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Merging of transport theory with the time-dependent Hartree-Fock approach:
Multinucleon transfer in U+U collisions
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Multinucleon transfer mechanism in the collision of 238U + 238U system is investigated at Ec.m. = 833 MeV
in the framework of the quantal diffusion description based on the stochastic mean-field approach. Double cross
sections σ (N, Z ) as a function of the neutron and proton numbers, the cross sections σ (Z ) and σ (A) as a function
of the atomic numbers and the mass numbers are calculated for production of the primary fragments. The
calculation indicates the 238U + 238U system may be located at an unstable equilibrium state at the potential
energy surface with a slightly negative curvature along the β stability line on the (N, Z ) plane. This behavior
may lead to rather large diffusion along the β stability direction.
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I. INTRODUCTION

It has been recognized that multinucleon transfer in heavy-
ion collisions involving massive nuclei provide a suitable
mechanism for synthesizing new neutron-rich heavy nuclei
[1–14]. For this purpose, experimental investigations have
been carried out in heavy-ion collisions with actinide targets
near barrier energies [15–18]. Collisions of massive systems
near barrier energies predominantly lead to dissipative deep-
inelastic reactions and quasifission reactions. In dissipative
collisions the most part of the bombarding energy is converted
into the internal excitations, and the multinucleon transfer
occurs between the projectile and target nuclei. A number of
experimental and theoretical investigations have been made of
the multinucleon transfer mechanism in heavy-ion collisions
near barrier energies. The multidimensional phenomenologi-
cal Langevin-type dynamical approaches have been developed
for describing dissipative collisions between massive nuclear
systems [13,19–22]. These phenomenological models provide
a qualitative and in some cases semiquantitative description
of the transfer process. For many years, the time-dependent
Hartree-Fock (TDHF) approach has been used for describing
the deep-inelastic collisions and the quasifission reactions
[11,23–28]. The TDHF provides a microscopic description in
terms of Skyrme-type energy density functionals. The mean-
field theory provides a good description for the most probable
dynamical path of the collective motion at low-energy heavy-
ion collisions including the one-body dissipation mechanism.
However, the mean-field theory severely underestimates the
fluctuations around the most probable collective path. The
particle number projection method of the TDHF indeed shows
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the fragment mass and charge distributions are largely un-
derestimated for strongly damped collisions [8,29]. The frag-
ment mass and charge distributions observed in symmetric
collisions provide a good example for the shortcoming of
the mean-field description. In the TDHF calculations of the
symmetric collisions, the identities of the projectile and target
are strictly preserved, i.e., the mass and charge numbers of the
final fragments are exactly same as of those at the initial frag-
ments. The experiments, on the other hand, exhibit broad mass
and charge distributions of final fragments around their initial
values. The dominant aspect of the data is a broad mass and
charge distribution around the projectile and target resulting
from multinucleon diffusion mechanism. The description of
such large fluctuations requires an approach beyond the mean-
field theory. The time-dependent RPA approach of Balian
and Veneroni provides a possible approach for calculating
dispersion of fragment mass and charge distributions and
dispersion of other one-body observables [30–34]. However,
this approach has severe technical difficulties in applications
to the collisions of asymmetric systems. In this work, we em-
ploy the quantal diffusion description based on the stochastic
mean-field (SMF) approach to calculate double cross sections
σ (N, Z ), the cross section as function of mass number σ (A),
and cross section as a function of the atomic number σ (Z )
of the primary fragments in the collisions of the symmetric
238U + 238U system at Ec.m. = 833 MeV [35,36]. In the quan-
tal diffusion description, the transport theoretical concepts are
merged with the mean-field description of the TDHF. As a
result, it is possible to calculate the transport coefficients of
macroscopic variables in terms of the mean-field properties
provided by the time-dependent wave functions of the TDHF,
which is consistent with the fluctuation-dissipation theorem
of the nonequilibrium statistical mechanics. In Sec. II, we
present a brief description of the quantal nucleon diffusion
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description of the multinucleon exchange. In Sec. III, we
present results of calculations of the cross sections for pro-
duction of the primary fragments, and conclusions are given
in Sec. IV. Some calculations details are provided in the
Appendixes.

II. QUANTAL DIFFUSION OF
MULTINUCLEON TRANSFERS

In the SMF approach, the dynamics of heavy-ion collisions
is described in terms of an ensemble of mean-field events.
Each event is determined by the self-consistent mean-field
Hamiltonian of that event with the initial conditions specified
by the thermal and quantal fluctuations at the initial state. We
consider uranium-uranium collisions at bombarding energies
near Coulomb barrier. During the collision, the projectile and
the target form a di-nuclear complex and interact mainly by
multinucleon exchanges. Because of the dinuclear structure,
rather than generating an ensemble of stochastic mean-field
events, it is possible to describe the dynamics in terms of
several relevant macroscopic variables, such as neutron and
proton numbers of the one side of the complex and relative
momentum of projectilelike and the targetlike fragments. It
is possible to deduce the Langevin-type transport description
for the macroscopic variables [37,38] and calculate transport
coefficients of the macroscopic variables in terms of the
TDHF solutions. In this manner, the SMF approach provides
a ground for merging transport theory with the mean-field
description. For the detailed description of the SMF approach
and the applications, we refer the reader to the previous pub-
lications [39–44]. Here we take the neutron Nλ

1 and the proton
Zλ

1 numbers of the projectilelike fragments as the macroscopic
variables. In each event λ, the neutron and proton numbers
are determined by integrating the nucleon density over the
projectile side of the window between the colliding nuclei,(

Nλ
1 (t )

Zλ
1 (t )

)
=

∫
d3r�[x′(t )]

(
ρλ

n (�r, t )

ρλ
p (�r, t )

)
, (1)

where x′(t ) = [y − y0(t )] sin θ + [x − x0(t )] cos θ . The (x, y)
plane represents the reaction plane with x axis being the beam
direction in the center-of-mass (COM) frame of the colliding
ions. The window plane is perpendicular to the symmetry
axis and its orientation is specified by the condition x′(t ) = 0.
In this expression, x0(t ) and y0(t ) denote the coordinates of
the window center relative to the origin of the COM frame,
θ (t ) is the smaller angle between the orientation of the sym-
metry axis and the beam direction. We neglect fluctuations
in the orientation of the window and determine the mean
evolution of the window dynamics by diagonalizing the mass
quadrupole moment of the system for each impact parameter
b or the initial orbital angular momentum �, as described in
Appendix A, of Ref. [40]. In terms of the TDHF description,
it is possible to determine time evolution of the rotation
angle θ (t ) of the symmetry axis. The coordinates x0(t ) and
y0(t ) of the center point of the window are located at the
center of the minimum density slice on the neck between
the colliding ions. Since uranium is a deformed nucleus, the
outcome of the collisions depends on the relative orientation

FIG. 1. The density profile and the collision geometry of the
238U + 238U collisions at Ec.m. = 833 MeV with the initial orbital
angular momentum � = 300h̄ at times t = 300 fm/c, t = 500 fm/c,
and t = 700 fm/c at tip-tip geometry (left panel) and side-side
geometry (right panel).

of the projectile and target. In the present work, we consider
two specific collision geometry: (i) the side-side collisions
in which deformation axes of the both the projectile and
the target are perpendicular to the beam direction and (ii)
the tip-tip is collisions in which deformation axes of the both
the projectile and the target are parallel to the beam direction.
As an example, Fig. 1 shows the density profile in the tip-tip
geometry (left panel) and in the side-side geometry (right
panel) of the 238U + 238U system at Ec.m. = 833 MeV with the
initial orbital angular momentum � = 300h̄ at times t = 300
fm/c, t = 500 fm/c, and t = 700 fm/c. The window plane
and symmetry axis of the dinuclear complex are indicated by
thick and dashed lines in the left panel of Fig. 1(b). In the
calculation of this figure and in the calculations presented in
the rest of the paper, we employ the TDHF code developed by
Umar et al. [45,46] using the SLy4d Skyrme functional [47].
In the following, all quantities are calculated for a given initial
orbital angular momentum �, but for the purpose of clarity of
expressions, we do not attach the angular momentum label to
the quantities. The quantities in Eq. (1)

ρλ
α (�r, t ) =

∑
i j∈α


∗α
j (�r, t ; λ)ρλ

ji

α
i (�r, t ; λ), (2)

are the neutron and proton densities in the event λ of the
ensemble. Here, and in the rest of the paper, we use the
notation α = n, p for the neutron and proton labels. According
to the main postulate of the SMF approach, the elements of the
initial density matrix are specified by uncorrelated Gaussian
distributions with the mean values ρ̄λ

ji = δ jin j and the second
moments determined by,

δρλ
jiδρ

λ
i′ j′ = 1

2δii′δ j j′ [ni(1 − n j ) + n j (1 − ni )], (3)
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where n j are the average occupation numbers of the single-
particle wave functions at the initial state. At zero initial
temperature, these occupation numbers are zero or one, and
at finite initial temperatures the occupation numbers are given
by the Fermi-Dirac functions. Here and below, the bar over the
quantity indicates the average over the generated ensemble.

Below, we briefly discuss the derivation of the Langevin
equations for the neutron and proton numbers of the projec-
tilelike fragments, for further details we refer the reader to
Refs. [39–42]. The rate of changes the neutron and the proton
numbers of the projectilelike fragment are given by,

d

dt

(
Nλ

1 (t )

Zλ
1 (t )

)
= −

∫
d3r�[x′(t )]

( �∇ · �jλn (t )

�∇ · �jλp (t )

)
. (4)

In obtaining this expression we neglect a term arising from the
rate of change of the position and the rotation of the window
plane and employ the continuity equation, with the fluctuating
neutron and proton current densities

�jλα (�r, t ) = h̄

m

∑
i j∈α

Im
(

∗α

j (�r, t ; λ) �∇
α
i (�r, t ; λ)ρλ

ji

)
. (5)

By carrying out a partial integration, we obtain a set of
coupled Langevin equations for the macroscopic variables
Nλ

1 (t ) and Zλ
1 (t ),

d

dt

(
Nλ

1 (t )

Zλ
1 (t )

)
=

∫
d3rg(x′)

(
ê · �jλn (�r, t )

ê · �jλp (�r, t )

)
=

(
vλ

n (t )

vλ
p(t )

)
, (6)

with ê as the unit vector along the symmetry axis with
components êx = cos θ and êy = sin θ . In the integrand, we
replace the δ function by a smoothing function δ(x′) → g(x′)
in terms of a Gaussian g(x) = (1/κ

√
2π ) exp (−x2/2κ2) with

dispersion κ . The Gaussian behaves almost like δ function for
sufficiently small κ . In the numerical calculations dispersion
of the Gaussian is taken in the order of the lattice side κ = 1.0
fm. The right-hand side of Eq. (6) defines the fluctuating drift
coefficients vλ

α (t ) for the neutrons and the protons. There are
two different sources for fluctuations of the drift coefficients:
(i) fluctuations due to different set of wave functions in each
event λ. This part of the fluctuations can be approximately
described in terms of the fluctuating macroscopic variables
as vλ

α (t ) → vα[Nλ
1 (t ), Zλ

1 (t )], and (ii) fluctuations introduced
by the stochastic part δρλ

ji = ρλ
ji − δ jin j of the density matrix

at the initial state. In this work, we consider small amplitude
fluctuations, and linearize the Langevin Eq. (6) around the
mean values of the macroscopic variables δNλ

1 = Nλ
1 − N1

and δZλ
1 = Zλ

1 − Z1. The mean values N1 = Nλ
1 and Z1 = Zλ

1
are determined by the mean-field description of the TDHF
approach. Tables I and II show the results of the TDHF calcu-
lations for the mean values for a set of observable quantities
in the collisions of 238U + 238U system at Ec.m. = 833 MeV
for the range initial orbital angular momentum � = (100 −
460)h̄.

TABLE I. Result of TDHF calculations for tip-tip collisions of
238U + 238U system at Ec.m. = 833 MeV for final values of mass
and charge of the projectilelike (Af

1 , Z f
1 ) and targetlike fragments

(Af
2 , Z f

2 ), final orbital angular momentum � f , total kinetic energy
(TKE), total excitation energy E∗, center of mass angle θc.m., and
laboratory scattering angles (θ lab

1 , θ lab
2 ) for a set initial orbital angular

momentum �i.

�i (h̄) A f
1 Z f

1 A f
2 Z f

2 � f (h̄) TKE E∗ θc.m. θ lab
1 θ lab

2

(MeV) (MeV) (deg) (deg) (deg)

100 238 92.0 238 92.0 73.4 527 306 158 48.3 9.55
120 238 92.0 238 92.0 95.4 514 319 154 49.6 11.5
140 238 92.0 238 92.0 114 505 328 149 50.4 13.6
160 238 92.0 238 92.0 132 521 312 149 51.7 13.7
180 238 92.0 238 92.0 153 510 323 138 51.3 18.5
200 238 92.3 238 91.7 172 515 317 132 50.8 20.9
220 238 92.0 238 92.0 177 525 318 129 50.4 22.4
240 238 92.0 238 92.0 182 552 281 126 51.6 24.1
260 238 91.6 238 92.4 185 577 256 123 52.2 25.6
280 238 92.0 238 92.0 189 595 238 120 51.6 27.4
300 238 92.0 238 92.0 201 616 217 116 51.2 29.3
320 238 92.0 238 92.0 225 625 208 113 50.1 31.0
340 238 92.0 238 92.0 245 645 188 109 49.5 32.8
360 238 92.0 238 92.0 271 654 179 106 48.3 34.6
380 238 92.0 238 92.0 333 714 119 101 47.8 37.7
400 238 92.0 238 92.0 374 751 82.3 98.4 47.5 39.5
420 238 92.0 238 92.0 429 797 35.9 96.2 47.4 41.4
440 238 92.0 238 92.0 439 785 48.1 93.4 45.8 42.5
460 238 92.0 238 92.0 491 819 14.1 91.4 45.5 44.1

The fluctuations evolve according to the linearized coupled
Langevin equations,

d

dt

(
δZλ

1

δNλ
1

)
=

(
∂vp

∂Z1
(Zλ

1 − Z1) + ∂vp

∂N1
(Nλ

1 − N1)
∂vn
∂Z1

(Zλ
1 − Z1) + ∂vn

∂N1
(Nλ

1 − N1)

)
+

(
δvλ

p(t )

δvλ
p(t )

)
,

(7)

where the derivatives of drift coefficients are evaluated at
the mean values N1 and Z1. The linear limit provides a
good approximation for small amplitude fluctuations and it
becomes even better if the driving potential energy has nearly
harmonic behavior around the mean values. The stochastic
part δvλ

α (t ) of drift coefficients given by,

δvλ
α (t ) = h̄

m

∑
i j∈α

∫
d3rg(x′)Im

(

∗α

j (�r, t )
�
e · �∇
α

i (�r, t )δρλ
ji

)
.

(8)

According to the basic postulate of the SMF approach the
stochastic elements of the initial density matrix δρλ

ji are spec-
ified in terms of uncorrelated distributions, then it follows that
the stochastic part of the neutron and proton drift coefficients
δvλ

α (t ) are determined by uncorrelated Gaussian distributions
with variances discussed in the following section.
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TABLE II. Same as Table I for side-side collisions.

�i (h̄) A f
1 Z f

1 A f
2 Z f

2 � f (h̄) TKE E∗ θc.m. θ lab
1 θ lab

2

(MeV) (MeV) (deg) (deg) (deg)

100 238 92.3 238 91.7 71.3 658 173 154 62.3 12.5
120 238 92.0 238 92.0 86.5 660 173 149 62.7 14.4
140 238 92.0 238 92.0 99.2 660 173 145 62.0 16.5
160 238 92.0 238 92.0 116 668 165 140 61.3 19.0
180 238 92.0 238 92.0 140 659 174 134 59.3 21.2
200 238 92.1 238 91.9 164 666 167 129 57.8 23.9
220 238 92.0 238 92.0 184 673 160 125 57.6 26.0
240 238 92.0 238 92.0 196 673 160 122 55.5 27.4
260 238 92.0 238 92.0 214 682 214 119 52.2 28.2
280 238 92.0 238 92.0 234 692 141 115 53.4 30.7
300 238 92.0 238 92.0 258 699 134 112 52.1 32.5
320 238 92.0 238 92.0 282 705 128 108 50.8 34.2
340 238 92.0 238 92.0 302 713 120 105 49.8 35.6
360 238 92.0 238 92.0 318 723 110 103 49.1 36.8
380 238 92.0 238 92.0 333 736 96.6 102 48.6 37.8
400 238 92.0 238 92.0 331 751 81.7 99.7 48.1 38.9
420 238 92.0 238 92.0 373 768 65.0 97.8 47.6 40.1
440 238 92.0 238 92.0 393 785 47.6 96.2 47.2 41.2
460 238 92.0 238 92.0 410 802 31.4 94.9 46.9 42.1

III. MASS AND CHARGE DISTRIBUTIONS OF THE
PRIMARY FRAGMENTS

A. Quantal diffusion coefficients of neutrons and protons

It is well known that Langevin equation for a macroscopic
variable is equivalent to the Fokker-Planck equation for the
distribution function of the macroscopic variable and the
solution is given by a single Gaussian function [48]. When
there are two coupled Langevin equations, as we have it in
Eq. (7), the solution of the Fokker-Planck equation for the
distribution function P(N, Z ) of fragments with neutron and
proton numbers (N, Z ) is specified by a correlated Gaussian
function for each value of the initial orbital angular momen-
tum �,

P(N, Z ) = 1

2πσNNσZZ

√
1 − ρ2

exp [−C(N, Z )]. (9)

Here the exponent C(N, Z ) is given by

C(N, Z ) = 1

2(1 − ρ2)

[(
Z − Z

σZZ

)2

− 2ρ

(
Z − Z

σZZ

)(
N − N

σNN

)
+

(
N − N

σNN

)2]
,

(10)

with the correlation coefficient ρ = σ 2
NZ/σZZσNN . In this ex-

pression N and Z are the mean values the neutron and the
proton numbers of fragments for each angular momentum
determined by the TDHF calculations, and σNN , σZZ , and σNZ

denote the neutron, proton, and mixed dispersions, respec-
tively. Multiplying both sides in Eq. (7) by δNλ

1 and δZλ
1 and

carrying out ensemble averaging, we obtain a couple set of
equations for the neutron σ 2

NN = δNλ
1 δNλ

1 , the proton σ 2
ZZ =

δZλ
1 δZλ

1 and the mixed variances σ 2
NZ = δNλ

1 δZλ
1 , where bar

indicates the ensemble averaging [49,50],

∂

∂t
σ 2

NN = 2
∂vn

∂N1
σ 2

NN + 2
∂vn

∂Z1
σ 2

NZ + 2DNN , (11)

∂

∂t
σ 2

ZZ = 2
∂vp

∂Z1
σ 2

ZZ + 2
∂vp

∂N1
σ 2

NZ + 2DZZ , (12)

and

∂

∂t
σ 2

NZ = ∂vp

∂N1
σ 2

NN + ∂vn

∂Z1
σ 2

ZZ + σ 2
NZ

(
∂vp

∂Z1
+ ∂vn

∂N1

)
. (13)

In these expressions DNN and DZZ denote the neutron and
proton quantal diffusion coefficients, which are discussed be-
low. The expression of the diffusion coefficients of for neutron
and proton transfers are determined by the autocorrelation
functions of the stochastic part of the drift coefficients as∫ t

0
dt ′δvλ

α (t )δvλ
α (t ′) = Dαα (t ). (14)

We can calculate the ensemble averaging by employing the
basic postulate of the SMF approach given by Eq. (3). We
refer the reader to Refs. [39,40] in which a detailed descrip-
tion of the autocorrelation functions are presented. Here, for
completeness of the presentation, we give the results for the
quantal expression of the proton and the neutron diffusion
coefficients,

Dαα (t ) =
∫ t

0
dτ

∫
d3r g̃(x′)

[
GT (τ )JT

⊥,α (�r, t − τ/2)

+ GP(τ )JP
⊥,α (�r, t − τ/2)

]

−
∫ t

0
dτ Re

⎛
⎝ ∑

h′∈P,h∈T

Aα
h′h(t )A∗α

h′h(t − τ )

+
∑

h′∈T,h∈P

Aα
h′h(t )A∗α

h′h(t − τ )

⎞
⎠. (15)

Here JT
⊥,α (�r, t − τ/2) represents the sum of the magnitude of

current densities perpendicular to the window due to the hole
wave functions originating from target,

JT
⊥,α (�r, t − τ/2) = h̄

m

∑
h∈T

∣∣ Im
[

∗α

h (�r, t − τ/2)

× (
ê · �∇
α

h (�r, t − τ/2)
)]∣∣. (16)

and JP
⊥,α (�r, t − τ/2) is given by a similar expression in terms

of the hole wave functions originating from the projectile.
We observe that there is a close analogy between the quantal
expression and the diffusion coefficient in a random walk
problem [37,38]. The first line in the quantal expression gives
the sum of the nucleon currents across the window from the
targetlike fragment to the projectilelike fragment and from
the projectilelike fragment to the targetlike fragment, which is
integrated over the memory. This is analogous to the random
walk problem, in which the diffusion coefficient is given by
the sum of the rate for the forward and backward steps. The
second line in the quantal diffusion expression stands for the
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FIG. 2. Neutron and proton diffusion coefficients as a function
of time in the 238U + 238U collisions at Ec.m. = 833 MeV with the
initial orbital angular momentum � = 300h̄ at (a) tip-tip geometry
and (b) side-side geometry.

Pauli blocking effects in nucleon transfer mechanism, which
does not have a classical counterpart. The quantities in the
Pauli blocking factors are determined by

Aα
h′h(t ) = h̄

2m

∫
d3rg(x′)

(

∗α

h′ (�r, t )ê · �∇
α
h (�r, t )

− 
α
h (�r, t )ê · �∇
∗α

h′ (�r, t )
)
. (17)

The memory kernels GT (τ ) in Eq. (15) are given by

GT (τ ) = 1√
4π

1

τT
exp[−(τ/2τT )2] (18)

with the memory time determined by the average flow velocity
uT of the target nucleons across the window according to τT =
κ/|uT (t )|, and GP(τ ) is given by a similar expression. In a
previous work [40], we estimated the memory time to be about
τT = τP ≈ 25 fm/c, which is much shorter than the contact
time of about 600 fm/c. As a result the memory effect is not
important in diffusion coefficients. We note that the quantal
diffusion coefficients are entirely determined in terms of the
occupied single-particle wave functions of the TDHF solu-
tions. According to the nonequilibrium fluctuation-dissipation
theorem, the fluctuation properties of the relevant macro-
scopic variables must be related to the mean properties.
Consequently, the evaluation of the diffusion coefficients in
terms of the mean-field properties is consistent with the
fluctuation-dissipation theorem. Figure 2 shows neutron and
proton diffusion coefficients for the 238U + 238U system at
Ec.m. = 833 MeV with the initial orbital angular momentum
� = 300h̄, for the tip-tip [Fig. 2(a)] and the side-side [Fig.
2(b)] geometries as function of time.

Dispersions are determined from the solutions of the cou-
pled differential Eqs. (11)–(13) in which the diffusion coef-

ficients provide source for development of the fluctuations.
In addition to the diffusion coefficients, we also need to
determine the derivatives of the drift coefficients with respect
to the macroscopic variables (N1, Z1). In order to determine
these derivatives, the Einstein’s relations in the overdamped
limit provide a possible approach. According to the Einstein
relation, drift coefficients are determine by the derivatives of
the potential energy surface in the (N, Z ) plane,

vn(t ) = − DNN

T ∗
∂

∂N1
U (N1, N1)

vp(t ) = − DZZ

T ∗
∂

∂Z1
U (N1, Z1), (19)

where T ∗ indicates effective temperature of the system. Be-
cause of the analytical structure, we can immediately take
derivatives of the drift coefficients. Since 238U + 238U is a
symmetric system, the equilibrium state in the potential en-
ergy surface is located at the initial position with N1 → N0 =
146 and Z1 → Z0 = 92. When fluctuations are not too far
from the equilibrium point, we can parametrize the potential
energy around the equilibrium in terms of two parabolic forms
as given by Eq. (A1) in Appendix A [50]. One of the parabolic
forms extend along the bottom of the β stability line, which
is referred to as the isoscalar path. The second parabolic form
extends towards the perpendicular direction to the isoscalar
path, which is referred to as the isovector path. In order
to specify the derivatives of the drift coefficients, we need
to determine the reduced curvature parameters α and β of
these parabolic potential energy surfaces. Since the symmetric
collisions do not exhibit drift in neutron or proton numbers,
it is not possible to specify the reduced curvature parame-
ters from the mean trajectory information of the symmetric
collisions. As discussed in Appendix A, we can estimate the
isovector curvature α parameter from the central collision
of the neighboring 236

88 Ra148 + 240
96 Cm144 system at at Ec.m. =

833 MeV. As seen from the drift path of this system in Fig. 7,
the system follows the isovector path closely and reaches the
charge equilibrium rather rapidly during a time interval of
�t ≈ 150 fm/c. The isovector drift path is suitable to estimate
the average value of the isovector curvature parameters and
we find α ≈ 0.13. After reaching the equilibrium in charge
asymmetry rather rapidly, the system spends a long time in
the vicinity of 238U + 238U by following a curvy path due to
complex quantal effect due to shell structure. Eventually, the
system has a tendency to evolve toward asymmetry direction
along the isoscalar path, i.e., along the β stability line. It
appears that the 238U + 238U system is located at an unstable
state on the β stability line with a small and negative curvature
parameter β in the isoscalar direction. It is not possible to
provide reasonable estimation for this parameter from the
drift path of the 236

88 Ra148 + 240
96 Cm144 system in Fig. 8 beyond

the equilibrium state at (N1 = 146, Z1 = 92). With a negative
curvature parameter in the isoscalar direction, the system may
exhibit broad diffusion along the β stability line. In order ob-
tain a reasonable value for β, we employ the cross-section data
for production of gold isotopes from a previous investigation
of the 238U + 238U system at about the same energy [16]. As
discussed in Appendix B, we determine a small negative value

024619-5



AYIK, YILMAZ, YILMAZ, AND UMAR PHYSICAL REVIEW C 102, 024619 (2020)

0

5

10

15

(a)

238U + 238U

tip-tip

0

5

0 200 400 600 800

(b)

238U + 238U
side-side

di
sp

er
si

on
s

σNN

σZZ

σNZ

di
sp

er
si

on
s

time (fm/c)

σNN

σZZ

σNZ

FIG. 3. Neutron, proton, and mixed variance as a function of time
in the 238U + 238U collisions at Ec.m. = 833 MeV with the initial
orbital angular momentum � = 300h̄ at (a) tip-tip geometry and
(b) side-side geometry.

of β = −0.02 for the reduced isoscalar curvature parameter.
Using these values for the reduced curvature parameters, we
can determine the derivative of the drift coefficients as given
in Eqs. (A3)–(A6) and calculate the neutron, the proton and
the mixed dispersions from the solution of the differential
Eqs. (11)–(13). As an example Fig. 3 shows the neutron, the
proton and the mixed dispersions as a function of time in the
238U + 238U collisions at Ec.m. = 833 MeV with the initial
orbital angular momentum � = 300h̄ at tip-tip geometry and
side-side geometry. The asymptotic values of these disper-
sions for a range of the initial orbital angular momentum � =
(100 − 460)h̄ in tip-tip and side-side geometries are given in
Table III.

B. Cross section of production of primary fragments

We calculate the cross section for production of a primary
fragment with neutron and proton numbers (N, Z ) using the
standard expression,

σ (N, Z ) = π h̄2

2μEc.m.

�max∑
�min

(2� + 1)P�(N, Z ). (20)

Here, P�(N, Z ) = (Pt−t
� (N, Z ) + Ps−s

� (N, Z ))/2 denotes the
mean value of the probability of producing a primary fragment
with neutron and proton numbers (N, Z ) in the tip-tip and
the side-side collisions with the initial angular momentum
�. These probabilities are presented in Eqs. (9)–(10) with
the asymptotic values of dispersions given in Table III for
tip-tip and side-side collisions. The mean values are equal
to their initial values N = 146, Z = 92. The range of the
summation over the initial angular momentum is taken as
�min = 300 and �max = 460. This angular momentum range

TABLE III. Asymptotic values of the neutron, the proton, and
the mixed dispersions in the 238U + 238U collisions at Ec.m. =
833 MeV with the range of orbital angular momentum � =
(100–460)h̄ at tip-tip geometry (left panel) and side-side geometry
(right panel).

α = 0.13 β = −0.02 (tip-tip)
�i(h̄) σNN σZZ σNZ σAA

100 21.7 9.91 14.3 31.3
120 22.2 10.2 14.7 28.5
140 23.0 10.6 15.3 29.6
160 22.9 10.4 15.1 29.4
180 23.2 10.5 15.3 29.7
200 22.6 10.2 14.9 32.5
220 21.4 9.68 14.0 30.8
240 19.2 8.76 12.6 27.6
260 14.3 7.97 11.3 25.0
280 15.6 7.15 10.1 22.3
300 13.6 6.32 8.71 19.4
320 13.3 6.23 8.54 19.0
340 11.6 5.53 7.37 16.6
360 10.3 4.99 6.45 14.7
380 6.97 3.53 3.89 9.55
400 5.30 2.79 2.54 6.98
420 3.46 1.72 1.05 4.15
440 3.93 2.07 1.43 4.88
460 2.49 1.14 0.50 2.83

α = 0.13 β = −0.02 (side-side)
�i(h̄) σNN σZZ σNZ σAA

100 12.5 5.86 7.95 16.0
120 12.4 5.80 7.85 15.8
140 12.1 5.71 7.69 15.5
160 11.4 5.44 7.18 14.5
180 11.4 5.43 7.19 14.5
200 10.7 5.13 6.68 13.6
220 10.0 4.86 6.22 12.7
240 9.77 4.76 6.05 12.4
260 9.04 4.45 5.51 11.5
280 8.32 4.15 4.97 11.7
300 7.75 3.91 4.53 10.8
320 7.23 3.68 4.13 10.0
340 6.74 3.45 3.73 9.23
360 6.22 3.22 3.30 8.41
380 5.63 2.95 2.81 7.50
400 4.97 2.64 2.28 6.49
420 4.26 2.26 1.70 5.39
440 3.50 1.82 1.12 4.25
460 2.82 1.37 0.68 3.28

corresponds the experimental setup in which the detector is
placed at an angular range θ = 35◦ ∓ 5◦ in the laboratory
frame. Figure 4(a) shows the double cross sections σ (N, Z )
in the (N, Z ) plane. We observe the cross-section distribution
extends along the bottom of the β stability and exhibits large
dispersion in this direction as a result of the slight negative
curvature of the potential energy along the isoscalar direction.
We note that the nucleon diffusion along the β stability line
is rather sensitive to the magnitude of the reduced isoscalar
curvature parameter β. In order to see the effect on the cross
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FIG. 4. Double cross sections σ (N, Z ) for production of primary
fragments with neutron numbers N and proton numbers Z in (N, Z)
plane in the collisions of 238U + 238U at Ec.m. = 833 MeV. Elliptic
lines indicate the set of isotopes with equal production cross sections.
Calculations were performed with the isoscalar curvature parameters
(a) β = −0.02, (b) β = −0.01, and (c) β = 0.

section, we have also calculated the double cross sections
with a very small isoscalar curvature parameter, β = −0.01,
and the flat potential energy along the isoscalar direction
with β = 0. The result of these calculations are shown in
Figs. 4(b) and 4(c), respectively. We observe that the potential
energy in the isoscalar direction has a strong influence on
the nucleon diffusion mechanism. As a result, the tail of the
cross sections along the isoscalar direction diminishes with
decreasing absolute magnitude of the curvature parameter.
The cross sections σ (A) as a function of the mass numbers
of the primary fragments are given by,

σ (A) = π h̄2

2μEc.m.

�max∑
�min

(2� + 1)P�(A). (21)

Here P�(A) = (Pt−t
� (A) + Ps−s

� (A))/2 denotes the mean value
of the probability of producing a primary fragment with
mass numbers A in the tip-tip and the side-side collisions
with the initial angular momentum �. These probabilities are
determined by a simple Gaussian function,

P(A) = 1

σAA

√
2π

exp

[
−1

2

(
A − A

σAA

)2
]
, (22)
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FIG. 5. Cross sections σ (A) for production of primary fragments
as a function of mass number in the collisions of 238U + 238U at
Ec.m. = 833 MeV in tip-tip, side-side geometries, and mean values by
dashed, dotted, and solid blue lines, respectively. Calculations were
performed with the isoscalar curvature parameters (a) β = −0.02,
(b) β = −0.01, and (c) β = 0.

where the mass dispersion is determined by σ 2
AA = σ 2

NN +
σ 2

ZZ + 2σ 2
NZ and the mean mass number as A = 238. Figure 5

shows the cross sections as a function of the mass numbers
of the primary fragments in the tip-tip and the side-side
geometries and their mean values for the isoscalar curvature
parameters β = −0.02, β = −0.01, and β = 0 in Figs. 5(a),
5(b) and 5(c), respectively. We can calculate the cross sections
σ (Z ) of production of the primary fragments as a function of
the atomic number using an expression similar to Eq. (21) by
employing the Gaussian probability with the dispersion and
the mean values as given by σZZ (Z ) and Z = 92, respectively.
Figure 6 shows the cross sections as a function of the atomic
numbers of the primary fragments in the tip-tip and the
side-side geometries and their mean values for the isoscalar
curvature parameters β = −0.02, β = −0.01, and β = 0 in
Figs. 6(a), 6(b), and 6(c), respectively. The effect of different
isoscalar curvature parameters is important for cross sections
lower than 0.1 mb, which is not visible in Figs. 5 and 6.
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FIG. 6. Cross sections σ (Z ) for production of primary fragments
as a function of mass number in the collisions of 238U + 238U at
Ec.m. = 833 MeV in tip-tip, side-side geometries, and mean values by
dashed, dotted, and solid blue lines, respectively. Calculations were
performed with the isoscalar curvature parameters (a) β = −0.02,
(b) β = −0.01, and (c) β = 0.

IV. CONCLUSIONS

We have carried out an investigation of mass and charge
distributions of the primary fragments produced in the colli-
sions of the 238U + 238U system at Ec.m. = 833 MeV. We cal-
culate the probability distributions of the primary fragments
by employing the quantal diffusion description. In the quantal
diffusion approach, the concepts of the transport theory are
merged with the mean-field description of the TDHF with the
help of the SMF approach. It is then possible to express the
diffusion coefficients of the relevant macroscopic variables
in terms of the occupied single-particle wave functions of
the TDHF. Since the Langevin equations of the macroscopic
variables are equivalent to the Fokker-Planck description for
the distribution of the macroscopic variables, under certain
conditions, it is possible give a nearly analytical description
for the distribution functions of the macroscopic variables and

the cross sections. In the calculations of the cross sections of
production of the primary fragment for each initial angular
momentum or equivalently for each impact parameter, we
need to determine the mean values of the neutron and proton
numbers of the fragments and the neutron, the proton, and the
mixed dispersions of the distribution functions. The mean val-
ues are determined by the TDHF descriptions. The variances
are calculated from the solutions of three coupled differen-
tial equations in which diffusion coefficients of neutron and
protons act as the source terms. The behavior of the potential
energy surface of the di-nuclear complex makes an important
effect on the neutron and proton diffusion mechanism. It is
possible to determine the curvature parameters of the potential
energy in the collisions of asymmetric systems from the drift
information with the help of the Einstein’s relation in the
overdamped limit. Since collisions of the symmetric systems,
such as the collisions of 238U + 238U, do not exhibit drift
of the neutron and proton degrees of freedom, we need to
employ other methods to specify the curvature parameters
of the potential energy. In this work, we employ the central
collision of a neighboring system 236Ra + 240Cm at the same
bombarding energy. The system initially drifts nearly along
the isovector direction and reach the charge equilibrium state
rather rapidly. From the isovector drift information, we can
estimate the reduced curvature parameter of the potential
energy as α = 0.13. After reaching the charge equilibration,
the system spends a long time in the vicinity of 238U + 238U
state and eventually has a tendency drift along the isoscalar
path away from the symmetric state. This behavior indicates
the symmetric 238U + 238U may be located at an unstable
equilibrium position with a small negative curvature toward
the isoscalar direction. However, from the drift information
it is not possible to estimate the isoscalar reduced curva-
ture parameter β. Since the negative curvature may lead to
broad diffusion along the β stability line, it is important
to determine this curvature parameter accurately. Therefore,
we regard the reduced curvature in the isoscalar direction
as a parameter and estimate its value with the help of the
isotopic cross-section data of gold nucleus from a previous
investigation of the 238U + 238U collisions at about the same
energy. In this work, we present calculations for produc-
tion of the primary fragments with the isovector curvature
parameter α = 0.13 and the isoscalar curvature parameters
β = −0.02, β = −0.01, and β = 0. As a result of growing
nucleon diffusion, the tail of the cross sections along the
isoscalar direction extends farther with the increasing absolute
magnitude of the curvature parameter. The primary fragments
are excited and cool dawn by the deexcitation processes of
particle emission, mostly neutrons and by sequential fission
of the heavy fragments. Calculations of the secondary cross
sections exceed the scope of the present work. We plan to
investigate the deexcitation process of the primary fragments
in the collisions of 238U + 238U and calculate the secondary
cross sections in a subsequent study.
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APPENDIX A: CURVATURE PARAMETERS
OF THE POTENTIAL ENERGY

The charge asymmetry of uranium 238
92 U146 is (146 −

92)/(146 + 92) = 0.227. The dashed green line in Fig. 7
represents the nuclei with nearly equal charge asymmetry
(N − Z )/(N + Z ) = 0.22–0.23. We refer to this line as the
isoscalar line, which extends nearly parallel to the lower part
of the β stability valley in this region. We refer to the dashed
red line as the isovector line, which is perpendicular to the
isoscalar path. We parametrize the potential energy surface in
the vicinity of the equilibrium (N0 = 146, Z0 = 92) in terms
of two parabolic forms along the isoscalar and isovector paths
as,

U (N1, Z1) = 1
2 aR2

S (N1, Z1) + 1
2 bR2

V (N1, Z1). (A1)

The vertical distances RS and RV of a point (N1, Z1) repre-
senting a fragment from the isoscalar and the isovector lines,
respectively, are given by,

RS =(Z0 − Z1) cos φ + (N1 − N0) sin φ,

RV =(Z0 − Z1) sin φ − (N1 − N0) cos φ. (A2)

According to the Einstein relation in the overdamped limit
neutron and proton drift coefficients are related to the driving

potential as,

vn = −DNN

T

∂U

∂N1
= −αDNN RS sin φ + βDNN RV cos φ

vz = −DZZ

T

∂U

∂Z1
= +αDZZ RS cos φ + βDZZ RV sin φ .

Here, the temperature is absorbed in the reduced curvature
parameters as α = a/T and β = b/T . Because of the analyt-
ical form, we can readily calculate the derivatives of the drift
coefficients to obtain,

∂vn(t )/∂N1 = −DNN (β cos2 φ + α sin2 φ) (A3)

∂vn(t )/∂Z1 = +DNN (α − β ) cos φ sin φ (A4)

∂vp(t )/∂Z1 = −DZZ (β sin2 φ + α cos2 φ) (A5)

∂vp(t )/∂N1 = +DZZ (α − β ) cos φ sin φ . (A6)

The reduced curvature parameters are determined by the drift
and the diffusion coefficients as,

αRS (t ) = vz(t )

DZZ (t )
cos φ − vn(t )

DNN (t )
sin φ (A7)

and

βRV (t ) = vz(t )

DZZ (t )
sin φ + vn(t )

DNN (t )
cos φ . (A8)

In collisions of symmetric systems, the drift coefficients
vanish and the mean values of the neutron and proton numbers
of the fragments are equal to the equilibrium values of the
colliding nuclei N1 = N0, Z1 = Z0. As a result, it is not
possible to determine the reduced curvature parameters from
the Eq. (A7) and Eq. (A8).

In order to estimate the reduced curvature parameters,
we consider the central collision of a neighboring system of
236
88 Ra148 + 240

96 Cm144 at the same bombarding energy Ec.m. =
833 MeV. We consider 236Ra as the projectile. Figure 8 shows
the neutron number N1(t ) and the proton number Z1(t ) as
a function of time. The blue line in Fig. 7 shows the drift
path of the projectilelike fragments in the (N, Z ) plane. We
observe that the system rapidly evolves toward the equilibrium
charge asymmetry of the 238U + 238U system nearly along the
isovector direction from the initial state at point A toward the
state at point B. This segment of the drift path is suitable to
determine the average value of the reduced isovector curvature
as,

α

∫ tB

tA

dt[RS (t )] =
∫ tB

tA

dt

[
vz(t )

DZZ (t )
cos φ − vn(t )

DNN (t )
sin φ

]
,

(A9)

where tA = 250 fm/c and tB = 400 fm/c as indicated in
Fig. 8. In this expression, DZZ (t ) and DNN (t ) indicate the
proton and neutron diffusion coefficients in the head on colli-
sion of 236Ra + 240Cm system at Ec.m. = 833 MeV, which are
plotted as a function of time in Fig. 9. We find the reduced
isovector curvature parameter as α = 0.13. In Fig. 7, after
the symmetric state 238U + 238U, because of quantal effects
due to shell structure, the TDHF drift path follows a complex
pattern for a long time and subsequently appears to drift
toward asymmetry along the isoscalar direction. This behavior
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indicates that the symmetric state is an unstable equilibrium
point in the isoscalar direction, i.e., along the β stability line,
and the average potential energy has an inverted parabolic
shape with a negative curvature parameter. Such potential
shape may lead to relative large diffusion along the β stability
direction. Unfortunately, the drift segment after the symmetric
state until the time at which the fragment separates is not
suitable to estimate the average value of the reduced isoscalar
curvature parameter β.

APPENDIX B: CURVATURE PARAMETERS
ALONG THE β STABILITY

We consider the reduced isoscalar curvature β as a pa-
rameter. In order obtain a reasonable value for β, we employ
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FIG. 9. Neutron and proton diffusion coefficients as function of
time in the central collisions of the 236Ra + 240Cm system at Ec.m. =
833 MeV at tip-tip geometry.
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FIG. 10. Cross section of gold Z = 79 isotopes averaged over
tip-tip and side-side geometries as a function of the mass A numbers
in the collisions of 238U + 238U system at Ec.m. = 833 MeV calcu-
lated with curvature parameters α = 0.13 and β = −0.02. Solid dots
indicate data taken from Ref. [16].

the cross-section data for production of gold isotopes from
a previous investigation of the 238U + 238U system at about
the same energy. We calculate the distribution of the cross
sections σ (N = A − Z, Z ) primary gold isotopes with the
atomic number Z = 79 and mass numbers A using Eq. (20)
for the double σ (N, Z ) cross sections. In order to cover the
angular range of the experimental setup in Ref. [16], the
range of the angular momentum summation in Eq. (20) is
taken as �min = 100 and �max = 460. Figure 10 shows the
cross sections for production of the primary gold isotopes,
which are calculated with the reduced isovector curvature
α = 0.13 and the reduced isoscalar curvature β = −0.02. The
primary gold isotopes are excited and cool down mainly by
neutron emissions. In determining the average number of the
emitted neutrons, we need to estimate the average excitation
energy of these isotopes. The TDHF calculations presented
in Tables I and II, do not give accurate information for the
total kinetic energy loss (TKEL) in these channels. However,
for a rough estimate we can take the results for the initial
angular momentum L = 300h̄, which is about the weighted
mean value of the angular momentum range. For this angular
momentum, the TKEL in the tip-tip and the side-side geome-
tries are 217 MeV and 135 MeV, respectively. For the gold
channel U+U → Au(195,79)+Db(281,105) the Qgg value is
24.1 MeV. Sharing the TKEL and the Qgg value in proportion
to the masses, we find the average excitation energy of the
gold isotopes to be 86.8 MeV and 54.0 MeV, in the tip-tip and
the side-side geometries, respectively. Assuming one neutron
emitted per 10.0 MeV, on the average about 9, 5, and 7
neutrons are emitted in the tip-tip, in the side-side, and in
the mean geometry, respectively. In Fig. 10, if we shift the
mean gold isotope distribution by seven units to the left,
the peak value of the cross sections matches the peak value
of the gold data. This indicates β = −0.02 is a reasonable
estimate for the reduced curvature parameter in the isoscalar
direction. We note that the calculations overestimate the iso-
topic width, which most probably is due to the parabolic
approximation of the potential energy.
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