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Microscopic optical-model potentials evaluated by two methods in a nuclear matter approach, namely a
G-matrix folding method and an improved local-density approximation (LDA) method, are compared. The
real parts agree well and show good correspondence to a phenomenological Woods-Saxon potential when
second-order contributions are taken into account. On the other hand, the resemblance is not so good in an
imaginary part. The reason for the similarity in the real part of the two methods is examined. The improved
LDA, which requires less numerical effort, is useful to apply in other cases such as hyperon potentials.
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I. INTRODUCTION

Nuclear matter is a valuable place to consider nucleon-
nucleon correlations in the nuclear medium and to study
nuclear bulk properties based on bare nucleon-nucleon inter-
actions. To relate the properties obtained in nuclear matter to
those in finite nuclei, a local-density approximation (LDA)
has been employed at various stages. The idea of the LDA
[1] is based on the assumption that the interaction range is
smaller than or comparable to the length scale of the density
change in finite nuclei.

In microscopic studies of an optical-model potential
(OMP) that describe nucleon-nucleus elastic scattering, a
nuclear matter approach [2–6] has been a successful method.
The conventional way of applying the G matrices in the
Brueckner theory evaluated in nuclear matter to describe
elastic nucleon-nucleus scattering cross sections is first to
parametrize the G matrices in a convenient function form as an
energy- and density-dependent two-body effective interaction
and then to apply it to construct an OMP by a folding pro-
cedure with target wave functions. The density-dependence
of the effective interaction is treated by a local-density ap-
proximation. This method is referred to as a G-matrix folding
method. The successful calculations in this method by sev-
eral groups [7–9] indicate that physically important medium
effects are properly taken into account together with the
regularization of high-momentum singular components of the
bare nucleon-nucleon force.

A simpler method of using the G matrices in nuclear
matter to infer the OMP in finite nuclei is an improved
LDA, which was introduced in the early stage of the nuclear
matter approach [4] and was shown to work well. In this
method, the single-particle potential in nuclear matter calcu-
lated by the G matrices is directly assigned to the potential
at the corresponding density in a nucleus. To simulate finite-
range effects, a form factor typically in a Gaussian form
with an adequate range is convoluted. Recent investigations

[10,11] in the literature sometimes use the LDA and/or
improved LDA. If the improved LDA is confirmed to be
reliable, the method is useful to be applied in a broader
situation such as hyperon-nucleus interactions, because an
elaborate fitting of G matrices in some function form can be
avoided.

The practical success of the improved LDA does not imply
that its properties are well understood. The concern noted in
the pioneering paper [4] has not been well answered that the
introduction of a Gaussian form factor in the improved LDA is
only qualitative and the theoretical foundation of the folding
formula in the imaginary part is shakier than that of the real
part. Therefore, theoretical studies of the improved LDA are
meaningful. In this paper, the improved LDA is examined in
two ways, numerically and analytically.

First, the OMP obtained by the improved LDA is compared
with that of the more elaborate G-matrix folding method,
employing the same G matrices in nuclear matter. If these two
potentials are similar, the improved LDA approximation is
reassuring to be used as a useful method in discussing micro-
scopic single-particle potentials in the nuclear medium. Next,
analytical derivation of the expression of the improved LDA is
discussed, starting with the G matrices in nuclear matter. It is
shown that the Gaussian folded form is obtained by supposing
a plausible approximation for G-matrix elements.

In Sec. II, after a recapitulation of the two methods, OMPs
are numerically evaluated for 40Ca, 90Zr, and 208Pb in the
G-matrix folding method and the improved LDA method
and resulting potentials are compared. The correspondence
of these OMPs to a standard phenomenological Woods-Saxon
potential is also demonstrated. Theoretical considerations for
the reliable reproduction of the real part of the G-matrix
folding potential by the improved LDA method are given in
Sec. III, which indicates what approximation is required to
obtain improved LDA expression. The summary follows in
Sec. IV.

2469-9985/2020/102(2)/024611(10) 024611-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.024611&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevC.102.024611


M. KOHNO PHYSICAL REVIEW C 102, 024611 (2020)

II. MICROSCOPIC OPTICAL-MODEL POTENTIALS

The basic expressions of the G-matrix folding method and
the improved LDA method are recapitulated. A naive fold-
ing procedure for effective two-body interactions in a finite
nucleus by target single-particle wave functions generates a
nonlocal potential. Although there is no problem to solve
scattering problems with a nonlocal potential, a localization
approximation has been commonly introduced. The standard
method was provided by Brieva and Rock [6]. The relia-
bility of the Brieva-Rock localization was demonstrated in
Ref. [12]. The localized potential for the nucleon with the
incident energy E reads

Uτ (r, E ) =
∑

τ ′=p.n

{ ∫
dr′ρτ (r′)gD

ττ ′ (s; ρ, E )

− ρτ (r, r′)gE
ττ ′ (s; ρ, E )

}
, (1)

where s = r − r′ and ρ represents the density dependence.
The effective interaction terms gD

ττ ′ and gE
ττ ′ are defined by

a combination of the GS,T matrices in the total spin S and the
total isospin T state of the two-nucleon pair,

gD
ττ ′ =

∑
S=0,1;T =0,1

(1/2τ1/2τ ′|T τ + τ ′)2ŜGS,T , (2)

gE
ττ ′ =

∑
S=0,1;T =0,1

(−1)S+T (1/2τ1/2τ ′|T τ + τ ′)2ŜGS,T ,

(3)

where Ŝ ≡ 2S + 1. For the exchange density matrix ρτ (r, r′),
the Slater approximation [13,14] is employed:

ρτ (r, r′) � ρτ (rm)
3

skF,τ (r)
j1(skF,τ ), (4)

where rm = (r + r′)/2 and j1 is a spherical Bessel function of
the first kind. The local Fermi momentum kF,τ (r) is related
to the local density ρτ (r) by ρτ (r) = 1

3π2 k3
F,τ (r). Several

prescriptions are possible for the local density ρ in gD
ττ ′ and

gE
ττ ′ . In the present calculations, the midpoint prescription is

employed:

ρ =
∑

τ

ρτ (rm). (5)

In the G-matrix folding approach presented in Ref. [9],
energy- and density-dependent effective interactions in spin-
singlet even, spin-triplet even, spin-singlet odd, and spin-
triplet odd states are parametrized in a three-range local
Gaussian form in coordinate space.

In the improved LDA method, the single-particle potential
in nuclear matter is assigned to the potential at the correspond-
ing density in a finite nucleus. The single-particle potential
UNM (k; ρ) as a function of momentum k in nuclear matter
having the density ρ = 2

3π2 k3
F with the Fermi momentum kF

is converted to the potential UNM (E ; ρ) as a function of the
energy E through the relation

E = h̄2

2m
k2 + UNM (k; ρ). (6)
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FIG. 1. Density dependence of the single-particle potential in
nuclear matter when the nucleon energy E is specified.

The complex nuclear matter potential UNM (k; ρ) is the result
of the G-matrix calculations [15] using nucleon-nucleon inter-
actions of chiral effective field theory with incorporating the
effects of three-nucleon forces.

Some details are noted for the G-matrix calculations.
In solving the G-matrix equation, the so-called continuous
choice is employed for the intermediate spectra. Without
using an effective approximation, namely a parabolic approx-
imation, the single-particle potential is interpolated in terms
of the values at mesh points. It has been known that the
Brueckner self-consistent calculation does not converge at
low densities, namely at kF � 0.8 fm−1 or ρ � 0.2ρ0 with
ρ0 being the normal density, probably due to the onset of
clustering of nuclear matter. When the density is 0.2–0.55
fm−3, converging results are obtained. However, the potential
self-consistently determined bears problematic wavy behavior
between k = 1 fm and k = 3 fm, presumably as the precursor
of the clustering. Such behavior brings about peculiar density
dependence especially in the imaginary part of the single-
particle potential, which is irrelevant in finite nuclei. Because
the G-matrix equation for scattering states is the method to
deal with high-momentum singularities of NN interactions,
a smooth single-particle potential is better to be used in
the intermediate spectra. The practical way of smoothing or
averaging the potential is to reduce the number of mesh points
for the self-consistent determination of the potential. This
prescription hardly changes the single-particle potential at
k � 1 fm and k � 3 fm. The single-particle potential applied
to the low-density region below 0.2ρ0 is estimated by the
interpolation as a function of the density between zero at
ρ = 0 and those above ρ = 0.2 fm−3. The obtained complex
potentials UNM (E ; ρ) are shown in Fig. 1 as a function of the
density ρ at the energies E = 65 and 100 MeV.

The OMP U (r) in a finite nucleus having the density profile
ρ(r) is constructed as

U (r; E ) = UNM (E ; ρ(r)). (7)

To correct the finite-range effects, a Gaussian form factor is
introduced.

U (r; E ) = (
√

πβ )−3
∫

dr′e−[(r−r′ )/β]2
UNM (E ; ρ(r′)). (8)
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FIG. 2. Proton, neutron, and average OMPs in 208Pb at the energy
E = 65 MeV. The thick curves represent the potentials obtained
by the G-matrix folding method in Ref. [9]. The thin curves are
phenomenological potentials in a Woods-Saxon form parametrized
by Koning and Delaroche [16].

In the present improved LDA calculations, single-particle
potentials in symmetric nuclear matter are considered. There-
fore, there is no difference between the proton and neutron
potentials. In finite nuclei, however, the proton and neutron
OMPs are generally different due to the different proton
and neutron density distributions and the isospin-dependence
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FIG. 3. LDA and improved LDA OMPs in the real part for 40Ca
at E = 65 and 100 MeV are compared with the proton-neutron aver-
age potential calculated by the G-matrix folding method. The proton-
neutron average Woods-Saxon OMPs by Koning and Delaroche [16]
are also shown by the dotted curves.
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FIG. 4. Same as Fig. 3, but for 90Zr.

of the interactions. To compare the calculated OMPs in
the improved LDA method with those from the G-matrix
folding method and also with the phenomenological OMPs,
the average of the proton and neutron OMPs is considered.
The proton, neutron, and average OMPs in 208Pb at the
energy E = 65 MeV are demonstrated in Fig. 2 both for the
phenomenological Woods-Saxon parametrization by Koning
and Delaroche [16] and the G-matrix folding method. The
Woods-Saxon potentials are shallower than those of the G-
matrix folding method. The difference can be explained by the
second-order Pauli rearrangement contribution [10], which is
not taken into account in the latter potential.

A. Real part

Microscopic OMPs are calculated in the G-matrix folding
method and the improved LDA method for 40Ca, 90Zr, and
208Pb at the energies E = 65 and 100 MeV, using the G matri-
ces [15] of chiral nucleon-nucleon interactions with effects of
three-nucleon forces. Density distributions of the target nuclei
are provided by Hartree-Fock single-particle wave functions
with the Gogny D1S effective force [17]. Results are presented
in Figs. 3, 4, and 5. Representative empirical Woods-Saxon
potentials by Koning and Delaroche [16] are also included.
Besides, the potentials by the simple LDA method are shown
for comparison.

The steep slope of the OMP in the surface area by the
simple LDA method moderates in the improved LDA method.
The range parameter of around β = 1 fm reproduces well
the OMP of the G-matrix folding method. These microscopic
potentials also show good correspondence to the phenomeno-
logical Woods-Saxon potential, except for the difference in
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FIG. 5. Same as Fig. 3, but for 208Pb.

the central region. The difference between the Koning and
Delaroche potential and the G-matrix folding potential in a
real part is of the order of the rearrangement potential [10]
which is absent in the lowest order G-matrix folding potential.

B. Imaginary part

The comparison between the G-matrix folding method and
the improved LDA method is also made for the imaginary part
of the microscopic OMP in Figs. 6, 7, and 8. The results of
the simple LDA are also shown by the dashed curves. The
imaginary strength of the improved LDA method in the central
region is larger than that of the G-matrix folding method,
though the calculations are based on the same G matrices
in nuclear matter. Comparing to these microscopic imagi-
nary potentials, the phenomenological Koning and Delaroche
imaginary potential is much shallower in the inner region.

The second-order rearrangement effect, which brings about
repulsive contributions [10] to fill the difference between the
lowest-order microscopic real part and the phenomenological
real part, does not contribute to an imaginary part. Any
higher-order process cannot provide a positive contribution
to the imaginary potential and therefore does not solve the
discrepancy. The overestimation of the microscopic OMP in
the imaginary strength may be attributed to the continuum
level density near the Fermi surface in nuclear matter [18]. It
is also possible that the nonlocal imaginary G-matrix elements
may not be well simulated in a convenient local-function
form. To remedy the overestimation, a renormalization factor
is sometimes introduced. For example, the reduction factor
in Ref. [8] is 0.65 ≈ 0.8, depending on the bare nucleon-
nucleon interaction employed. On the other hand, microscopic

−30

−20

−10

0

0 2 4 6 8 10
−30

−20

r  [fm]

40Ca
E=65 MeV

U
im

ag
(r

,E
) 

 [M
eV

]

ILDA
β=1.0 fm
β=2.0 fm

G−folding

LDA
K−D

40Ca
E=100 MeV

U
im

ag
(r

,E
) 

 [M
eV

]

FIG. 6. LDA and improved LDA OMPs in the imaginary part for
40Ca at E = 65 and 100 MeV are compared with the proton-neutron
average potential calculated by the G-matrix folding method. The
Woods-Saxon OMPs by Koning and Delaroche [16] are also shown.
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FIG. 7. Same as Fig. 6, but for 90Zr.
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FIG. 8. Same as Fig. 6, but for 208Pb.

calculations of the proton elastic scattering on 40Ca, 58Ni, and
208Pb reported in Ref. [19] using the G matrices in Ref. [9], on
which the present paper is based, do not include the renormal-
ization factor. In the OMP in Ref. [19], the imaginary potential
is deeper than that of the phenomenological potential, as
is shown in Figs. 6–8. This difference, however, does not
influence much the description of nucleon elastic scattering
on nuclei when the nucleon incident energy is not high, as far
as the complex OMP is similar in the surface area. This point
is demonstrated in Sec. II C.

C. Differential cross section

The OMPs of the improved LDA method and the G-matrix
folding method are similar in the real part, but show some
difference in the imaginary part in the inner region. The phe-
nomenological Koning and Delaroche potential is shallower
in the inner region than the microscopic potentials both in the
real and imaginary parts. It is instructive to see how different
results are obtained when differential cross sections of elastic
scattering are calculated with these OMPs.

Figures 9–11 represent angular distributions of proton elas-
tic scattering on 40Ca at the energies E = 65 MeV and E =
100 MeV calculated by the four sets of the proton-neutron
average OMP. Experimental data available at E = 65 MeV
[20,21] are included. The results of the phenomenological
Koning and Delaroche Woods-Saxon potential, the real and
imaginary potentials of which are depicted in Figs. 3–8 by
the dotted curves, are shown by the small circles in a row.
The cross sections obtained with the proton-neutron average
G-matrix folding potential are shown by the solid curve. When
the real part of the G-matrix folding potential is replaced
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FIG. 9. Differential cross sections of proton scattering on 40Ca
at the energy E = 65 MeV calculated by proton-neutron average
OMPs. The small circles in a row denote the result of the phe-
nomenological Woods-Saxon potential by Koning and Delaroche
[16]. The solid curve represents the result of the G-matrix folding
calculation. The dotted curve shows the result of the potential in
which the real part of the G-folding potential is replaced by the im-
proved LDA potential with β = 1.0 fm. The improved LDA potential
supplemented by the spin-orbit potential of the G-matrix folding
potential gives the dashed curve. Experimental data at E = 65 MeV
are taken from Ref. [20].

by that of the improved LDA method, the dotted curve is
obtained. Finally, the improved LDA potential supplemented
by the spin-orbit potential of the G-matrix folding method
gives the dashed curve. The four results are close to each other
at E = 65 MeV except for the backward angles and account
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FIG. 10. Same as Fig. 9, but for 90Zr. Experimental data at E =
65 MeV are taken from Ref. [21].
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FIG. 11. Same as Fig. 9, but for 208Pb. Experimental data at
E = 65 MeV are taken from Ref. [20].

well for experimental data, although the potential strength in
particular in the imaginary part is varying as is seen in Fig. 6–
8. This result indicates that the nucleon elastic scattering on
nuclei at this energy is determined almost by the properties of
the OMP in the surface area and therefore is insensitive to the
strength in the inner region. At E = 100 MeV, the influence of
the inner part of the OMP increases and the differences among
the four results become larger.

The real part of the microscopic OMP is very similar to
the phenomenological one, especially the second-order Pauli
rearrangement contribution is included. On the other hand, the
imaginary part shows a variation. As noted in Sec. II B, there
is some problem in the nuclear matter approach. There should
be further investigations for the microscopic understanding of
the optical-model imaginary potential in nuclei. It is also an
interesting subject to study whether the difference of the OMP
in the central region can be checked in other applications such
as the description of inelastic processes or not.

III. THEORETICAL CONSIDERATION

It is worthwhile to consider the reason behind the good
agreement of the real part of the OMP calculated by the
improved LDA method with that by the more involved G-
matrix folding method. In this section, it is shown that the
Gaussian folded LDA expression is obtained starting from

G G G

r1 r2

r1’ r2’

r1

r1’

r1

r2’

(a) (b) (c)

FIG. 12. Nonlocal interaction G and its folding by single-particle
states.

a general definition of the microscopic OMP by introducing
several reasonable approximations and assumptions.

Suppose that the two-body G matrix is given in nuclear
matter as G(k′, k; K, ω), which generally depends on the ini-
tial and final relative momenta (k and k′), the center-of-mass
momentum K and the starting energy ω of the interacting two
nucleons. The matrix element in momentum space is trans-
formed into a nonlocal two-body interaction in coordinate
space, Fig. 12(a), as

GS,T (r′
1, r′

2, r1, r2) = (2π )3

(2π )12

∫∫∫∫
dk′

1dk′
2dk1dk2

× ei(k′
1·r′

1+k′
2·r′

2−k1·r1−k2·r2 )

× GS,T (k′, k; K, ω)δ(K ′ − K ), (9)

where k′
1 = 1

2 K ′ + k′, k′
2 = 1

2 K ′ − k′, k1 = 1
2 K + k, and

k2 = 1
2 K − k. A one-body nonlocal potential is constructed

by folding the G matrix by occupied state wave functions
φh(r) of a finite nucleus. The coordinate system is now
referred to by the center of the nucleus. First, a direct con-
tribution from the convolution by φ∗

h (r′
2)φh(r2) is considered,

and next an exchange contribution from the convolution by
−φ∗

h (r′
1)φh(r2) is considered.

A. Direct term

The direct contribution, Fig. 12(b), is given by

UD(r′
1, r1) =

∑
h

∫∫
dr′

2dr2G(r′
1, r′

2, r1, r2)φ∗
h (r′

2)φh(r2)

=
∑

h

∫∫
dr′

2dr2
(2π )3

(2π )12

∫∫∫∫
dk′

1dk′
2dk1dk2

× ei(k′
1·r′

1+k′
2·r′

2−k1·r1−k2·r2 )δ(K ′ − K )

×
∑
S,T

ŜT̂ GS,T (k′, k; K, ω)φ∗
h (r′

2)φh(r2). (10)

The nucleus is assumed to be spherical, and the Slater approx-
imation of the density-matrix expansion [13,14] is introduced:

∑
h

φ∗
h (r′

2)φh(r2) � ρ(R2)
3

s2kF (R2)
j1(s2kF (R2)), (11)

where R2 = 1
2 (r′

2 + r2) and s2 = r2 − r′
2. j1 is a spherical

Bessel function of the first kind and kF (R) is a local Fermi mo-
mentum relating to a local density ρ(R) by ρ(R) = 2

3π2 k3
F (R).

Introducing R1 = 1
2 (r′

1 + r1) and s1 = r1 − r′
1, and noticing

K ′ = K, the exponent in Eq. (2) is rewritten as

k′
1 · r′

1 + k′
2 · r′

2 − k1 · r1 − k2 · r2

= (k′
1 − k1) · R1 − (k′ − k) · R2

− 1
2 (K + k′ + k) · s1 − 1

2 (K − k′ − k) · s2. (12)
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The above change of the variables leads to

UD(r′
1, r1) = U

(
R1 − 1

2
s1, R1 + 1

2
s1

)
�

∫∫
dR2ds2 ρ(R2)

3

s2kF (R2)
j1(s2kF (R2))

1

(2π )9

∫∫∫
dKdk′dk

∑
S,T

ŜT̂

× GS,T (k′, k; K, ω)ei{(k′−k)·R1−(k′−k)·R2}ei{− 1
2 (K+k′+k)·s1− 1

2 (K−k′−k)·s2}. (13)

Using the following integration formula:1

∫
dxeiq·x 3

xkF
j1(kF x) = 6π2

k3
F

θ (kF − q), (14)

where θ (x) is a step function, and carrying out the angle integration of dR2∫
d
2e−i(k′−k)·R2 = 4π j0(|k′ − k|R2), (15)

the nonlocal potential UD(r′
1, r1) becomes

UD(r′
1, r1) = U

(
R1 − 1

2
s1, R1 + 1

2
s1

)
�

∫
4πR2

2dR2
4

(2π )9

∫∫∫
dKdk′dkei((k′−k)·R1− 1

2 (K+k′+k)·s1
∑
S,T

ŜT̂

× GS,T (k′, k; K, ω) j0(|k′ − k|R2)θ

(
kF (R2) − 1

2
|K − k′ − k|

)
. (16)

To localize the nonlocal potential UD(r′
1, r′

2), a WKB method [22] is employed. Namely, a Wigner transformation is operated on
UD(r′

1, r′
2)

UD(R1, p) ≡
∫

ds1eip·s1UD

(
R1 − 1

2
s1, R1 + 1

2
s1

)
, (17)

and p is set to be a momentum that satisfies local energy conservation

E = h̄2

2m
p2 + U (R1, p). (18)

The spherical symmetry allows an angle average 1
4π

∫
d
1, by which ei(k′−k)·R1 is replaced by j0(|k′ − k|R1). Then,

UD(R1, p) =
∫

ds1eip·s1

∫
4πR2

2dR2
4

(2π )9

∫∫∫
dKdk′dk

∑
S,T

ŜT̂ GS,T (k′, k; K, ω)

× θ

(
kF (R2) − 1

2
|K − k′ − k|

)
j0(|k′ − k|R2) j0(|k′ − k|R1)e−i 1

2 (K+k′+k)·s1

=
∫

4πR2
2dR2

4 × 23

(2π )6

∫∫
dk′dk

∑
S,T

ŜT̂ GS,T (k′, k; K = 2p − k′ − k, ω)

× θ (kF (R2) − |p − k′ − k|) j0(|k′ − k|R2) j0(|k′ − k|R1). (19)

Applying the change of variables x = k − k′ and q = 1
2 (k′ + k),

UD(R1, p) =
∫

4πR2
2dR2

4 × 23

(2π )6

∫∫
dxdq

∑
S,T

ŜT̂ GS,T

(
q − 1

2
x, q + 1

2
x; K = 2p − 2q, ω

)

× θ (kF (R2) − |p − 2q|) j0(xR2) j0(xR1). (20)

1Note that θ (kF − q) should be 1/2 when q = kF .
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B. Exchange term

The exchange contribution, Fig. 12(c), namely the convolution of the two-body G matrix by −φ∗
h (r′

1)φh(r2), is also treated in
the same manner.

UE (r′
2, r1) = −

∑
h

∫∫
dr′

1dr2G(r′
1, r′

2, r1, r2)φ∗
h (r′

1)φh(r2)

= −
∑

h

∫∫
dr′

1dr2
(2π )3

(2π )12

∫∫∫∫
dk′

1dk′
2dk1dk2ei(k′

1·r′
1+k′

2·r′
2−k1·r1−k2·r2 )

×
∑
S,T

(−1)S+T ŜT̂ GS,T (k′, k; K, ω)δ(K ′ − K )φ∗
h (r′

1)φh(r2). (21)

This time, R2 = 1
2 (r′

1 + r2) and s2 = r2 − r′
1 are defined. Again, the Slater approximation in the density-matrix expansion is

introduced for the nonlocal density.
∑

h

φ∗
h (r′

1)φh(r2) � ρ(R2)
3

s2kF (R2)
j1(s2kF (R2)). (22)

Similar manipulation as before leads to

UE (r′
2, r1) = UE

(
R1 − 1

2
s1, R1 + 1

2
s1

)
� −

∫∫
4πR2

2dR2
4

(2π )9

∫∫∫
dKdk′dkei((k′−k)·R1−(k′−k)·R2− 1

2 (K+k′+k)·s1

×
∑
S,T

(−1)S+T ŜT̂ GS,T (−k′, k; K, ω) j0(|k′ − k|R2)θ

(
kF (R2) − 1

2
|K − k′ − k|

)
. (23)

The only difference of this expression from that of the direct contribution, Eq. (8), is in G(−k′, k; K, ω), except for the overall
negative sign. The WKB localization is again performed on UE (R1 − 1

2 s1, R1 + 1
2 s1) to give UE (R1, p).

C. Sum of the direct and exchange contributions

The sum of the direct and exchange contributions reads

U (R1, p) = UD(R1, p) + UE (R1, p) =
∫

4πR2
2dR2

4 × 23

(2π )6

∫∫
dxdq

∑
S,T

ŜT̂

{
GS,T

(
q − 1

2
x, q + 1

2
x; K = 2p − 2q, ω

)

− (−1)S+T GS,T

(
− q + 1

2
x, q + 1

2
x; K = 2p − 2q, ω

)}
θ (kF (R2) − |p − 2q|) j0(xR2) j0(xR1). (24)

Let us recall the definition of the lowest-order single-particle potential UNM (p) in nuclear matter with the Fermi momentum kF ,
which is given by the sum of direct and exchange contributions

UNM (p; kF ) =
∑
h′

〈ph′|G|ph′ − h′ p〉θ (kF − |h′|) = 1

(2π )3

∫
23dq

∑
S,T

ŜT̂ {GS,T (q, q; K = 2p − 2q, ω)

− (−1)S+T GS,T (−q, q; K = 2p − 2q, ω)}θ (kF − |p − 2q|), (25)

where the relative momentum q = 1
2 (p − h′) is introduced.

Now, the following factorization is postulated for G:

GS,T

(
q − 1

2
x, q + 1

2
x; K = 2p − 2q, ω

)
− (−1)S+T GS,T

(
−q + 1

2
x, q + 1

2
x; K = 2p − 2q, ω

)

� e−(μx/2)2{GS,T (q, q; K = 2p − 2q, ω) − (−1)S+T GS,T (−q, q; K = 2p − 2q, ω)}. (26)

Then,

U (R1, p) =
∫

4πR2
2dR2

1

(2π )3

∫
dx

1

8
UNM (p; kF (R2))e−(μx/2)2

j0(xR2) j0(xR1). (27)

This dx integration is carried out analytically:∫
dx e− μ2x2

4 j0(R1x) j0(R2x) = 4π

2R1R2

√
π

μ

(
e
− 1

μ2 (R1−R2 )2 − e
− 1

μ2 (R1+R2 )2)
. (28)
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It is easy to see that the right-hand side can be expressed in the following form:∫
dx e− μ2x2

4 j0(R1x) j0(R2x) = 4(
√

π )3

μ3

∫ 1

−1
d cos θ e

− 1
μ2 (R1−R2 )2

, (29)

where cos θ = R1 · R2/(R1R2). Therefore, the following expression is finally obtained:

U (R1, p) =
∫

dR2
1

(
√

πμ)3
e
− 1

μ2 (R1−R2 )2

UNM (p; kF (R2)). (30)

This is the form of the improved LDA by a Gaussian form

factor 1
(
√

πμ)3 e
− 1

μ2 (R1−R2 )2

. The range μ introduced in Eq. (26)
corresponds to the range β in Eq, (8).

The major assumption in the above derivation is the factor-
ization given in Eq. (26). The plausibility of this replacement
for the real part is the following. The first observation is that
the contribution of the second term with the factor of (−1)S+T

is originated from the antisymmetrization and works to retain
the allowed spin, isospin, and partial-wave channels. That is,
the direct and exchange contributions are same. Second, the
momentum x in the direct part is momentum transfer, and
the momentum-transfer dependence can be described by a
local potential. Supposing that the dominant contribution to
the nuclear mean field is represented by a single Gaussian with
a range of μ in the coordinate space, e−(r/μ)2

, as a function of
the distance r, the expression of Eq. (26) holds. For example,
the two-range Gaussian Gogny force [17] that has been widely
used for nuclear mean-field calculations has the range μ = 1.2
fm in the main attractive part. The range μ in Eq, (26) is
expected to be close to this value. Actually, the range used in
the improved LDA calculations in Sec. II A is β ≈ 1.0 fm. On
the other hand, the above reasoning may not be easily applied
to the imaginary part, and consequently the improved LDA is
less reliable as is demonstrated in Sec. II B.

It is noted that only the single-particle central potential
is obtained in nuclear matter. The single-particle spin-orbit
potential, which is essentially important in the properties of
nuclei, is left out in the present calculation.

IV. SUMMARY

To derive OMPs in finite nuclei based on the two-body
G matrices in nuclear matter, a G-matrix folding method
has been commonly employed. In this method, G matrices
in nuclear matter are parametrized as energy- and density-
dependent effective interactions in a convenient local-function
form and they are applied to construct an OMP in a finite
nucleus by a folding procedure. There is another calculation-
ally less demanding LDA method, in which a single-particle
potential in nuclear matter is directly related to the potential
in a finite nucleus at the position corresponding to the nuclear
matter density. To compensate for the lack of finite-range
effects, a Gaussian folding is introduced, which is called an
improved LDA. The latter method does not require substantial
efforts to parametrize G matrices. Although the improved
LDA with an appropriate Gaussian range has been practically
successful, it is worthwhile to add theoretical studies of the

properties of the method. To assess the usability of the im-
proved LDA, numerical and analytical studies are carried out.

In the first part, explicit numerical calculations in the two
methods are presented for 40Ca, 90Zr, and 208Pb at the ener-
gies E = 65 and 100 MeV, starting from the same G matrices
[9] in nuclear matter with chiral nucleon-nucleon and three-
nucleon interactions [23,24]. The improved LDA potentials
are shown to have a good correspondence to the G-matrix
folding potentials in the real part. These microscopic OMPs
also correspond well to the phenomenological potentials
parametrized by Koning and Delaroche [16], when a Pauli
rearrangement potential, the second-order Pauli-blocking ef-
fect, is taken into account [10], which is not included in
the lowest-order microscopic calculation. The imaginary part,
however, does not show a good resemblance between the two
methods, even if the finite-range correction is applied. It is
also observed that the G-matrix folding imaginary potential
differs from the Koning and Delaroche empirical potential,
especially in the central region. Nevertheless, the calculated
nucleon elastic cross sections with microscopic OMPs are
similar to those of the Koning and Delaroche potential at
E = 65 MeV, as is shown in Sec. II C. Because observables
of nucleon-nucleus scattering are almost determined by the
OMP of the surface area when the nucleon incident energy
is not large, the description of the elastic scattering in in-
sensitive to the potential strength in the central region. The
overestimation of the imaginary strength of the OMP in a
nuclear matter approach is common in the literature [8,11,18].
The microscopic understanding of the imaginary OMP needs
further investigations.

In Sec. III, the relation between the improved LDA method
and the G-matrix folding method is examined analytically, in-
troducing reasonable assumptions of the Slater approximation
of the density-matrix expansion and the localization by the
Wigner transformation. It is shown that if the approximation
of Eq. (26) is accepted, the Gaussian folding expression of the
improved LDA is recovered. This approximation is reasonable
for the real part, but probably not credible for the imaginary
part. Keeping these features in mind, it is useful to apply the
improved LDA method in other situations such as hyperons
[25].
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