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Medium effects on �− production in the nuclear (K−, K+) reaction
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We study theoretically medium effects on �− production in the (K−, K+) reaction, using the optimal Fermi-
averaging procedure, which describes the Fermi motion of a nucleon on the on-energy-shell K− p → K+�−

reaction condition in nuclei. The results show the strong energy and angular dependencies of the in-medium
K− p → K+�− cross section, which affect significantly the shape and the magnitude of the production spectrum
for �−-hypernuclear states in the (K−, K+) reaction on a nuclear target. The application to the �− quasifree
production via the (K−, K+) reaction on a 12C target is also discussed in a Fermi gas model.
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I. INTRODUCTION

It is important to understand properties of � hypernuclei
whose states are regarded as the opening of the S = −2 world
in nuclear physics. This is a significant step to extend studies
of multistrangeness systems and also strange neutron stars
in astrophysics [1]. Recently, Nakazawa et al. [2] reported
the first evidence of a bound state of the �−- 14N system
that was identified by the “KISO” event in the KEK-E373
experiment. This result supported that the �-nucleus potential
has a weak attraction of V� � 14 MeV in the Wood-Saxon
potential, as suggested by previous analyses [3–5]. However,
there still remains an uncertainty about the nature of the S =
−2 dynamics caused by the �N interaction and also �N−��

coupling in nuclei due to the limit to the available data. More
experimental information is needed for the understanding of
�− hypernuclei.

A pioneer study of � hypernuclei by Dover and Gal [6]
indicated that a �-nucleus potential has a well depth of V� =
24 ± 4 MeV based on the analysis of old emulsion data.
Khaustov et al. [5] discussed a missing mass spectrum near
the � threshold in the 12C(K−, K+) reaction at 1.8 GeV/c in
the BNL-E885 experiment. Their analysis showed V� � 14
MeV for the �-nucleus potential, whereas the resolution was
not sufficient to resolve �−-hypernuclear states. Recently,
Nagae et al. [7] have performed an accurate observation of
the �−-production spectrum in the 12C(K−, K+) reaction at
1.8 GeV/c in the J-PARC E05 experiment, and this analysis
is now ongoing.

On the other hand, the authors of Refs. [8–10] discussed
the �−-nucleus potential in the quasifree (QF) spectra of the
(π−, K+) reactions on the nuclear targets, using the optimal
Fermi-averaging procedure [11]. This procedure describes the
Fermi motion of a nucleon on the on-energy-shell π− p →
K+�− reaction condition in nuclei, and it generates the
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energy dependence of the in-medium π− p → K+�− reaction
amplitude. This energy dependence due to the Fermi motion
leads to a successful explanation of the (π−, K+) spectra in
the distorted-wave impulse approximation analyses of 28Si
[8], 209Bi [9], and 6Li [10] targets; it is possible to extract
properties of the �-nucleus potential appropriately from the
experimental data in nuclear (π−, K+) reactions. Therefore, it
is worthwhile studying the medium effects on �− production
in the nuclear (K−, K+) reactions, employing the optimal
Fermi-averaging procedure.

Maekawa et al. [12] investigated the �− QF spectra in the
(K−, K+) reaction on 12C in similar calculations considering
the local momentum for the nucleon and �. Hashimoto et al.
[13] also discussed the �− QF spectra in the (K−, K+) re-
actions on 12C in the semiclassical distorted wave (SCDW)
method. Recently, Kohno [14] has reexamined the �− QF
spectra in the (K−, K+) reactions on 9Be and 12C targets in
the SCDW method, using the �-nucleus potential derived
from the next-to-leading order in chiral effective field theory.
However, it seems that the calculated �− QF spectra are
insufficient to reproduce the data quantitatively.

In this paper, we study theoretically medium effects on
�− production in the nuclear (K−, K+) reaction. We evaluate
the in-medium cross sections of the K− p → K+�− reac-
tion, using the optimal Fermi-averaging procedure [11], and
we discuss the energy and angular dependence of the �−-
production spectrum in the (K−, K+) reaction on a nuclear
target. We also apply this procedure to the �− QF production
spectrum in the (K−, K+) reaction on a 12C target at pK− =
1.8 GeV/c in a Fermi gas model.

II. CALCULATIONS

A. Distorted-wave impulse approximation

Let us consider a calculation procedure of the hypernuclear
production for the nuclear (K−, K+) reaction in the laboratory
frame. The inclusive double-differential cross sections within
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the distorted-wave impulse approximation (DWIA) [15,16]
are given by (in units h̄ = c = 1)

d2σ

dEK+d�K+
= β

1

[JA]

∑
mA

∑
B,mB

|〈	B|F̂ |	A〉|2

×δ(ω − EB + EA), (1)

where [J] = 2J + 1, and 	B and 	A (EB and EA) are wave
functions (energies) of hypernuclear final states and an initial
state of the target nucleus, respectively. The laboratory energy
transfer and the momentum transfer are

ω = EK− − EK+ , q = pK− − pK+ , (2)

where EK− and pK− (EK+ and pK+) denote an energy and a mo-
mentum of the incoming K− (the outgoing K+), respectively.
The energy transfer may also be expressed as

ω = EB − EA = m� − mN − B� − εN + Trecoil, (3)

where B� is a �− binding energy, εN is a single-particle
energy of a nucleon-hole state, and Trecoil is a recoil energy
to the final state. The kinematical factor β [3] arising from a
translation from a two-body meson-nucleon laboratory system
to a meson-nucleus laboratory system [6] is given by

β =
(

1 + E (0)
K+

E (0)
B

p(0)
K+ − p(0)

K− cos θlab

p(0)
K+

)
pK+EK+

p(0)
K+E (0)

K+
, (4)

where p(0)
K− and p(0)

K+ (E (0)
K+ and E (0)

B ) are laboratory momenta
of K− and K+ (laboratory energies of K+ and �−) in the
two-body K− p → K+�− reaction, respectively. Here we con-
sidered only the non-spin-flip reaction because the spin-flip
contribution seems to be not so large in the (K−, K+) reaction.
Thus an external operator F̂ for the associated production
K− p → K−�− reactions is given by

F̂ =
∫

dr χ (−)∗
pK+ (r)χ (+)

pK− (r)

×
A∑

j=1

f K− p→K+�−δ(r − r j )Ô j, (5)

with zero-range interaction for the K− p → K+�− transitions.
χ

(−)∗
K+ and χ

(+)
K− are distorted waves of incoming K− and

outgoing K+, respectively. Ô j is a baryon operator changing
the jth nucleon into a �− hyperon in the nucleus, r is the
relative coordinate between the mesons and the center-of-
mass (c.m.) of the nucleus, and f K− p→K+�− is the in-medium
K− p → K+�− amplitude on the laboratory frame.

In the DWIA, a Fermi-averaged amplitude is often used
for f K− p→K+�− so as to take into account a Fermi motion in
the nuclear medium [16]. However, it should be noted that
the energy dependence of f K− p→K+�− may play an important
role in describing the QF spectrum within a wide energy range
(∼ a few hundred MeV) as well as the angular dependence.
The authors of Refs. [8–10] emphasized the importance of
the energy dependence of the Fermi-averaged amplitude of
f π− p→K+�− in the nuclear (π−, K+) reactions to extract prop-
erties of the �-nucleus potential from the experimental data,
using the optimal Fermi-averaging procedure [11]. Therefore,

we are interested in the energy dependence and the angular
dependence of f K− p→K+�− , which is generated by the optimal
Fermi-averaging procedure in the nuclear (K−, K+) reaction.

B. Optimal Fermi averaging

According to Ref. [11], we consider the optimal Fermi
averaging for the K− p → K+�− reaction in a nucleus. To see
clearly the medium effects of the K− p → K+�− processes in
the nuclear (K−, K+) reaction in the framework of the DWIA,
we introduce an “optimal” cross section for the K− p →
K+�− processes in the nucleus, which can be given as(

dσ

d�

)opt

θlab

≡ β| f K− p→K+�−|2

= pK+EK+

(2π )2vK−

∣∣topt
K̄N,K�

(pK− ; ω, q)
∣∣2

, (6)

where vK− = pK−/EK− . The optimal Fermi-averaged K̄N →
K� t matrix, topt

K̄N,K�
(pK̄ ; ω, q), is defined by

topt
K̄N,K�

(pK̄ ; ω, q)

=
∫ π

0 sin θN dθN
∫ ∞

0 d pN p2
Nρ(pN )tK̄N,K�(E2; pK̄ , pN )∫ π

0 sin θN dθN
∫ ∞

0 d pN p2
Nρ(pN )

∣∣∣∣
pN =p∗

N

,

(7)

where EN and pN are an energy and a momentum of a proton
in the target nucleus, respectively; cos θN = p̂K̄ · p̂N ; E2 =
EK− + EN is the total energy of the K−N system; and ρ(pN )
is a Fermi-momentum distribution of the proton in the target
nucleus. The momentum p∗

N in Eq. (7) is a solution which
satisfies the on-energy-shell equation for a struck proton in
the nuclear systems,√

(p∗
N + q)2 + m2

� −
√

(p∗
N )2 + m2

N = ω, (8)

where m� and mN are masses of �− and the proton, re-
spectively. This procedure keeps the on-energy-shell K− p →
K+�− processes in the nucleus [17]; thus it guarantees to
take “optimal” values for f K− p→K+�− within a factorized
form, e.g., see Eq. (12). Note that binding effects for the
nucleon and � in the nucleus are considered automatically
when we input experimental values for the binding energies
of the nuclear and hypernuclear states in Eq. (3). Here we
neglected the energy dependence of a phase for the K− p →
K+�− t matrix and replaced tK̄N,K�(E2; pK̄ , pN ) in the labo-
ratory frame by its absolute value |tK̄N,K�(E2; pK̄ , pN )|, which
is obtained from the corresponding one in the c.m. frame;
tK̄N,K�(E2; pK̄ , pN ) = η tc.m.(Ec.m.), where η is the Möller fac-
tor. Such an assumption has been confirmed to be appropriate
in the case of the π+n → K+� process in the nuclear (π+,
K+) reactions [11].

C. K− p → K+�− reaction

In the optimal Fermi-averaging procedure, we need to pre-
pare the elementary K− p → K+�− t matrices (amplitudes),
which fully reproduce the experimental data of differential
cross sections in free space. Recently, several authors [18,19]
have investigated the K− p → K+�− reaction amplitudes, of
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FIG. 1. Angular distributions of the differential cross section for the K− p → K+�− reaction in the c.m. frame at Ec.m. = 1.948, 1.966,
2.069, 2.110, 2.134, 2.235, 2.276, 2.331, and 2.420 GeV. Solid curves denote the calculated values to make a fit to the experimental data. The
data are taken from Refs. [21–25], following the compilation in Ref. [18].

which the nature is caused by Y ∗ resonances as intermedi-
ate states via the K− p → K+�− processes, by the help of
theoretical models due to poor quality in the available data
[18–20]. However, we use the angular distributions of the
K− p → K+�− reaction for the sake of simplicity. They are
parametrized according to(

dσ

d�

)elem

c.m.

= ω f ωi p f

(2π )2 pi
|tc.m.(Ec.m.)|2

= λ̄2
�max∑
�=0

A�(Ec.m.)P�(cos θc.m.), (9)

where tc.m.(Ec.m.) denotes the K− p → K+�− t matrix in the
c.m. frame; p f (pi) and ω f (ωi) are a momentum and a reduced
energy for K+�− (K− p) in the c.m. frame, respectively; λ̄ is
the de Broglie wavelength of K− p; and P�(x) are Legendre
polynomials. Coefficient parameters A�(Ec.m.) are expressed

by a power series of Ec.m. so as to make a fit to their energy
dependence.

Figure 1 displays the angular distributions of (dσ/d�)elem
c.m. ,

together with the data at Ec.m. = 1.948, 1.966, 2.069, 2.110,
2.134, 2.235, 2.276, 2.331, and 2.420 GeV [21–25]. Here
�max = 6 is used. Figure 2 also displays the total (integrated)
cross sections [20], which are written as

σtot (Ec.m.) =
∫

d�

(
dσ

d�

)elem

c.m.

= 4πλ̄2A0(Ec.m.), (10)

as a function of Ec.m.. The parameters A�(Ec.m.) were deter-
mined for fits to 242 data points for the angular distributions
of dσ/d� in Fig. 1, together with nine data points (open
circles in Fig. 2) for the total cross sections of σtot that
were simultaneously measured with the data of dσ/d�. Thus
the renormalized χ2 values account for χ2/N = 1.48, with
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FIG. 2. Total cross section σtot for the K− p → K+�− reaction
as a function of the energy Ec.m.. The data are taken from the
compilation of Flaminio et al. [20]. Open and solid circles denote the
data for σtot with and without the measurements of dσ/d� shown in
Fig. 1, respectively.

N = 242 for dσ/d�, and χ2/N = 2.35, with N = 56 (open
and solid circles) for σtot.

Figure 3 shows the laboratory differential cross sec-
tions (dσ/d�)elem for the K− p → K+�− reaction at θlab =
0◦−16◦, as a function of the incident K− momentum of pK− .
We find that the values of (dσ/d�)elem rather depend on
pK− . The peak of (dσ/d�)elem at θlab = 0◦ is located at
pK− ≈ 1.9 GeV/c, and its position is shifted downward as θlab

increases. The peak of (dσ/d�)elem at θlab = 16◦ stands at
pK− ≈ 1.5 GeV/c. Thus, the energy and angular dependencies
of (dσ/d�)elem may affect the shape and the magnitude of the
�−-production spectrum in the nuclear (K−, K+) reaction at
each θlab.

FIG. 3. Incident K− momentum dependence of the labora-
tory differential cross sections for the K− p → K+�− reaction,
(dσ/d�)elem, at θlab = 0◦, 4◦, 8◦, 12◦, and 16◦.

FIG. 4. Energy dependence of (a) the optimal Fermi-averaged
cross section (dσ/d�)opt and (b) the ordinary Fermi-averaged cross
section β(dσ/d�)av with the kinematical factor β of Eq. (4) for the
K− p → K+�− reaction on the 12C target at pK− = 1.8 GeV/c and
θlab = 0◦, 4◦, 8◦, 12◦, and 16◦, as a function of the energy transfer ω.
The arrows show the �− emitted threshold.

III. RESULTS AND DISCUSSION

A. Optimal Fermi-averaged cross section

To see the medium effects on the K− p → K+�− reac-
tion in nuclei, we evaluate the optimal Fermi-averaged cross
section of (dσ/d�)opt in the laboratory frame, referring to
the values of (dσ/d�)elem of Eq. (9) in the optimal Fermi-
averaging procedure. Figure 4(a) shows the calculated re-
sults of (dσ/d�)opt in the K− p → K+�− reaction at pK− =
1.8 GeV/c and θlab = 0◦−16◦ in kinematics for a 12C target,
as a function of the energy transfer ω. We find the strong
energy dependence of (dσ/d�)opt for ω, together with the
angular dependence of them for θlab. Note that the cross
sections can be estimated in not only the �− continuum region
but also the �− bound region due to the Fermi motion in
the nuclear medium. The peak of (dσ/d�)opt is located at
ω � 480 MeV, which corresponds to E�− � 80 MeV with
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respect to the �− emitted threshold when θlab = 0◦−8◦,
whereas the peak position moves upward as θlab increases;
when θlab = 16◦, thus its position is located at ω � 520 MeV
(E�− � 120 MeV). The behavior of (dσ/d�)opt can play a
significant role in describing the shape and the magnitude of
the �− spectrum in the nuclear (K−, K+) reaction. It was
found that the energy dependence and the angular dependence
of (dσ/d�)opt are significant to describe the behavior of
the �-production spectra in the nuclear (π+, K+) reactions
[11] and also the �−-production ones in the nuclear (π−,
K+) reactions [8–10]. Therefore, the optimal Fermi-averaging
procedure is expected to work well for describing the medium
effects on the K− p → K+�− reaction in nuclei.

In the standard DWIA in hypernuclear production theories
[16,26,27], we often find the “ordinary” Fermi averaging in
which the Fermi-averaged differential cross section for the
K− p → K+�− reaction may be given as(

dσ

d�

)av

θlab

=
∫

d pNρ(pN )

(
dσ

d�

)elem

. (11)

In Fig. 4(b), we show the calculated cross sections of
β(dσ/d�)av, including the kinematical factor β of Eq. (4)
at pK− = 1.8 GeV/c for 12C, in comparison with those of
(dσ/d�)opt. We confirm that the values of β(dσ/d�)av de-
crease monotonously due to the energy dependence of β [3],
as ω increases. Here we used, e.g., the values of (dσ/d�)av =
51.9 μb/sr at θlab = 4◦ and 43.1 μb/sr at θlab = 8◦. It is
shown clearly that the values of β(dσ/d�)av are quite
different from those of (dσ/d�)opt because the values of
(dσ/d�)av depend on pK− and θlab, not ω.

On the other hand, it is known that the impulse approxi-
mation for nuclear reaction theories is improved to reduce the
influence of the off-shell t matrix caused by the Fermi motion
for a nucleon in the nuclear target by choosing an optimal
momentum popt

N for the nucleon [17,28]. This is called the
optimal momentum approximation [17] in which the use of
the on-shell t matrix may be valid because the leading-order
correction due to Fermi motion is minimized. Several authors
[29,30] have studied the effects of the Fermi motion in DWIA
calculations for � hypernuclear production and have proposed
to use the optimal momentum popt

N for the nucleon in the target
nucleus. This momentum may be given as popt

N = (η − 1
2 )q in

the laboratory frame where η is a factor determined at a frozen
point for Fermi motion [28] instead of the Fermi averaging.
However, their approach seems to be still insufficient to ex-
plain the influence of the energy dependence and the angular
dependence of (dσ/d�)elem in a nuclear medium such as the
K− p → K+�− reaction, in a quantitative comparison with
the experimental data of the hypernuclear production [29].
Consequently, we recognize that the optimal Fermi-averaging
procedure is a straightforward way of dealing with the Fermi-
averaged amplitude for the elementary reaction in the optimal
momentum approximation.

B. Application to �− QF production on 12C in a
Fermi gas model

To see the medium effects in the nuclear (K−, K+) reaction,
we demonstrate the �− QF spectrum in the (K−, K+) reaction

on a nuclear target, using the calculated results of (dσ/d�)opt

in Eq. (6). We adopt a nonrelativistic Fermi gas model [31],
in which each nucleon moves freely in the field of a uniform
nuclear potential well V , for simplicity. The QF spectrum in
� hypernuclear production via the (K−, π−) reaction was
first evaluated by Dalitz and Gal [32]. The � QF spectrum
for the associated (π+, K+) reaction in terms of the high-
momentum transfer was also discussed by Dover et al. [27].
Following Refs. [27,31], the double-differential cross section
in the nuclear (K−, K+) reaction in Eq. (1) may be rewritten
as

d2σ

dEK+d�K+
=

(
dσ

d�

)opt

R(ω, q). (12)

The response function R(ω, q) is defined as

R(ω, q) = Zeff
3

4πk3
F

∫
d pNθ (kF − |pN |)

×δ

(
ω̄ − (pN + q)2

2m�

+ pN
2

2mN

)
, (13)

where kF is the Fermi momentum, pN is the momentum for
the nucleon, and ω̄ = ω − (m� − mN ) − (VN − V�). In the
eikonal approximation, the effective number of protons Zeff

may be approximated by

Zeff =
∫

dr ρA(r)|χ (−)
pK+ (r)|2|χ (+)

pK− (r)|2

≈
∫

db Tp(b) exp [−σ̄T (b)], (14)

where the nuclear thickness function is defined as

T (b) ≡
∫ ∞

−∞
ρ(r)dz,

∫
T (b)db = A. (15)

Here b is an impact-parameter coordinate in the plane perpen-
dicular to the direction of the momentum transfer q; Tp(b) is
a thickness function for the proton, thus

∫
Tp(b)db = Z . The

averaged total cross section for the K−N and K+N elastic
scatterings is given as σ̄ = 1

2 (σK−N + σK+N ). Note that Zeff

reduces to the proton number Z for the limit of no distortion
(σ̄ → 0).

Considering q > kF because q � 390 − 800 MeV/c
(θlab = 0◦−16◦) in the nuclear (K−, K+) reaction, the re-
sponse function in Eq. (13) is easily obtained as

R(ω, q) = Zeff
3

4π

(
m�

k2
F

)
π√

Q2 − 4α2(ν − Q2/2)

×
{

1 − 1

4α4
(Q −

√
Q2 − 4α2(ν − Q2/2))2

}
(16)

for Q > 2α2, where the dimensionless valuables of Q =
q/kF , α2 = (m� − mN )/2mN , and ν = m�ω̄/k2

F ; we confirm
that for small Q, R(ω, q) is proportional to 1/Q{1 − (ν/Q −
Q/2)2}, a well-known parabolic function [31], as well as for
α2 → 0 (m�/mN → 1). The peak of this response occurs
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at ν = Q2/2 + α2 or

ωpeak = m� − mN + (VN − V�)

+ m� − mN

m�

k2
F

2mN
+ q2

2m�

, (17)

and its width 2� = 2kF q/m�, whereas this position may be
moderated in the �− spectrum of Eq. (12) due to the energy
dependence of (dσ/d�)opt or β(dσ/d�)av.

Now let us estimate the �− QF spectrum in the (K−, K+)
reaction on the 12C target at pK− = 1.8 GeV/c. For distortion,
we use σ̄ = 24.2 mb as the parameter, where σK− = 28.9 mb
for K−N scattering and σK+ = 19.4 mb for K+N scattering
[8,9]. When we use the modified harmonic oscillator density
for 12C, which is written as

ρ(r) = ρ0{1 + a(r/d )2} exp {−(r/d )2}, (18)

with a = 2.234 and d = 1.516 fm [33], we find Zeff = 2.09,
evaluating Eq. (14) numerically by the eikonal-wave inte-
gral [6,27]. For pK− = 1.8 GeV/c and θlab = 4◦, thus, we
estimate ω̄peak � 542 MeV and 2� � 222 MeV consistently,
using q � 542 MeV/c at ω = 537 MeV for 12C. Here we
took masses of mN = 938.27 MeV for the proton and m� =
1321.71 MeV for the �− hyperon, the attractive well depths
of VN = 50 MeV and V� = 14 MeV, and the Fermi momen-
tum of kF = 270 MeV/c in the nucleus. We also consider
the recoil correction in the spectrum, replacing q by qeff =
(MC/MA)q, where MA and MC denote the masses of the 12C
target and the 11B core nuclei, respectively [34].

In Fig. 5, we show the calculated �− QF spectra of Eq. (12)
in the 12C(K−, K+) reaction at pK− = 1.8 GeV/c, θlab = 4◦
and 8◦. The calculated spectrum at θlab = 4◦ has a QF peak
at ω � 480 MeV, which corresponds to about 80 MeV above
the �− emitted threshold, and a width of 2� � 150 MeV,
which is extremely narrower than that of 2� � 200 MeV for
the spectrum with β(dσ/d�)av. For θlab = 8◦, the QF peak
position slightly shifts upward (ω � 500 MeV) and its width
becomes 2� � 200 MeV. We find that the ω dependence
of (dσ/d�)opt acts on the shape and the magnitude of the
QF spectrum remarkably, and it makes its width narrower,
in comparison with that of β(dσ/d�)av as well as that in
the case of β(dσ/d�)av = const., which is proportional to
R(ω, q). The magnitude of the spectrum seems to be rather
as large as the magnitudes with β(dσ/d�)av in the forward
angles (θlab � 4◦), whereas we find a considerable difference
among the shapes of these spectra near the �− emitted
threshold. Consequently, we realize that the optimal Fermi-
averaged amplitudes of f K− p→K+�− in Eq. (5) allow one to
moderate directly the shape and the magnitude of the spectrum
including the �− QF region with a wide energy range. Thus
it is required to extract information concerning the �-nucleus
potential carefully from the data of the experimental spectrum.

Moreover, it should be mentioned that there still remain
some uncertainties about the values of (dσ/d�)elem due to
the limit of the available data of the K− p → K+�− reaction.
Thus if we use the different parameters of A�(Ec.m.) in Eq. (10)
that simulate the values of σtot predicted in Ref. [19], we
find that the shape of the calculated values of (dσ/d�)opt is
modified and the magnitude is reduced by about 20% in the

FIG. 5. The �− QF production spectra in the Fermi gas model
in the 12C(K−, K+) reaction at pK− = 1.8 GeV/c, (a) θlab = 4◦ and
(b) 8◦, as a function of the energy transfer ω. Solid, dashed, and
dot-dashed curves denote the calculated results of the spectra with
(dσ/d�)opt, β(dσ/d�)av, and the constant value of β(dσ/d�)av =
31.1 (25.9) μb/sr at θlab = 4◦ (8◦), respectively. The spectra are
folded with a detector resolution of 5 MeV full width at half
maximum.

region of ω � 400−500 MeV above the �− emitted thresh-
old. This implies the ability to judge the validity of
(dσ/d�)elem if our approach satisfies completely a descrip-
tion of the �− spectrum in the (K−, K+) reaction. An attempt
at such studies may need a more quantitative observation of
the differential cross sections in the elementary p(K−, K+)�−
reaction and the nuclear (K−, K+) reaction experimentally.

C. Applicability of the optimal Fermi averaging

We study the applicability of the optimal Fermi-averaging
procedure to the inclusive (K−, K+) reactions by high mo-
mentum K− beams because the contribution of two-step
processes may grow in the inclusive reactions on heavier
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nuclear targets [35,36]. We recognize that the optimal Fermi-
averaged t matrix provides the benefit of the optimal momen-
tum approximation [17], as already mentioned in Sec. III A.
Considering the general relation between the exact scattering
operator τ and an approximate one, ta, which is written as

τ = ta + taGahGata

+ taGah(Ga + GataGa)hGata + · · · (19)

in terms of the expansion series with h ≡ G−1
a − G−1, where

G and Ga are exact and approximate Green’s functions, re-
spectively, we confirm that the contribution from the first-
order correction term of taGahGata vanishes in the optimal
momentum approximation [17]. As far as the �− production
is concerned in the inclusive (K−, K+) reactions, this correc-
tion may correspond to the two-step processes of K−N →
K−N followed by K− p → K+�− or K− p → K+�− fol-
lowed by K+N → K+N , involving rescattering effects in
nuclear medium. It implies that the optimal Fermi-averaged t
matrix topt

K̄N,K�
inevitably includes medium effects due to these

two-step processes. Therefore, we expect that the optimal
Fermi-averaging procedure works well within the impulse
approximation for the �− production on light nuclei and also
on heavier nuclei in which strong absorption and distortion
effects must be taken into account.

On the other hand, if we consider strangeness productions
with various hyperons (Y = �,�∗,�,�, . . .) in the inclu-
sive (K−, K+) reactions, it is necessary to deal with additional
optimal Fermi-averaged t matrices for the corresponding
reactions, e.g, K̄N → K̄N , KN → KN , K̄N → Y M (Y ∗M)
followed by MN → Y K (Y ∗K∗), because the contributions of
the two-step processes with intermediate mesons (M = π , K ,
K̄ , φ, a0, and f0) and hyperon resonances are very important
[36]. We believe that our procedure can be extended to the

additional two-step processes for the strangeness productions
in the inclusive (K−, K+) reactions.

IV. SUMMARY AND CONCLUSION

We have studied theoretically the medium effects on the
�− production via the K− p → K+�− process in the nuclear
(K−, K+) reaction, using the optimal Fermi-averaging proce-
dure. The calculated optimal Fermi-averaged amplitudes of
f K− p→K+�− for our DWIA calculations provide the strong
energy and angular dependencies, leading to the fact that the
shape and the magnitude of the �−-production spectrum is
influenced in the (K−, K+) reaction on a nuclear target. We
have also demonstrated the �− QF spectrum in the 12C(K−,
K+) reaction at pK− = 1.8 GeV/c within the Fermi gas model.

In conclusion, we show the strong energy and angular
dependencies of the in-medium K− p → K+�− production
cross section, which is important to describe the shape and
the magnitude of the �−-production spectrum in the (K−, K+)
reaction on the nuclear target. This result may be a basis for
study extracting the properties of the �-nucleus potential from
the experimental data. The detailed investigations are required
for the analysis of the 12C(K−, K+) reaction at 1.8 GeV/c at
the J-PARC E05 experiment [7] and also for the extension to
the two-step processes in the inclusive (K−, K+) reactions.
These investigations are subjects for future research.
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