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Using a more reasonable separate density-dependent scenario instead of the total density-dependent scenario
for in-medium nn, pp, and np interactions, we examine effects of differences of in-medium nucleon-nucleon
interactions in two density-dependent scenarios on isospin-sensitive observables in central 197Au + 197Au
collisions at 400 MeV/nucleon. It is shown that the symmetry potentials and resulting symmetry energies in
two density-dependent scenarios indeed begin to deviate at nonsaturation densities, especially at suprasaturation
densities. Naturally, several typical isospin-sensitive observables such as the free neutron-proton ratios and
the π−/π+ ratios in heavy-ion collisions are affected significantly. Moreover, to more physically detect the
differences between the nucleon-nucleon interactions in two density-dependent scenarios, we also map the
nucleon-nucleon interaction in the separate density-dependent scenario into that in the total density-dependent
scenario through fitting the identical constraints for symmetric nuclear matter as well as the identical slope
parameter of nuclear symmetry energy at the saturation density. It is shown that two density-dependent scenarios
also lead to essentially different symmetry potentials especially at high densities although they can lead to
the identical equation of state for the symmetry nuclear matter as well as the identical symmetry energy for
the isospin asymmetric nuclear matter. Consequently, these isospin-sensitive observables are also appreciably
affected by the different density-dependent scenarios of in-medium nucleon-nucleon interactions. Therefore,
according to these findings, it is suggested that effects of the separate density-dependent scenario of in-medium
nucleon-nucleon interactions should be taken into account when probing the high-density symmetry energy using
these isospin-sensitive observables in heavy-ion collisions.

DOI: 10.1103/PhysRevC.102.024614

I. INTRODUCTION

Simulations of heavy-ion collisions (HICs) as well as
comparisons with the corresponding experiments provide an
important tool to explore the properties of strong interacting
nucleonic matter at extreme conditions. As the important
inputs in simulations of HICs, the density-dependent nucleon-
nucleon interactions as well as the resulting nuclear mean field
have been paid much attention in the past few decades [1–12].
However, the nuclear mean field especially its isovector part,
i.e., the symmetry potential, is still incompletely understood
at present. Essentially, the symmetry potential is determined
by the competition between the isospin singlet and isospin
triplet channels of nucleon-nucleon interactions [9,13,14].
The symmetry potential is also found to be sensitive to the
in-medium effects such as the in-medium nuclear effective
many-body force and the tensor force due to the in-medium
ρ-meson exchange [15]. In nonrelativistic models, the in-
medium many-body forces effects are usually taken into ac-
count by a density-dependent term in the two-body effective
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interactions [16–18], and the relativistic models generate the
similar density-dependent term in the two-body effective in-
teractions as in the nonrelativistic models through dressing
of the in-medium spinors [19]. Nevertheless, how exactly
does the resulting two-body effective interaction depend on
the in-medium nucleon densities remains an open question.
For example, a total density-dependent scenario without dis-
tinguishing the density dependence for in-medium nn, pp,
and np interactions is usually assumed in the Skyrme, M3Y,
and Gogny forces and then adopted in some theoretical sim-
ulations of HICs [20–26]. However, within the Brueckner
theory [27–29], Brueckner and Dabrowski pointed out that the
G matrix of nucleon-nucleon interactions depends strongly
on the respective Fermi momenta of neutrons and protons
in isospin asymmetric nuclear matter. Actually, the separate
density-dependent scenario for in-medium nucleon-nucleon
interactions has been used in studying the structure of finite
nuclei as well as properties of infinite nuclear matter by
some authors such as Negele [30], Sprung and Banerjee [31]
as well as Brueckner and Dabrowski [27–29]. Of particular
interest, authors in Refs. [32] and [33] employing the Gogny
effective interactions, respectively, studied effects of the sep-
arate density dependence of in-medium nucleon-nucleon in-
teractions on the symmetry potential and energy, they found
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consistently that the resulting symmetry potential and energy
at nonsaturation densities in the separate density-dependent
scenario indeed deviate significantly from those in the to-
tal density-dependent scenario. Stimulated by these studies,
we examine effects of differences of in-medium nucleon-
nucleon interactions in these two density-dependent scenarios
on isospin-sensitive observables in HICs at intermediate ener-
gies. The main purpose of this article is to answer whether one
needs to consider the separate density-dependent scenario for
in-medium nucleon-nucleon interactions in HICs, especially
for probing the density-dependent nuclear symmetry energy
using these isospin-sensitive observables in HICs, which is
seldom considered in simulations of HICs to our best knowl-
edge.

II. THE MODEL

For completeness, we first recall the total density-
dependent scenario for in-medium nucleon-nucleon inter-
actions according to the original Gogny effective interac-
tion [18],

v(r) =
∑
i=1,2

(W + BPσ − HPτ − MPσ Pτ )ie
−r2/μ2

i

+ t0(1 + x0Pσ )

[
ρ

(
ri + r j

2

)]α

δ(ri j ), (1)

where W , B, H , M, and μ are five parameters, and Pτ and
Pσ are the isospin and spin exchange operators, respectively;
while α is the density-dependent parameter used to mimic
in-medium effects of the many-body interactions, particularly,
the case with α = 1 corresponds to an effective density-
dependent two-body interaction deduced from a three-body
contact interaction in spin-saturated nuclear matter [16,33].
Based on the Hartree-Fock approximation using the original
Gogny effective interaction, i.e., Eq. (1), Das et al. derived a
momentum-dependent interaction (MDI) single-nucleon po-
tential for the Boltzmann-Uehling-Uhlenbeck (BUU) trans-
port model expressed as [6,34]

U (ρ, δ, �p, τ ) = Au(x)
ρ−τ

ρ0
+ Al (x)

ρτ

ρ0

+ B

(
ρ

ρ0

)σ

(1 − xδ2)−8τx
B

σ+1

ρσ−1

ρσ
0

δρ−τ

+ 2Cl

ρ0

∫
d3 p′ fτ ( �p′)

1 + ( �p − �p′)2/�2

+ 2Cu

ρ0

∫
d3 p′ f−τ ( �p′)

1 + ( �p − �p′)2/�2
, (2)

where τ = 1/2 for neutrons and −1/2 for protons; while
parameters Au(x) and Al (x) are determined as

Au(x) = −95.98 − x
2B

σ + 1
,

Al (x) = −120.57 + x
2B

σ + 1
. (3)

Here, the parameter x is related to the spin(isospin)-dependent
parameter x0 via x = (1 + 2x0)/3 in the density-dependent

term of original Gogny effective interactions, which controls
the relative contributions of the density-dependent term to the
total energy in the isospin singlet channel [∝ (1 + x0)ρα+1]
and triplet channel [∝ (1 − x0)ρα+1] [18]. Therefore, varying
the x parameter can cover uncertainties of the spin(isospin) de-
pendence of in-medium many-body forces which are respon-
sible for the divergent density dependence of nuclear symme-
try energy in the Gogny Hartree-Fock calculations [7,14,33].
However, it should be emphasized that the x parameter does
not affect the equation of state of symmetric nuclear matter
as well as the symmetry energy at the saturation density due
to the contributions of different channels are canceled out
exactly, i.e., ∝ (1 + x0)ρα+1 + (1 − x0)ρα+1 = 2ρα+1. The
parameters B = 106.35 MeV and σ = 4/3 in the MDI single-
nucleon potential are related to t0 and α in the original
Gogny effective interactions via t0 = 8

3
B

σ+1
1
ρσ

0
and σ = α +

1 [14,32]. While Cu = −103.4 MeV and Cl = −11.7 MeV are
the interaction strength parameters for a nucleon with isospin
τ interacting, respectively, with unlike and like nucleons in the
nuclear matter, and thus account for the momentum depen-
dence of the single-nucleon potential. These parameters are
all obtained by fitting the reached consensuses on properties
of nuclear matter at the saturation density ρ0 = 0.16 fm−3

including the binding energy E0(ρ0) = −16 MeV, the incom-
pressibility K0 = 212 MeV for symmetric nuclear matter, as
well as the symmetry energy Esym(ρ0) = 30.5 MeV, for more
details about the MDI interaction, see, e.g., Refs. [6,34].

While for the separate density-dependent scenario for in-
medium nucleon-nucleon interactions, we follow the Ref. [32]
to replace the density-dependent term in the original Gongy
effective interaction by the following density-dependent term

VD = t0(1 + x0Pσ )[ρτi (ri )+ρτ j (r j )]
αδ(ri j ). (4)

Here, the interaction explicitly depends on densities of two nu-
cleons at positions ri and r j instead of the total density of two-
nucleon central position (ri + r j )/2 as in the original Gogny
effective interaction. With this density-dependent scenario for
in-medium nucleon-nucleon interactions, the resulting single-
nucleon potential labeled as the improved MDI single-nucleon
potential (IMDI) is changed as [32]

U ′(ρ, δ, �p, τ ) = A′
u(x)
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+ A′
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+ B
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(
ρ
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)σ

(1 + x)
ρ−τ

ρ

[
1+(σ −1)

ρτ

ρ
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ρ0

∫
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, (5)

and the corresponding parameters Au(x) and Al (x) are
changed as

A′
u(x) = −95.98 − 2B

σ + 1
[1 − 2σ−1(1 − x)], (6)

A′
l (x) = −120.57 + 2B

σ + 1
[1 − 2σ−1(1 − x)]. (7)
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FIG. 1. The density dependencies of nuclear symmetry energies
calculated from the MDI and IMDI single-nucleon potentials.

It should be mentioned that the properties of symmetric
nuclear matter are not changed from the MDI interaction
to the IMDI interaction due to the isospin scalar potentials
U0(ρ, 0, �p, τ ) = U ′

0(ρ, 0, �p, τ ) by setting δ = 0 and ρn =
ρp = 1

2ρ. While for the isospin asymmetric nuclear matter, the
properties are expected to change from the MDI interaction to
the IMDI interaction.

Shown in Fig. 1 are the density dependencies of nuclear
symmetry energy calculated from the MDI and IMDI single-
nucleon potentials. For parameter x = 1, it is seen that the
symmetry energy calculated from the IMDI single-nucleon
potential is the same as that calculated from the MDI single-
nucleon potential. This is because the fourth term in the IMDI
single-nucleon potential is zero with x = 1 while other terms
are unchanged as in the MDI single-nucleon potential. How-
ever, for parameters of x = −1 and 0, the symmetry energies
calculated from the IMDI single-nucleon potential become
stiffer (softer) at suprasaturation (subsaturation) densities
compared to those calculated from the MDI single-nucleon
potential. Undoubtedly, these differences of the symmetry
energy are resulting from different symmetry potentials gener-
ated in the MDI and IMDI single-nucleon potentials. It should
be emphasized that even with the same symmetry energies,
the corresponding symmetry potentials could be very different
due to the fact that the symmetry potentials depend not only
on the nucleon density but also on the nucleon momentum
or energy. Therefore, to physically distinguish the symmetry
potentials derived from the MDI and IMDI single-nucleon
potentials, it is useful to map the nucleon-nucleon interaction
in the separate density-dependent scenario (i.e., IMDI single-
nucleon potential) into that in the total density-dependent
scenario (i.e., MDI single-nucleon potential). This is carried
out by fitting the identical constraints for symmetric nuclear
matter as well as the identical slope parameter of symmetry
energy at ρ0, the corresponding results are also shown in
Fig. 1. It is seen that the symmetry energy calculated from
the IMDI single-nucleon potential with mapped parameters

x = −0.5874 and 0.2063, respectively, is completely identical
with that calculated from the MDI single-nucleon potential
with parameters x = −1 and 0.

Shown in Fig. 2 are the momentum-dependent symmetry
potentials at ρ = 0.5ρ0, ρ0, 1.5ρ0, and 2ρ0 calculated from
the MDI and IMDI single-nucleon potentials with parameters
x = −1, 0, and 1 as well as the mapped parameters x =
−0.5874 and 0.2063 used in the IMDI single-nucleon poten-
tial. Again, with parameter x = 1, the symmetry potentials
are completely identical to each other in calculations using
the MDI and IMDI single-nucleon potentials at either low
densities or high densities. While for parameter x = −1, the
symmetry potentials are significantly stronger especially at
high densities in calculations using the IMDI single-nucleon
potential compared to those in calculations using the MDI
single-nucleon potential. However, for the case of parameter
x = 0, the symmetry potentials calculated from the IMDI
single-nucleon potential change from strong to weak (weak
to strong) at suprasaturation (subsaturation) densities with the
increase of nucleons momenta, compared to those calculated
from the MDI single-nucleon potential. As to the mapped
symmetry potentials calculated from the IMDI single-nucleon
potential with parameters x = −0.5874 and 0.2063, it can be
observed that they are also appreciably different from those
in calculations using the MDI single-nucleon potential with
parameters x = −1 and 0, respectively. Actually, according
to the relation between the symmetry energy and the single-
nucleon potential [14,27–29], i.e.,

Esym(ρ) ≈ 1

3
t (kF ) + 1

6

∂U0

∂k
|kF kF + 1

2
Usym(kF ), (8)

with t (k) denotes the nucleon kinetic energy and kF represents
the Fermi momentum of nucleons in symmetry nuclear matter,
one can know that these are mainly due to the differences
between the symmetry potential calculated from the MDI
single-nucleon potential and the mapped symmetry potential
calculated from the IMDI single-nucleon potential. Therefore,
effects of two density-dependent scenarios for in-medium
nucleon-nucleon interactions on isospin-sensitive observables
in HICs can be reflected through examining effects of the
symmetry potential calculated from the MDI single-nucleon
potential and the mapped symmetry potential calculated from
the IMDI single-nucleon potential on these observables in
HICs. Nevertheless, it should be emphasized that the differ-
ences between the MDI symmetry potential and the IMDI
mapped symmetry potential are essentially resulting from dif-
ferent density-dependent scenarios because the momentum-
dependent but the x parameter independent C terms in Eq. (5)
are completely identical to that in Eq. (2). As a result, accord-
ing to the formula of nucleon effective mass, i.e.,

m∗
τ /m =

[
1 + m

kτ

dUτ

dk

]−1

, (9)

which is only related to the C terms in Eqs. (2) and (5), one
can know that the nucleon effective mass as well as its isospin
splitting are not changed from the MDI interaction to the
IMDI interaction.
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FIG. 2. The momentum dependencies of symmetry potentials calculated from the MDI and IMDI single-nucleon potentials.

III. RESULTS AND DISCUSSIONS

Now, we compare effects of the symmetry potential calcu-
lated from the MDI single-nucleon potential and the mapped
symmetry potential calculated from the IMDI single-nucleon
potential on isospin-sensitive observables in HICs. As com-
parisons, we also include the corresponding results calculated
from the IMDI single-nucleon potential with parameters x =
−1 and 0 in the following discussions.

Show in Fig. 3 are the free neutron-proton ratios gener-
ated in central 197Au + 197Au collisions at 400 MeV/nucleon
where the free neutrons and protons are defined as those
with local densities less than ρ0/8. First, as expected, with
parameter x = 1, the free neutron-proton ratio generated in
simulations using the IMDI single-nucleon potential is com-
pletely identical with that in simulations using the MDI single-
nucleon potential. Second, with parameters x = −1 and 0,
the free neutron-proton ratios generated in simulations using
the IMDI single-nucleon potential are larger especially at the
compression stage compared to those in simulations using
the MDI single-nucleon potential, reflecting the free neutron-
proton ratios are indeed sensitive to high-density behaviors
of nuclear symmetry potential and/or energy because the
stronger positive symmetry potentials at high densities get
more neutrons to be spread but more protons to be gathered.
Certainly, for the case of parameter x = 0, the competition
of symmetry potentials at high densities between low nu-

cleon momentum and high nucleon momentum as aforemen-
tioned causes the observed effects to be not so obvious as
those in the case of parameter x = −1. However, it should
be emphasized that, besides the different density-dependent
scenarios of in-medium nucleon-nucleon interactions, these

FIG. 3. Evolutions of free neutron-proton ratios in calculations
with the MDI and IMDI single-nucleon potentials.
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FIG. 4. Evolutions of reduced maximum densities ρmax/ρ0

reached at the maximum compression stages in collisions with the
MDI and IMDI single-nucleon potentials.

effects are also resulting from the different symmetry energy
settings because the slope values L of nuclear symmetry
energy at ρ0 are completely different although the identical
parameters x are used in the MDI and IMDI single-nucleon
potentials. Therefore, to more physically detect the effects
of differences of in-medium nucleon-nucleon interactions in
two density-dependent scenarios on the free neutron-proton
ratios, we compare the free neutron-proton ratios generated
in calculations using the MDI single-nucleon potential with
parameters x = −1 and 0 and those in calculation using
the IMDI single-nucleon potential with mapped parameters
x = −0.5874 and 0.2063 as well as those in calculations
using the IMDI single-nucleon potential with parameters
x = −1 and 0. As shown also in Fig. 3, the free neutron-
proton ratios in calculations using the IMDI single-nucleon
potentials with mapped parameters x = −0.5874 and 0.2063
are obviously lower than those in calculations using the
IMDI single-nucleon potentials with parameters x = −1 and
0, respectively. Certainly, the values of free neutron-proton
ratios in calculations using the IMDI single-nucleon potentials
with mapped parameters x = −0.5874 and 0.2063 are also
larger than those in calculations using the MDI single-nucleon
potentials with parameters x = −1 and 0, respectively. Ac-
tually, the symmetry energy is not directly entering into the
reaction process, and thus does not directly affect the free
neutron-proton ratios. On the contrary, the different symmetry
energy is originated from different symmetry potential, i.e.,
the isovector part of single-nucleon potential under different
x parameter settings. Naturally, these different single-nucleon
potentials dominate the different reaction dynamics as well
as different free neutron-proton ratios which thus indirectly
reflect different symmetry energy settings. This can be con-
firmed by comparing the reduced maximum densities ρmax/ρ0

reached at the maximum compression stages in collisions
with the IMDI single-nucleon potential under setting two
different parameters x = −1 [IMDI(-1)] and x = −0.5874
[IMDI(-0.5874)] as shown in Fig. 4. Nevertheless, for the case
with the MDI single-nucleon potential under setting x = −1
[MDI(-1)] and that with the IMDI single-nucleon potential

FIG. 5. Kinetic energy distributions of free neutron-proton ratios
at the end of reactions with the MDI and IMDI single-nucleon
potentials.

under setting x = −0.5874 [IMDI(-0.5874)], the resulting
ρmax/ρ0 are also different although their corresponding sym-
metry energies are completely identical as shown in Fig. 1.
Actually, according to formula (8) as well as the Fig. 2,
this is exactly the difference of in-medium nucleon-nucleon
interactions in two density-dependent scenarios that leads to
the different ρmax/ρ0 in collisions, and thus generates differ-
ent free neutron-proton ratios. Correspondingly, the kinetic
energy distributions of free neutron-proton ratios at the end
of reactions are also affected by the density-dependent sce-
narios of in-medium nucleon-nucleon interactions as shown
in Fig. 5. Therefore, effects of the separate density-dependent
scenario of in-medium nucleon-nucleon interactions should
be carefully considered in studies of using the free neutron-
proton ratio as a probe of nuclear symmetry energy especially
at high densities.

On the other hand, according to the production mechanism
of pions, i.e., pions are produced mainly at the compression
stages during collisions and π− is mainly from nn inelastic
collisions but π+ mainly from pp inelastic collisions, one
naturally expects that the effects of density-dependent sce-
narios of in-medium nucleon-nucleon interactions also hold
for the π−/π+ ratio, which has been indicated to be very
sensitive to the symmetry energy and potential at high den-
sities [35–39] but still affected by some incompletely known
uncertainties [40–48]. In HICs at intermediate energies, pions
are produced during collisions mostly from the decay of

(1232), therefore, it is useful to examine the effects of
density-dependent scenarios of in-medium nucleon-nucleon
interactions on dynamic pion ratio (π−/π+)like, i.e.,

(π−/π+)like = π− + 
− + 1
3
0

π+ + 
++ + 1
3
+ . (10)

Certainly, because all the 
 resonances will eventually decay
into nucleons and pions, the ratio (π−/π+)like will natu-
rally become to the free π−/π+ ratio at the end of reac-
tions. Shown in Fig. 6 are the evolutions of (π−/π+)like

ratios generated in central 197Au + 197Au collisions at
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FIG. 6. Evolutions of π−/π+ ratios in calculations with the MDI
and IMDI single-nucleon potentials.

400 MeV/nucleon. First, it is obvious to see that the π−/π+
ratio is indeed sensitive to the density dependence of nuclear
symmetry energy regardless of using the IMDI single-nucleon
potential or the MDI single-nucleon potential, and a softer
symmetry energy usually leads to a higher π−/π+ ratio,
reflecting a more neutron-rich participant region formed in the
reaction [35–39]. Second, with parameter x = 1, the π−/π+
ratio calculated from the IMDI single-nucleon potential is
completely identical with that calculated from the MDI single-
nucleon potential. Third, for the case of identical parameter
x = −1, it is seen that the stronger positive symmetry po-
tential at high densities gets the π−/π+ ratio in calculations
using the IMDI single-nucleon potential to be significantly
smaller than that in calculations using the MDI single-nucleon
potential. Actually, due to the stronger positive symmetry
potential with parameter x = −1 causes more neutrons to be
spread but more protons to be gathered, naturally, according
to the production mechanism of pions, i.e., π− is produced
mainly from the channel n + n → π− + p but π+ from the
channel p + p → π+ + p, we can observe a smaller π−/π+
ratios in calculations using the IMDI single-nucleon potential.
Certainly, due to the symmetry potential calculated from the
IMDI single-nucleon potential with parameter x = 0 changes
from strong to weak at suprasaturation densities with the
increase of nucleons momenta compared to that calculated
from the MDI single-nucleon potential with parameter x = 0,
we can also see that the differences of π−/π+ ratios in this
case are not as larger as those in the case of parameter x = −1.
Again, these effects are resulting from both different density-
dependent scenarios and different symmetry energy settings.
While comparing the π−/π+ ratios in calculations using
the IMDI single-nucleon potential with mapped parameters
x = −0.5874 and 0.2063 with those in calculations using
the MDI single-nucleon potential with parameters x = −1
and 0, respectively, we find again the similar observations as
those in free neutron-proton ratios due to the IMDI mapped
symmetry potential is after all appreciably different from the
MDI symmetry potential. Especially, due to the differences
of the IMDI mapped symmetry potential with parameter x =
−0.5874 and the MDI symmetry potential with parameter

x = −1 are relative large at both low nucleon momentum
and high nucleon momentum, the corresponding effects on
the π−/π+ ratios are relative appreciable. Certainly, it should
be emphasized that this effect is independent of nuclear sym-
metry energy but is exactly resulting from different density-
dependent scenarios of in-medium nucleon-nucleon interac-
tions. Therefore, effects of the separate density-dependent
scenario of in-medium nucleon-nucleon interactions should
also be carefully considered in studies of using the π−/π+
ratio as a probe of nuclear symmetry energy especially at high
densities.

Before ending this part, we give two useful remarks:
First, although there are currently no physical studies

based on first principles to illustrate more accuracy of the
separate density-dependent scenario, some results relevant to
nuclear structure studies have been shown to yield very satis-
factory agreement with the corresponding experiments such
as the binding energies, single-particle energies, and elec-
tron scattering cross sections for 16O, 40Ca, 48Ca, 90Zr, and
208Pr [30,49]. Moreover, as indicated in Ref. [49], the separate
density dependence of effective two-body interactions is orig-
inated from the renormalization of multibody force effects,
and the latter may extend the density dependence of effective
interactions for calculations beyond the mean-field approxi-
mation and open a new freedom in the effective interactions.

Second, it is well known that the double neutron-proton
and/or π−/π+ ratios from two reaction systems have the
advantage of reducing both systematic errors and the influ-
ences of isoscalar potentials in HICs [50,51]. This could
enlarge the contribution of the isovector potentials and better
discriminate between the two scenarios. Therefore, the double
ratios of these observables from two reactions as well as
the cross examinations of these observables using various
experimental data such as the FOPI data [38] and that from the
symmetry energy measurement experiment at RIBF-RIKEN
in Japan [52] could be good candidates in probing the effects
of density-dependent scenarios in HICs in future.

IV. SUMMARY

In conclusion, we have studied effects of differences of in-
medium nucleon-nucleon interactions in the separate and total
density-dependent scenarios on isospin-sensitive observables
in HICs within a transport model. Consistent with the previous
studies, the nuclear symmetry energy and potential at nonsat-
uration densities in the separate density-dependent scenario
indeed become to deviate significantly from those in the
total density-dependent scenario for the identical x parameters
except for the parameter x = 1. Two typical isospin-sensitive
observables including the free neutron-proton ratios and the
π−/π+ ratios in HICs are affected significantly. Nevertheless,
it should be emphasized that these effects are resulting from
both the different symmetry energy settings and the different
density-dependent scenarios of in-medium nucleon-nucleon
interactions. Therefore, to more physically detect the differ-
ences of in-medium nucleon-nucleon interactions as well as
the resulting symmetry potential in two density-dependent
scenarios, we have also mapped the nucleon-nucleon inter-
action in the separate density-dependent scenario into that in
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the total density-dependent scenario through fitting the iden-
tical constraints for symmetric nuclear matter as well as the
identical slope parameter of symmetry energy at the saturation
density. It is shown that the mapped symmetry potentials
calculated from the IMDI single-nucleon potential indeed
deviate from those in calculations using the MDI single-
nucleon potential especially at high densities. Consequently,
these isospin-sensitive observables in HICs could also be
appreciably affected. Therefore, according to these findings as
well as the Brueckner theory and previous findings in nuclear
structure studies, we conclude that effects of the separate
density-dependent scenario for in-medium nucleon-nucleon

interactions might be very important and thus should be taken
into account when probing the high-density symmetry energy
using these isospin-sensitive observables in HICs.
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