originally, the deuteron
breakup states were included in terms of a discretized con-
tinuum by the CDCC method (see, e.g., Refs. [13–15] for
reviews). In the recent version of the CDCC theory, the con-
tinuum of deuteron is approximated by the square-integrable
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functions corresponding to positive energies. As a result, this
approach can be well extended to study elastic scattering of
exotic nuclei that have rather low breakup energies (typical
examples are 6He and 11Be).

The first developments of the CDCC method were done in
the framework of a three-body system where the projectile is
seen as a two-body nucleus and target is assumed to be struc-
tureless, being in its ground state. More recently, four-body
calculations were developed, for either a three-body projectile
on a structureless target [16] or a two-body projectile and
a two-body target [17]. The latter approach is highly time
consuming but was successfully applied to study 11Be +d
scattering in terms of 11Be = 10Be +n and d = p + n. The
goal of the present study is to determine the 8Be + 8Be OP
based on the elastic-scattering matrix predicted by the four-
body CDCC calculation of four interacting α clusters. While
such a 4α model is not appropriate for the spectroscopy of
16O [17], the derived OP for elastic 8Be + 8Be scattering is
expected to be reliable. The only input for the present 4α

CDCC calculation is a realistic α + α interaction potential.
Although 8Be is particle unstable, its half-life around

10−16s is long enough for the 8Be-nucleus OP to contribute
significantly to a direct reaction that produces 8Be in the
exit channel, like the α transfer 12C(α,8Be) reaction. This
particular reaction was shown to be a good tool for the study
of the high-lying or resonance states of 16O [18,19] and to de-
termine the α cluster configurations of this nucleus [18,20,21].
Because of the unbound structure of 8Be, the direct reaction
reactions A(α, 8Be)B usually have a very low cross section
(of a few tens microbarn), but they are extremely helpful
for the study of the α-cluster structure of the target nuclei
[22]. In particular, the α spectroscopic factors of different
cluster states were deduced from these measurements at the
α incident energies of 65 to 72.5 MeV.

In the present work, the α + 8Be and 8Be + 8Be optical
potentials deduced from the scattering wave functions given
by the 3- and 4α CDCC calculations are used as the core-core
and the exit OP, respectively, in the CRC study of 12C(α,8Be)
reaction measured at 65 MeV [22]. The OP of the entrance
channel is calculated in the DFM using the density-dependent
CDM3Y6 interaction that was well tested in the mean-field
studies of nuclear matter as well as in the OM studies of
the elastic α-nucleus scattering [9,11], and it accounts well
for the elastic α + 12C scattering data measured at 65 MeV
[23,24]. The α spectroscopic factors of the α + 8Be cluster
configurations of 12C are taken from the results of the complex
scaling method (CSM) by Kurokawa and Kato [25].

II. THREE- AND FOUR-BODY CDCC METHODS

We discuss here the CDCC method used to determine
the α + 8Be and 8Be + 8Be optical potentials, where the α

particles are treated as structureless and interacting with each
other through a (real) potential vαα (r). The Hamiltonian of the
α + α system is given by

Hαα (r) = Tr + vαα (r), (1)

where Tr is the relative kinetic energy. There are two ver-
sions of the α + α potential [26,27] parametrized in terms

of Gaussians amenable for the present CDCC calculation.
In the present work, we have chosen the α + α potential
suggested by Ali and Bodmer [26] (referred to hereafter as
AB potential). The AB potential simulates the Pauli blocking
effect by a repulsive core that makes this potential much
shallower than the deep α + α potential suggested by Buck
et al. [27]. Both potentials reproduce equally well the α + α

phase shifts, and they were shown by Baye [28] to be linked
by a supersymmetric transformation. The Buck potential,
however, contains some deeply bound states (two states with
� = 0 and one with � = 2), which do not have physical
meaning but simulate the so-called Pauli forbidden states [29]
in the microscopic α + α model. As long as the two-body
α + α system is considered, the choice of either AB or Buck
potential is not crucial. However, when dealing with more
than two α clusters, the forbidden states have to be removed
as they produce spurious states in a multicluster system like
α + 8Be or 8Be + 8Be. There are two methods to remove the
forbidden states in the multicluster systems: either to apply
the pseudostate method [30] or to use the supersymmetric
transformation [28]. These two techniques, however, give
rise to a strong angular-momentum dependence of the α + α

potential that cannot be used in most of the multicluster
models. Among the 3α models, only the hypersperical method
and Faddeev method are able to use the deep α + α potential
with an exact removal of the α + α forbidden states. This
is why other studies of the 3α and 4α systems [17,31–33]
have used only the �-independent AB potential. In the present
work, we perform the CDCC calculation of the α + 8Be and
8Be + 8Be optical potentials using the AB potential of the
α + α interaction, so that the spurious effects arising from the
Pauli forbidden states can be avoided.

The present CDCC method is based on the eigenstates
��m

λ (r) of the Hamiltonian (1) which can be written as

��m
λ (r) = 1

r
u�

λ(r)Y�m(r̂),

where � is the relative orbital momentum of the α + α system.
The radial wave functions u�

λ(r) of the two-α state λ are
expanded over a basis of N orthonormal functions ϕi(r),

u�
λ(r) =

N∑
i=1

f �
λ,iϕi(r), (2)

where f �
λ,i are determined by diagonalizing the eigenvalue

problem, ∑
j

f �
λ, j

(〈ϕi|Hαα|ϕ j〉 − E �
λδi j

) = 0. (3)

The eigenvalues with E �
λ < 0 correspond to the physical

bound states, while those with E �
λ > 0 are referred to as the

pseudostates, which are used in the present CDCC method to
simulate the breakup of 8Be. Note that there is only a small
number of physical states in a CDCC calculation (often one
for exotic nuclei). Although 8Be is unbound, its energy is very
close to the α + α threshold, and the lifetime is long enough
to use a quasibound approximation for the ground state (g.s.).
Equations (2) and (3) are general for any choice of the basis
functions ϕi(r). We use here a Lagrange-mesh basis [34]
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FIG. 1. The α configurations and coordinates used for α + 8Be
(a) and for 8Be + 8Be (b).

derived from the Legendre polynomials, and the calculation
of matrix elements in Eq. (3) is fast and accurate. We refer the
reader to Ref. [34] for more details and the application of the
Lagrange-mesh basis.

The α + 8Be and 8Be + 8Be systems are described by the
3α and 4α Hamiltonians, respectively, as

H3 = Hαα (r1) + TR +
2∑

i=1

vαα (S1i )

H4 = Hαα (r1) + Hαα (r2) + TR +
2∑

i, j=1

vαα (|S1i − S2 j |), (4)

where R is the projectile-target coordinate and (r1, r2) are the
internal coordinates of the 8Be nuclei, as illustrated in Fig. 1.
Coordinates S1i and S2 j are expressed as a function of (R, r1)
and of (R, r2), respectively.

In the CDCC approximation, the α + 8Be wave function
for a total angular moment J and parity π is written as

	JMπ (R, r1) =
∑
λ�L

gJπ
λ�L(R)

[
��

λ(r1) ⊗ YL(R̂)
]

JM, (5)

where the summation over the pseudostates λ is truncated at
a given energy Emax. The 8Be + 8Be wave functions involve
four α clusters and can be expressed as

	JMπ (R, r1, r2) =
∑
λ1�1

∑
λ2�2

∑
IL

gJπ
λ1�1λ2�2IL(R)

× [[
�

�1
λ1

(r1) ⊗ �
�2
λ2

(r2)
]

I ⊗ YL(R̂)
]

JM, (6)

where the parity conservation imposes (−1)L = (−1)I . There
are two parameters defining the CDCC basis: the maximum
8Be angular momentum �max and maximum pseudostate en-
ergy Emax. The physical quantities obtained from the CDCC
calculation (scattering matrix, elastic cross section, and lo-
cal equivalent OP) must be converged with respect to these
parameters. In practice, the 4α calculations involve many
channels and are, therefore, highly time consuming [17].

The relative radial wave functions χ Jπ
c (R), with the indices

c = (λ�L) for α + 8Be and c = (λ1�1λ2�2IL) for 8Be + 8Be,
are obtained from the solutions of the following coupled-
channel equations:{

− h̄2

2μ

[
d2

dR2
− L(L + 1)

R2

]
+ Ec1 + Ec2 − Ec.m.

}
χ Jπ

c (R)

+
∑

c′
V Jπ

cc′ (R)χ Jπ
c′ (R) = 0, (7)

where μ is the reduced mass, Ec.m. is the center-of-mass
energy, and Ec1 and Ec2 are the excitation energies of the two
interacting nuclei, separated by the distance R as shown in
Fig. 1. The coupling potentials V Jπ

cc′ (R) are determined by the
method explained in Refs. [17,35]. The system of the coupled-
channel equations (7) is solved using the R-matrix method,
which provides explicitly the scattering matrix and the associ-
ated wave functions [36,37]. Although the AB potential [26] is
real, it consistently reproduces the experimental α + α phase
shifts up to about 20 MeV. In the present CDCC approach, the
loss of flux from the elastic-scattering channel is due entirely
to the breakup channels, and the local equivalent α + 8Be and
8Be + 8Be optical potentials are therefore complex. Due to
the strong 2α structure of 8Be it is likely that these breakup
channels represent the main source of the absorption.

III. RESULTS AND DISCUSSION

A. Local equivalent OP for the α + 8Be and 8Be + 8Be systems

The main goal of our study is to determine the local (J-
independent) equivalent optical potential U for the α + 8Be
and 8Be + 8Be systems at the considered energies, based on
the scattering wave functions given by the solutions of the
CDCC equations (7). The main requirement for this procedure
is that the solutions χ Jπ of the one-channel OM equation with
the optical potential U

[Ec.m. − TR − U (R)]χ Jπ (R) = 0 (8)

give the cross section of the elastic α + 8Be or 8Be + 8Be
scattering close to that given by the 3α or 4α CDCC calcula-
tion (7), especially, the cross section at forward angles which
is sensitive to the surface part of the 3α or 4α interaction
potential. We briefly discuss the two approaches used in the
present work for this purpose.

(i) The quantum-mechanically consistent method using the
matrix inversion was suggested in Refs. [17,38] to derive
a local equivalent potential (LEP) that exactly reproduces
the elastic cross section given by the CDCC calculation (7).
However, this LEP has two major drawbacks that prevent its
further use in the direct nuclear reaction calculation. Namely,
the derived LEP strongly depends on the total angular mo-
mentum J , and its radial dependence has the singularities
caused by the nodes of the scattering wave functions. These
problems can be handled by the method proposed in Ref. [38]
which averages the obtained LEP over the angular momenta
to obtain a smooth J-independent OP without discontinuity
that approximately reproduces the CDCC elastic-scattering
cross section. The recent four-body CDCC calculation [17]
has shown that such an averaging method to a fairly good
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TABLE I. WS parameters (9) of UWSD given by the method (ii) based on the OM fit to the elastic 8Be + 8Be and α + 8Be cross sections at
Ec.m. = 41.3 and 43.3 MeV, predicted by the 4α and 3α CDCC calculations (7), respectively. JV and JW are the volume integrals per interacting
nucleon pair of Re UWSD and Im UWSD, respectively. JVLEP and JWLEP are those of ULEP given by the method (i).

Vv (Wv ) Rv(w) av(w) Vd (Wd ) Rd (s) ad (s) −JV (JW ) −JVLEP (JWLEP )
(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV fm3) (MeV fm3)

8Be + 8Be (Ec.m. = 41.3 MeV)
Real 10.42 3.652 0.190 5.785 4.811 0.562 95.88 100.0
Imag. 1.486 7.225 0.183 0.567 2.665 1.564 46.87 29.71

4He + 8Be (Ec.m. = 43.3 MeV)
Real 1.535 5.182 0.123 5.397 2.584 0.997 111.0 97.62
Imag. 10.09 1.771 0.125 8.201 3.299 0.120 24.56 33.95

approximation determines the local J-independent OP. The
complex OP derived using this approach is denoted here-
after as ULEP, with its imaginary part WLEP originating from
the breakup channels included in the CDCC calculation (7).
We have first performed the CDCC calculation (7) for the
elastic α + 8Be and 8Be + 8Be scattering at Ec.m. = 43.3 and
41.3 MeV, respectively, using the AB potential [26] for the
α + α interaction. The maximum angular momentum of the
α + α system is �max = 2, and the maximum pseudostate
energy is Emax = 10 MeV. These cutoff values were well
tested to ensure the convergence of both the elastic cross
section and ULEP. The complex ULEP for the α + 8Be and
8Be + 8Be systems were obtained first in a Lagrange mesh
[38] and then interpolated into the smooth shapes for use as
the external input of the complex OP in the CRC calculation.

(ii) The standard OM method can also be used to determine
a phenomenological J-independent OP in the conventional
Woods-Saxon (WS) form, with its parameters adjusted to
obtain a good OM fit to the elastic cross section given by
the 3α or 4α CDCC calculation. We have assumed in the
present work the following (volume + surface) WS form for
the complex OP of the α + 8Be and 8Be + 8Be systems at the
energies under study, denoted hereafter as UWSD,

−UWSD(R) = Vv fv (R) − 4Vd ad
dfd (R)

dR

+ i

[
Wv fw(R) − 4Wd as

dfs(R)

dR

]
,

where fx(R) = 1

1 + exp[(R − Rx )/ax]
, x = v, d,w, s. (9)

The elastic 8Be + 8Be and α + 8Be cross sections at Ec.m. =
41.3 and 43.3 MeV, predicted by the 4α and 3α CDCC cal-
culations (7), respectively, have been used in the method (ii)
as the “experimental data” with the uniform 10% uncertainties
for the OM analysis to determine the WS parameters of UWSD.
We found quite a shallow WS potential that gives a good
agreement of the OM result with the CDCC elastic cross
section (see the OP parameters in Table I).

The radial shapes of both ULEP and UWSD potentials for the
8Be + 8Be system at Ec.m. = 41.3 MeV are shown in Fig. 2,
the use of the shallow AB potential of the α + α interaction is
shown to result on quite a shallow potential ULEP. A moderate

oscillation of ULEP is seen at small radii that might originate
from the J dependence of the exact LEP discussed above.
The best-fit WS complex OP determined by the method (ii)
has the strength of Re UWSD enhanced slightly at the surface
(R ≈ 5 fm) and a weak and smooth Im UWSD. One can see
in Table I that the volume integrals of Re UWSD and Im
UWSD are close to those of Re ULEP and Im ULEP, which
indicates that the OP’s given by both methods belong to about
the same potential family. The results of the CDCC calcu-
lation (7) for the elastic 8Be + 8Be and α + 8Be scattering
at Ec.m. = 41.3 and 43.3 MeV, respectively, are compared in
Fig. 3 with the results of the OM calculation (8) using ULEP

and UWSD. The OM results given by both OP’s agree fairly
good with the CDCC prediction at forward angles, while at
medium and large angles the phenomenological UWSD deter-
mined by the method (ii) better reproduces the CDCC cross
sections. The agreement with the CDCC results becomes

FIG. 2. Complex OP for the elastic 8Be + 8Be scattering at
Ec.m. = 41.3 MeV given by the method (i) and that in the WS form
(9) given by the method (ii).
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FIG. 3. The CDCC prediction for the elastic 8Be + 8Be (upper
panel) and α + 8Be (lower panel) scattering at Ec.m. = 41.3 and
43.3 MeV, in comparison with the corresponding OM results given
by the optical potentials ULEP and UWSD determined by the methods
(i) and (ii), respectively.

worse at large angles, and it might be due to the nonlocality
effects.

We note further that the method (i) fails to derive a smooth
�-independent ULEP based on the CDCC results obtained
with the deep Buck α + α potential. Namely, the obtained
�-independent ULEP turns out to be deeper but strongly os-
cillatory, and it gives the elastic cross section substantially
different from that given by the CDCC calculation. Such a
failure of the �-independent ULEP based on the Buck potential
is presumably caused by the Pauli forbidden states, and this re-
mains an unsolved problem for the present 4α CDCC method.
Therefore, we deem hereafter reliable only the CRC results
obtained with α + 8Be and 8Be + 8Be OP’s derived based on
the CDCC elastic cross section obtained with the AB potential
of the α + α interaction.

B. CRC study of the 12C(α,8Be) reaction

The α + 8Be and 8Be + 8Be optical potentials determined
by the methods (i) and (ii) have been further used as the po-
tential inputs for the CRC study of the α transfer 12C(α,8Be)
reaction measured at Eα = 65 MeV [22]. We briefly recall the
multichannel CRC formalism, to illustrate how the OP’s of the
α + 8Be and 8Be + 8Be systems enter the CRC calculation of

FIG. 4. Cluster configurations in the entrance and exit channels
of the 12C(α,8Be) reaction, and the corresponding coordinates used
for the inputs of the potentials in the CRC calculation.

the α transfer cross section. In general, the CRC equation for
the initial channel β of the transfer reaction can be written as
[39,40]

[Eβ − Tβ − Uβ (R)]χβ (R)

=
∑
β ′ �=β

{〈β|W |β ′〉 + 〈β|β ′〉[Tβ ′ + Uβ ′ (R′) − Eβ ′ ]}χβ ′ (R′).

(10)

Without coupling to the inelatic-scattering channels, the in-
dices β and β ′ in Eq. (10) stand for the initial α + 12C and final
8Be + 8Be partitions of the α transfer reaction, respectively, as
shown in Fig. 4. In the present CRC analysis, the index β ′ is
used to identify both the 8Be + 8Beg.s. and 8Be + 8Be∗

2+ exit
channels of the final partition. The distorted waves χβ and χβ ′

are given by the optical potentials Uβ and Uβ ′ of the α + 12C
and 8Be + 8Be systems, respectively. The α transfer proceeds
via the transfer interaction W which is determined in the post
form [39,40] as

W = Vα−12C(r) + [Uα+8Be(Rcc) − U8Be+8Be(R′)], (11)

with the radii of the potentials illustrated in Fig. 4. Here
Vα−12C(r) is the potential binding the α cluster to the 8Be
core in the ground state of 12C. The difference between the
core-core OP and that of the final partition, Uα+8Be(Rcc) −
U8Be+8Be(R′), is the complex remnant term of W . The CRC
equations (10) are solved iteratively using the code FRESCO
written by Thompson [41], with the complex (nonlocal) rem-
nant term and boson symmetry of the identical 8Be + 8Be
system properly taken into account. One can see that the
8Be + 8Be OP enters the CRC calculation of the α transfer
12C(α,8Be) reaction as the input of both the remnant term
and the OP of the final partition. Therefore, it can be tested
indirectly based on the CRC description of the α transfer data.

The OP of the initial partition Uα+12C has its real part given
by the double-folding model using the density-dependent
CDM3Y6 interaction [11], and imaginary part chosen in the
WS shape, with the parameters fine tuned to the best CRC
fit of the elastic α + 12C scattering data measured at Eα =
65 MeV [23,24]. A reasonably good CRC description of the
elastic α + 12C scattering data at Eα = 65 MeV (see Fig. 5) is
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FIG. 5. CRC description of the elastic α + 12C scattering at Eα =
65 MeV given by the (unrenormalized) real folded OP and imaginary
OP chosen in the WS form [11], in comparison with the data taken
from Refs. [23,24].

achieved without renormalizing the strength of the real OP. In
principle, we could also think of using the 4α CDCC method
to predict the α + 12C OP at the considered energy. However,
Suzuki et al. [42] have shown that the use of a local α + α

potential (that properly reproduces the experimental α + α

phase shifts) cannot provide a proper 3α description of both
the ground state and 0+

2 excitation (known as Hoyle state)
of 12C. This problem could only be solved by introducing a
microscopically founded nonlocal α + α force that mimics
the interchange of three α clusters in the phase space allowed
by the Pauli principle [42]. The use a nonlocal α + α inter-
action remains beyond the scope of the present four-body
CDCC method [17]. On the other hand, the elastic α + 12C
scattering at energies above 10 MeV/nucleon is proven to be
strongly refractive [9,11,43], with a far-side dominant elastic
cross section at large angles typical for the nuclear rainbow,
which can be well described by the deep (mean-field type)
real OP predicted by the double-folding model [11,43].

For the α transfer reaction, the initial (internal) state of
the α cluster bound in 12C is assumed to be 1s state. Then
the relative-motion wave function �NL(r) of the α + 8Be
configuration in the 12C target (L-wave state) has the number
of radial nodes N determined by the Wildermuth condition
[39], so that the total number of the oscillator quanta N is
conserved,

N = 2(N − 1) + L =
4∑

i=1

2(ni − 1) + li, (12)

where ni and li are the principal quantum number and orbital
momentum of each constituent nucleon in the α cluster.
�NL(r) is obtained in the potential model using Vα−12C(r)
chosen in the WS shape, with its radius and diffuseness fixed
as R = 3.767 fm and a = 0.65 fm, and the WS depth (V =
51.6 MeV) adjusted to reproduce the α separation energy of

12C. Because the ground state of 8Be is unbound by 92 keV,
we have used in the present CRC calculation a quasibound
approximation for 8Be similar to that used for the ground
state of 8Be in the CDCC calculation as discussed in Sec. II
to describe the formation of 8Be on the exit channel of the
α transfer reaction. For this purpose, the repulsive core of
the AB potential was slightly weakened to give the (1s) state
�α (r′) of the α cluster in 8Be a quasibinding energy of
0.01 MeV. The cluster wave functions �NL(r) and �α (r′) are
used explicitly in the calculation of the complex nonlocal α

transfer form factor,

〈β ′|W |β〉∼〈[�α (r′) ⊗YLβ′ (R̂
′)]Jβ′ |W |[�NL(r) ⊗YLβ

(R̂)]Jβ
〉,
(13)

where Lβ and Lβ ′ are the relative orbital momenta of the
initial and final partitions. The wave functions of 8Be core in
the initial and 4He core in the final partitions are omitted in
(13) because they are spectators and do not contribute to the
transfer [40].

The CRC calculation of the α transfer 12C(α,8Be) reaction
requires the input of the spectroscopic factor of the α cluster
in 8Be which is naturally assumed to be unity and that of the
cluster configuration α + 8Be in 12C. The latter is determined
as Sα = |ANL|2, where the spectroscopic amplitude ANL is
given by the dinuclear overlap

〈8Be | 12C〉 = ANL�NL(r). (14)

Because two different exit channels of the α transfer
12C(α,8Be) reaction were identified, with the emitting 8Be
being in the ground state and excited 2+ state [22], one needs
to evaluate (14) for the two configurations α + 8Beg.s. and
α + 8Be∗

2+ , which are associated with �N=3,L=0(r) (S wave)
and �N=2,L=2(r) (D wave). In general, one can treat these two
Sα values as free parameters to be adjusted by the best DWBA
or CRC fit to the α transfer data. Instead of this procedure, we
have adopted in the present work the Sα values predicted for
these configurations by Kurokawa and Kato using the CSM
method [25]. Namely, Sα (g.s.) ≈ 0.36 and Sα (2+) ≈ 0.38,
which are rather close to the spectroscopic factors predicted
recently by other cluster models [44,45]. Note that the Sα

values used in our CRC calculation are also close to those
extracted from the DWBA analysis of the 8Be transfer reaction
24Mg(α, 12C) 16O [46]. The same 8Be + 8Be OP has been used
for both 8Be + 8Beg.s. and 8Be + 8Be∗

2+ exit channels of the
final partition (see more discussion below).

The CRC results for the α transfer 12C(4He, 8Be) reaction
at Eα = 65 MeV to the ground state of 8Be are compared with
the measured data [22] in Fig. 6. One can see that the CDCC-
based optical potentials of the 8Be + 8Be partition [ULEP and
UWSD determined by the methods (i) and (ii), respectively]
give a good CRC description of the α transfer data without
any adjustment of its strength, using Sα (g.s.) = |A30|2 ≈ 0.36
taken from the results of the CSM calculation [25]. With a
better OM description of the CDCC elastic cross section given
by the UWSD potential (see Fig. 3), the CRC cross section
given by UWSD also agrees slightly better the measured α

transfer data.
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FIG. 6. CRC description of the α transfer reaction
12C(α,8Be) 8Beg.s. measured at Eα = 65 MeV [22], using the
α spectroscopic factor Sα (g.s.) ≈ 0.36 taken from the CSM
calculation [25]. The CRC results obtained with the CDCC-based
optical potentials UWSD and ULEP for the 8Be + 8Be partition are
shown as the solid and dash-dotted lines, respectively. The dashed
line is the CRC result obtained with the WS potential UIntWS,
interpolated from the OP’s adopted for the 7,8Be + 9Be systems at
the nearby energies [5].

Because the 8Be + 8Be OP is unknown so far, a practical
assumption is to estimate it from the phenomenological OP’s
adopted for the neighboring 9,7Be isotopes. For example, the
proton transfer reaction 7Li(10B, 9Be) 8Be was measured by
Romanyshyn et al. [5], and a deep WS potential was deduced
for the real OP of the 8Be + 9Be system at Ec.m. = 31.7 MeV
from the DWBA analysis of transfer data. Interestingly, these
authors also found that the 8Be + 9Be OP is quite close to
that adopted earlier for the 7Be + 9Be system (see Fig. 10 of
Ref. [5]). Therefore, one might expect the 8Be + 8Be OP to be
close to the WS optical potentials adopted for the 7,8Be + 9Be
systems. To explore the reliability of this practical approach,
we have interpolated the 8Be + 8Be OP from those of the
7,8Be + 9Be systems adopted in Ref. [5] and denoted it as
UIntWS, with Vv = 155.0 MeV, Rv = 3.152 fm, av = 0.768 fm
and Wv = 13.5 MeV, Rw = 5.6 fm, aw = 0.768 fm. The use
of UIntWS in the CRC calculation of the 12C(α,8Be) reaction
completely fails to account for the data (see dashed lines in
Fig. 6). In fact, the spectroscopic factor Sα (g.s.) taken from
Ref. [25] must be scaled by a factor of 25, so that the CRC
cross section obtained with UIntWS can be comparable with the
measured α transfer data.

We have also performed the CRC calculation of the
12C(α,8Be) 8Be∗ reaction at Eα = 65 MeV with one emitting
8Be nucleus being in its 2+ state (Ex ≈ 2.94 MeV). Although
the 2+ state of 8Be is a broad resonance, its 2α-cluster
structure remains similar to that of the ground state, and
the α transfer cross section measured for the 2+ state is of
about the same strength as that measured for the ground state
as shown in Figs. 6 and 7. The α spectroscopic factors Sα

FIG. 7. The same as Fig. 6 but for the α transfer reaction with
one emitting 8Be nucleus being in its 2+ state (Ex ≈ 2.94 MeV),
using the α spectroscopic factor Sα (2+) ≈ 0.38 taken from the CSM
calculation [25].

predicted by the CSM calculation [25] are also close for
both the ground and 2+ states. It is, therefore, reasonable to
use the same CDCC-based 8Be + 8Be OP for the partition
8Be + 8Be∗

2+ in the exit channel. The results of the CRC
calculation are compared with the data [22] in Fig. 7, and one
can see that the (unrenormalized) CDCC-based 8Be + 8Be OP
also delivers a good description of the α transfer data using
Sα (2+) = |A22|2 ≈ 0.38 given by the CSM calculation [25].
The use of UIntWS for the 8Be + 8Be OP in the CRC calculation
also strongly underestimates the α transfer data (see dashed
line in Fig. 7).

In conclusion, a good CRC description of the measured
12C(α,8Be) data has been obtained with the 8Be + 8Be OP’s
determined by the methods (i) and (ii) from the elastic
8Be + 8Be cross section given by the 4α CDCC calculation
and with the α spectroscopic factors given by the CSM
calculation [25]. The fact that no adjustment of the potential
strength of ULEP and UWSD was necessary suggests that the 4α

CDCC method is a reliable approach to study the 8Be + 8Be
system. These results also show that, despite the short lifetime
of 8Be, the α transfer 12C(4He, 8Be) reaction is very sensitive
to the OP of the 8Be + 8Be partition. The measured α transfer
data clearly prefer the shallow OP based on the result of the
4α CDCC calculation using the AB potential of the α + α

interaction [26] over the deep WS potential interpolated from
those adopted for the 7,8Be + 9Be systems [5].

IV. SUMMARY

The three-body and recently suggested four-body CDCC
methods [17] have been used to predict the elastic α + 8Be
and 8Be + 8Be scattering at Ec.m. = 43.3 and 41.3 MeV, re-
spectively, using the α + α interaction suggested by Ali and
Bodmer [26] that well reproduces the experimental α + α

phase shifts. The elastic cross sections predicted by the CDCC
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calculation were used to determine the local OP’s of the
α + 8Be and 8Be + 8Be systems.

The CDCC-based α + 8Be and 8Be + 8Be OP’s are further
used as the inputs of the core-core OP and that of the final
partition, respectively, in the CRC study of the α transfer
12C(α,8Be) reaction measured at Eα = 65 MeV [22], with
the emitting 8Be being in both the ground state and 2+ state.
These α transfer data are well reproduced by the CRC results
obtained with the CDCC-based OP’s and α spectroscopic
factors of the 8Be + 8Beg.s. and 8Be + 8Be∗

2+ configurations in
12C taken from the CSM cluster calculation [25].

As alternative to the shallow (surface-type) 8Be + 8Be OP
determined from the elastic 8Be + 8Be cross section predicted
by the 4α CDCC calculation, a deep WS potential with param-
eters interpolated from the OP’s adopted for the 7,8Be + 9Be
systems at the nearby energies [5] has been used in the CRC
calculation, and it grossly underestimates the α transfer data.
This might due to the fact that 7Be and 9Be are well-bound
nuclei, and the breakup effect is therefore much weaker than
that of the unbound 8Be.

We conclude that the α + 8Be and 8Be + 8Be optical po-
tentials can be determined from the elastic-scattering cross

section predicted, respectively, by the 3α and 4α CDCC
calculations using the realistic α + α interaction that prop-
erly reproduces the experimental α + α phase shifts [26].
The present CRC study should motivate further theoretical
and experimental studies of the α transfer 12C(α,8Be) re-
action as a probe of the 4α interaction and the α-cluster
structure of 12C.
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