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Transfer reactions provide information about the single-particle nature of nuclear levels. In particular, the
differential cross sections from these measurements are sensitive to the angular momentum of the transferred
particle and the spectroscopic factor of the populated level. However, the process of extracting these properties
is subject to uncertainties, both from experimental and theoretical sources. By integrating the distorted wave
Born approximation into a Bayesian model, we propagate these uncertainties through to the spectroscopic
factors and orbital angular momentum values. We use previously reported data of the proton pickup reaction
70Zn(d, 3He) 69Cu as an example. By accounting for uncertainties in the experimental data, optical model
parameters, and reaction mechanism, we find that the extracted spectroscopic factors for low-lying states of
69Cu are subject to large, asymmetric uncertainties ranging from 35 to 108%. Additionally, Bayesian model
comparison is employed to assign probabilities to each of the allowed angular momentum transfers. This method
confirms the assignments for many states, but suggests that the data for a state lying at 3.70 MeV are better
characterized by an � = 3 transfer, rather than the previously reported � = 2.
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I. INTRODUCTION

Nucleon transfer reactions are critical tools for studying the
single-particle structure in nuclei. However, their usefulness
depends upon a successful theoretical description of the re-
action mechanism. By far the most widely used methodology
is the combination of the nuclear optical model [1] and the
distorted-wave Born approximation (DWBA) (see Ref. [2]
and references therein). By using DWBA it becomes possible
to determine both the transferred angular momentum, �, and
spectroscopic factor of the populated single-particle or hole
state [3]. This structure information can in turn be used to
answer questions in nuclear astrophysics [4], and to test the
shell model on isotopes located far from stability [5].

Despite the wide use of these methods, quantifying the
uncertainties associated with both the optical potentials and
the reaction model has been a long standing issue. Previous
studies have used statistical methods to determine the un-
certainty on the potential parameters [6], but little work has
been done to propagate these uncertainties through DWBA
calculations in a statistically meaningful way. To date, most
spectroscopic factors are reported with either no uncertainty,
an assumed equivalence between the uncertainty in the data
normalization and that of the spectroscopic factor, or a con-
stant 25% determined from historical studies [7].

Over the last few years, these issues have led to a renewed
focus on the impact of optical model parameters on transfer
reactions. A series of studies has focused on the nature and
magnitude of this effect [8–10]. The first steps have also been
taken towards quantifying these uncertainties using Bayesian
statistics [11,12]. These studies focus on the broad effects of
optical potentials, but it is worthwhile to establish a Bayesian

framework in which the results of a single experiment can
be analyzed. The goal of this paper is to establish such a
framework and to examine the possible implications on future
experiments.

The methods developed and presented here will be
applied to the analysis of the proton pickup reaction
70Zn(d, 3He) 69Cu, which was originally reported in Ref. [13].
This data set possesses many of the features typical of a
transfer measurement study: the use of a high resolution
magnetic spectrograph to resolve the excited states of interest,
elastic data for the entrance channel collected with the same
target and beam, experimental uncertainties coming from
counting statistics, and limited angular coverage in both the
elastic-scattering and transfer differential cross sections. The
previous analysis assigned � values and extracted spectro-
scopic factors for the first eight excited states of 69Cu. Our
reanalysis aims to determine the uncertainties associated with
these quantities using Bayesian statistics.

This paper will be structured to introduce the relevant
reaction theory in Sec. II, explain and construct the Bayesian
model in Sec. III, and finally present and then discuss the
results in Secs. IV and V, respectively.

II. REACTION THEORY

A. The optical model

The nuclear optical model simplifies the multinucleon
scattering problem by considering a single particle interacting
with a complex potential, U (r). The theoretical basis for this
procedure was first established in Ref. [1], but fell short
of actually prescribing the form of the complex potential.

2469-9985/2020/102(2)/024609(14) 024609-1 ©2020 American Physical Society

https://orcid.org/0000-0002-1194-2920
https://orcid.org/0000-0002-2131-2199
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.024609&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevC.102.024609


C. MARSHALL et al. PHYSICAL REVIEW C 102, 024609 (2020)

Through detailed analysis of elastic scattering from a range of
targets and energies, Ref. [14] developed a phenomenological
form for the optical model. Our paper will be focused on
the effect of these phenomenological potential parameters,
but further theoretical and historical details can be found in
Ref. [15]. For our paper we adopt the following form of the
optical potential:

U (r) = Vc(r; rc) − V f (r; r0, a0)

− i

(
W − 4aiWs

d

dri

)
f (r; ri, ai )

+
(

h̄

mπc

)2

Vso
1

r

d

dr
f (r; rso, aso)σ · �, (1)

where f (r) is given by the Wood-Saxon form factor:

f (r; r0, a0) = 1

1 + exp
( r−r0A1/3

t
a0

) . (2)

Each term in U is parametrized with a well depth, V,W,Ws;
radius, r0, ri, rso; and diffuseness, a0, ai, aso. At is the mass
number of the target nucleus. Additionally, the spin-orbit
term has an interaction based on the projectile orbital and
spin angular momentum, � and s, respectively. In this case
σ = 2s, and ( h̄

mπ c )2 is a constant with a value of approximately

2 fm2. The Coulomb term, Vc, comes from the potential of
a uniformly charged sphere with radius Rc = rcA1/3

t . These
conventions are adopted in order to be consistent with the code
FRESCO [16], and care should be taken to convert values given
in this paper if a different set of conventions is adopted.

The phenomenological optical model uses experimental
data, typically differential elastic-scattering cross sections and
analyzing powers, to determine the parameter values defined
above. Local fits of these parameters, like those listed in
Ref. [17], try to best reproduce the results of elastic scattering
from a single target nucleus at a single energy. Global fits,
such as Refs. [6,14,18–20], use a variety of targets and beam
energies to derive relations between potential parameters and
target mass, beam energy, and other nuclear properties.

B. Distorted-wave Born approximation

The shape and magnitude of transfer reaction differential
cross sections are directly related to the angular momentum
of the transferred nucleon and the spectroscopic factor of the
populated nuclear state. Thus, a theoretical description of the
cross section will allow the extraction of these properties from
experimental data. DWBA is a perturbative method that uses
the optical potentials of Sec. II A to model the entrance and
exit channels, and a transition operator for the transferred par-
ticle or cluster. Expressing this transition operator explicitly
for the A(d,3He)B pickup reaction, we can write it in either
the prior or post form:

Vprior = Vp+d + Ud+B − Ud+A, (3)

Vpost = Vp+B + Ud+B − U3He+B. (4)

U are the optical potentials for each of the reaction channels.
The entrance, exit, and core-core systems are denoted by

A + d , B + 3He, and B + d , respectively. The V potentials are
the binding potentials for the proton on either the projectile or
target nucleus. The first-order T matrix for the transfer from
channel α to channel β in the prior form is given by

Tβα = J
∫

dr3He

∫
drdχ

(−)∗
β

(
r3He, k3He

)

× 〈B,3 He|Vprior |A, d〉 χ (+)
α (rd , kd ), (5)

where χ is the distorted wave generated from the correspond-
ing optical potential, J is the Jacobian for the transformation
to the two coordinates, and the kets refer to the internal
coordinates of the respective nuclei. Further information on
the derivation of these equations and other theoretical consid-
erations can be found in Refs. [3,21].

C. Cross-section calculations

All transfer and elastic differential cross sections for this
paper were calculated using the coupled-channels reaction
code FRESCO [16]. The FRESCO transfer differential cross
section can be related to experiment through

dσ

d� exp
= C2SpC

2St
dσ

d� FRESCO
. (6)

The two spectroscopic factors and isospin Clebsch-Gordan
coefficients are for the projectile and target system, respec-
tively. For particles with A � 4, the spectroscopic factor can
be approximated by A

2 [3]. Thus, for the d + p system, C2Sp =
3
2 . Since C2Sp is assumed constant, any further reference to
C2S will be equivalent to C2St.

In order to reduce the computational cost of the transfer
calculations, this paper uses the zero-range approximation
[3]. This approximation, in the specific case of the pick-up
reaction A(d,3He)B, takes the prior form of Eq. (3) and sets
Ud+B − Ud+A to zero, a procedure justified by experimental
observation [22]. The projectile is then assumed to be ab-
sorbed and emitted from the same point giving

〈d|Vpd |3He〉 ∼ Doδ(rp), (7)

where |3He〉 and |d〉 are the internal wave functions of the
ejectile and projectile, respectively, D0 is the volume integral
of the interaction strength, Vpd is the binding potential of the
proton to the deuteron, and rp is the coordinate of the proton
relative to the deuteron. Use of this approximation gives us
the further benefit of a direct comparison to the original
analysis of 70Zn(d, 3He) 69Cu that used the zero-range code
DWUCK4 for the extraction of C2St [23]. It should be noted
that Ref. [13] also performed finite range calculations, but the
computational costs are prohibitively expensive in the present
paper. The value of D0 is calculated theoretically, with the
historical value for proton pick-up and stripping reactions
being D0 = −172.8 MeV fm3/2 [24]. Comparing the different
models in Ref. [25], an approximately 15% spread in the
values of D2

0 is observed. This is inline with the findings
of Ref. [26], which also noted an approximate 15% spread
in the product (C2Sp)D2

0. We adopt the above value with its
associated uncertainty; however, ab initio methods, such as
those in Ref. [27] now offer more precise determinations of
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the 〈d| 3He〉 overlap. If D0 is deduced using these methods,
then this additional source of uncertainty will be effectively
eliminated. As a direct consequence the uncertainty in C2St

will be reduced by about 15%.

III. BAYESIAN INFERENCE

As discussed in Sec. II A, the potential parameters of the
phenomenological optical model are constrained by fitting to
experimental data. Thus, their values are inherently subject to
uncertainty, which will ultimately propagate through to any
quantity extracted using them. Bayesian inference treats this
interaction between measured data and model parameters as
a logical relationship between conditional probabilities [28].
This relationship is expressed in Bayes’s theorem:

P(θ|D) = P(D|θ)P(θ)∫
θ

P(D|θ)P(θ)dθ
, (8)

where the posterior probability distribution, P(θ|D), is the
conditional probability of the model parameters, θ, given
the data, D. The posterior is calculated from the likelihood
function, P(D|θ), prior probabilities, P(θ), and the evidence
integral,

∫
θ

P(D|θ)P(θ)dθ. Prior probabilities represent our
knowledge of the parameters before the data are considered,
and must be assigned for every parameter that we want to
estimate. The likelihood function must also be specified, and
will express, in probabilistic terms, how the parameters of
the model relate to the data. This function is also present
in the frequentist approach, with a common example being
the χ2 function. The evidence ensures that the product of the
likelihood and the priors is normalized. For this paper one of
our main goals will be to estimate the posterior distribution
for the spectroscopic factor. This will require that we assign
priors for every optical model potential parameter and the
spectroscopic factor itself. These prior probabilities will then
be updated through the likelihood function using the experi-
mentally measured cross sections for the elastic and transfer
channels.

Bayes’s theorem is also central to our other goal of de-
termining the most probable angular momentum transfer for
a given state. This problem belongs to a subcategory of
Bayesian inference called model selection. Computing the
probability for a model, Mj , can be done by restating Bayes’s
theorem:

P(Mj |D) = P(D|Mj )P(Mj )∑
i P(D|Mi )P(Mi )

. (9)

This expression is built on the same logical foundation as
Eq. (8), but has been adapted to compute posterior distribu-
tions for Mj , which means a comparison can now be made
between different models. For each Mj there is a set of model
parameters θ j which have been marginalized over. This means

P(D|Mj ) =
∫

P(D|Mj, θ j )P(θ j |Mj )dθ j . (10)

Based on this equation it can be seen that P(D|Mj ) is
equivalent to the evidence integral from Eq. (8). Thus, in order
for us to evaluate how probable different angular moment
transfers are, we must calculate the evidence integral.

Once the evidence integral is calculated, there are sev-
eral metrics to interpret model posterior probabilities. For
simplicity, we will now refer to the evidence integral as Zj ,
which corresponds to the model Mj . The most commonly
used criterion for Bayesian model selection is called the Bayes
factor, which is defined by

Bji = Zj

Zi
. (11)

If this ratio is greater than 1, the data support the selection
of model j, while values less than 1 support model i. Judging
the level of significance for a value of Bji is open to interpreta-
tion, but a useful heuristic was given by Jeffreys [29]. For the
cases where model j is favored over i we have the following
levels of evidence: 3 > Bji > 1 is anecdotal, 10 > Bji > 3 is
substantial, 30 > Bji > 10 is strong, 100 > Bji > 30 is very
strong, and Bji > 100 is decisive.

It is also possible to calculate explicit probabilities for each
model. Assuming each of the models is equally likely, the
probability of a given model can be expressed as

P(Mj |D) = Zj∑
i Zi

. (12)

Through Eq. (12), probabilities can be calculated for each
physically allowed angular momentum transfer, � j . Using
these definitions Bayesian inference can be carried out after
prior probabilities are assigned for each optical model param-
eter and a likelihood function for the data is chosen.

A. Ambiguities in potential parameters

Any analysis involving potentials of the form in Eq. (2) will
suffer from so-called continuous and discrete ambiguities.
Both of these ambiguities arise because a single differential
cross section at a single energy cannot uniquely determine
the potential parameters. The continuous ambiguity describes
strong correlation between certain model parameters [15,30].
A well-known example is the relation between the real volume
depth, V , and the corresponding radius, r0. The relation has an
approximate analytical form given by V rn

0 = const, where the
exponent n and the constant vary depending on the reaction.
This issue can be remedied in part by a global analysis of
the potential parameters across a wide range of mass numbers
and reaction energies, as noted in the comprehensive analysis
of proton and neutron scattering in Ref. [6] and for 3He
and t scattering in Ref. [19]. Since our analysis will be
limited to a single elastic-scattering data set, our model must
be prepared to deal with these parameter correlations. We
explicitly demonstrate the existence of these ambiguities for
70Zn(d, d ) 70Zn in Appendix A.

The discrete ambiguity arises in optical model analysis due
to the identical phase shifts that are produced by different
values of V [31]. This multimodal behavior is perhaps the
more problematic of the two ambiguities since parameter
correlation can be handled with standard statistical methods.
In particular, interpretation of uncertainties in a multimodal
problem requires care beyond standard credibility intervals.
The discrete families of parameters can be readily identified
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TABLE I. Optical potential parameters used in this paper.

V r0 a0 W Ws ri ai rc Vso

Interaction (MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (fm) (MeV)

d + 70Zna 86.76 1.17 0.75 0.90 11.93 1.32 0.81 1.30 6.34
3He + 69Cub 156.5 1.20 0.72 42.2 1.40 0.86 1.25
p + 69Cu c 1.25 0.65 1.25 8.66

aGlobal potential of Ref. [35].
b Global potential of Ref. [18].
cAdjusted to reproduce binding energy of the final state.

by the volume integral of the real potential:

J = 4π

APAT

∫ ∞

0
V f (r; r0, a0)r2dr, (13)

where the mass numbers of the projectile and target, AP and
AT , respectively, ensure that J should be roughly constant for a
family of potential parameters at a single energy. Microscopic
structure models such as the folding model can also be used to
calculate J , and this theoretical value can be used to identify
the physical potential family [20]. Trusting the efficacy of
this method, our approach for this paper is to adopt potential
depths from global fits and to keep our prior values contained
around these starting potential depths.

B. Global potential selection

The initial potentials used for the analysis of
70Zn(d, 3He) 69Cu before inference can be found in Table I.
In order to facilitate comparison with Ref. [13], we have
used the same global potentials. In particular, we take the
values of the Daehnick-F global d optical model [20], and the
Becceheti and Greenless global 3He model of Ref. [18]. It is
also worth noting that elastic scattering with an unpolarized
beam does not provide a constraint on the parameters of a
spin-orbit potential, so all spin-orbit terms have been held
fixed in the current paper [20,21,32].

The bound-state geometric parameters are assigned their
most commonly used value of r0 = 1.25 fm and a0 = 0.65 fm,
with the volume potential depth adjusted to reproduce the
binding energy of the final state [15,33,34]. The bound-
state spin-orbit volume depth was fixed at a value of Vso =
8.66 MeV in order to approximately correspond to the condi-
tion λ = 25, where λ ∼ 180Vso

V for the value of V for the ground
state.

C. Bayesian model

Following the above discussion and considerations, we
will now define our Bayesian model, which fits each excited
state simultaneously with the elastic-scattering data. In order
to do this, each parameter, whether from the optical model
potentials or otherwise, has to be assigned a prior probability
distribution. Additionally, likelihood functions will need to
be assigned for the data in both the elastic and transfer
channels. For this paper we will only need three distributions:
normal, half normal, and uniform. The normal distribution
is defined according to its location parameter, μ, and scale

parameter, σ 2. Symbolically this is given by N (μ, σ 2). A
half-normal distribution is equivalent to a normal distribution
with μ = 0 and restricted to the interval [0,∞). We write
it as HalfNorm(σ 2). Finally, the uniform distribution will
be given by its lower limit and its upper limit, written as
Uniform(Lower, Upper).

The majority of parameters come from the optical model
potentials. The elastic-scattering data from 70Zn(d, d ) should
be able to inform the posteriors for the entrance channel
parameters, UEntrance. However, the ambiguities discussed in
Sec. III A combined with the lack of data at angles higher than
θc.m. = 50◦ means that the priors for the entrance channel must
be weakly informative. In order to accomplish this, we focus
the radius and diffuseness parameters for both the real and
imaginary potentials around a reasonable range. If we assume
that physical values for these parameters tend to lie within
r = 1.0–1.5 fm and a = 0.52–0.78 fm, then we can construct
our priors to favor these values. This is accomplished by
assigning normal distributions with locations μr = 1.25 fm
and μa = .65 fm and scale parameters σ 2

r = (0.20 μr )2 and
σ 2

a = (0.20 μa)2. These priors have 68% credibility intervals
that are equivalent to r = 1.0–1.5 fm and a = 0.52–0.78 fm,
and importantly do not exclude values that lie outside of
these ranges. This means that if the data are sufficiently
informative they can pull the values away from these ranges,
but in the absence of strong evidence our priors will bias the
parameters toward their expected physical values. The depths
of the potentials were also assigned scale parameters of 20%
of their global depths. This favors the mode assigned by the
global analysis, thereby eliminating the discrete ambiguity
and producing a unimodal posterior. These conditions are
summarized in the prior:

UEntrance ∼ N (μcentral,k, {0.20 μcentral,k}2), (14)

where the symbol ∼ denotes “distributed according to,” “cen-
tral” refers to the global values for the depths and the central
physical values of r = 1.25 fm and a = 0.65 fm defined
above, and the index k runs over the depth, radius, and
diffuseness parameters for the real and imaginary parts of the
potential.

The exit channel, as opposed to the entrance channel, does
not have elastic-scattering data to constrain it directly. This
means that informative priors based on a global analysis must
be used, while also considering a reasonable range of values.
Normal priors are used, again to avoid sharp boundaries on
the values, with the global values of Table I as the location
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parameters, and the scale parameter set to σ 2 = (0.10 μ)2.
This will focus the values around those of the global model,
but also allow a moderate amount of variation. This prior
choice can be stated:

UExit ∼ N (μglobal,k, {0.10 μglobal,k}2), (15)

with the “global” label referring to the values of Table I and k
labeling each of the potential parameters for the exit channel.

At this point it is worth emphasizing that the potential
priors for both the entrance and exit potentials are essentially
arbitrary. The 20 and 10% variations for the parameters are
meant to make this computation tractable, since it is impos-
sible with the limited amount of data to uniquely determine
the parameters as discussed in Sec. III A. The influence of this
choice on the entrance channel is limited since there are data
to inform the parameters. However, the choice of 10% for the
exit channel will influence our final calculated uncertainties.
Lower or higher amounts of variation could be considered
for these parameters, but a choice has to be made in order to
account for their impact on DWBA calculations. We have also
chosen to exclude variations in the spin-orbit and bound-state
potentials. However, the possible impact of the bound-state
potentials will be discussed in Sec. V.

Our model treats C2S as another parameter to be estimated,
so a prior must be specified. We have assigned it the mildly
informative prior

C2S ∼ HalfNorm
(
n2

nucleon

)
, (16)

where nnucleon is the number of nuclei occupying the orbital
that is involved in the transfer. The half-normal distribution
ensures that C2S � 0, while the scale parameter comes from
the sum rules of Macfarlane and French [2]. These rules have
been found experimentally to be a robust constraint [36].
However, it is likely that this prior is more conservative than
necessary, since we do not expect a single state to contain the
entirety of the strength for a given shell, but it serves as a
rough estimate to help construct the prior for C2S.

The use of the zero-range approximation for the transfer
channels also comes with an additional uncertainty from
the strength parameter, D0, as discussed in Sec. II C. Our
model explicitly accounts for this 15% uncertainty by using
a parameter δD2

0, which is assigned a normal and informative
prior:

δD2
0 ∼ N (1.0, 0.152). (17)

We also introduced two additional parameters that are
not a part of DWBA, but are instead meant to account for
deficiencies in the reaction theory. The first is a normalization
parameter, η, which allows for the adjustment of the theoreti-
cal predictions for both the elastic and transfer cross sections
based on any observed normalization difference between the
elastic channel data and optical model calculations. This can
be in principle seen as treating the absolute scale of the data as
arbitrary, which prevents biasing the potential parameters to-
wards unphysical values if a systematic difference is present.
The posterior for this parameter will only be informed by the
elastic data of the entrance channel, but will directly influence
the posterior for C2S. Since η is multiplicative in nature, we do

not want to bias it towards values less than or greater than 1.
This is done by introducing a parameter, g, which is uniformly
distributed according to

g ∼ Uniform(−1, 1). (18)

η is then defined as

η = 10g. (19)

Collecting all of these factors, we can now write the DWBA
predictions at each angle i as

dσ

d�

′

DWBA,i
= η × δD2

0 × C2S × dσ

d�DWBA,i
. (20)

The second additional parameter comes from the consider-
ation that the DWBA theory provides only an approximation
to the true transfer cross section. If we only consider the mea-
sured experimental uncertainties from the transfer channel,
any deviation from DWBA will significantly influence the
posteriors for the potential parameters. This is remedied by in-
troducing an additional theoretical uncertainty, σtheory,i, where
the index i references the angle at which the differential cross
section is evaluated. We estimate this quantity as a percentage
uncertainty on the theoretical cross section, which is based on
a single unknown parameter, f . Our total uncertainty at an
angle is thus

σ ′2
i = σ 2

Transfer,i +
(

f
dσ

d�

′

DWBA,i

)2

. (21)

We use dσ
d�

′
DWBA,i

as defined in Eq. (20), σ 2
Transfer,i is the ex-

perimental statistical uncertainty, and the adjusted uncertainty,
σ ′2

i , assumes that the experimental and theoretical uncertain-
ties are independent. Since f is some fractional amount of the
predicted cross section, we assign it the weakly informative
prior,

f ∼ HalfNorm(1), (22)

so that it is biased towards values less than 1.
Finally, the likelihood functions for the experimental data

must also be specified. The analysis of each excited state
will require two likelihood functions for both the elastic
and transfer data. These likelihood functions use the normal
distribution, and take the form

dσ

d�Exp,i
∼ N

(
dσ

d�Theory,i
, σ 2

Exp,i

)
, (23)

where i again refers to a specific angle. This expression
assumes that the residuals between the experimental cross
section and the ones calculated from theory are distributed
normally.

Taking into account all of the considerations and defini-
tions listed above, we can write down our full Bayesian model.
Experimental elastic-scattering data are identified by the label
“Elastic,” and the transfer data are labeled “Transfer.” The
theoretical differential cross sections calculated with FRESCO

are written dσ
d� Optical, j

for elastic scattering and dσ
d� DWBA,i

for
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the transfer reaction. The indices i and j refer to the transfer
and elastic angles, respectively. The model is, thus,

Priors:

UEntrance ∼ N (μcentral,k, {0.20 μcentral,k}2),

UExit ∼ N (μglobal,k, {0.10 μglobal,k}2),

f ∼ HalfNorm(1),

δD2
0 ∼ N (1.0, 0.152),

C2S ∼ HalfNorm
(
n2

nucleon

)
,

g ∼ Uniform(−1, 1).

Functions:

η = 10g, (24)

dσ

d�

′

Optical, j
= η × dσ

d�Optical, j
,

dσ

d�

′

DWBA,i
= η × δD2

0 × C2S × dσ

d�DWBA,i
,

σ ′2
i = σ 2

Transfer,i +
(

f
dσ

d�

′

DWBA,i

)2

.

Likelihoods:

dσ

d�Transfer,i
∼ N

(
dσ

d�

′

DWBA,i
, σ ′ 2

i

)
,

dσ

d�Elastic, j
∼ N

(
dσ

d�

′

Optical, j
, σ 2

Elastic, j

)
,

where the k index runs over each of the potential parameters.
It should also be noted that the applicability of DWBA

requires that the reaction is dominated by a direct reaction
mechanism occurring at the nuclear surface. Thus, transfer
data must be collected at intermediate laboratory energies to
suppress the contributions of isolated resonances and low an-
gles to ensure a surface dominated reaction. Failure to adhere
to these principles could introduce additional uncertainties
into the extraction of C2S. Practically, this paper follows the
suggestion of Ref. [21] and only fits the transfer data up to the
first observed minimum in the data.

D. Posterior and evidence estimation

Markov chain Monte Carlo (MCMC) algorithms are one of
the most common ways to calculate posterior distributions
[37]. However, it is clear from Eq. (25) that our Bayesian
model lives in a high-dimensional space, which presents a
difficult challenge for all MCMC algorithms. In particular,
traditional Metropolis-Hastings samplers require tuning of the
step proposals for each dimension. This problem is avoided
with the affine invariant ensemble sampler of Goodman and
Weare [38]. This method uses an ensemble of random walkers
to sample the posterior, and has been designed to perform
well with linearly correlated parameters. We use the PYTHON

package EMCEE to implement the algorithm [39]. Using this
method with a stretch move requires only a single parameter,
a, to be specified. A detailed explanation of this parameter can

be found in Appendix B. a is fixed to its suggested value a = 2
in this paper [39]. The posteriors for each state are estimated
using an ensemble of 400 walkers which take >4000 steps.
Burn in periods were found to take approximately 1000 steps.
Final parameter estimates are taken from the final 2000 steps,
which are then thinned by 50 in order to give 1.6 × 104 sam-
ples. The autocorrelation in the samples before thinning was
estimated to be roughly 400 steps. Two thousand steps would
then contain five autocorrelation lengths, with each length
yielding one independent sample per walker. This means we
draw ≈2000 independent samples from the posterior ensuring
that the statistical fluctuations of the sampling are negligible
compared to the uncertainties in the posteriors. Thinning was
only used to reduce the number of samples and thereby ease
subsequent calculations such as the credibility intervals for the
differential cross sections.

MCMC methods draw samples directly from the poste-
rior distribution which allows parameter estimation, but they
do not allow a straightforward estimation of the evidence
integral. The model selection necessary to assign � values
requires the calculation of Eq. (12). Monte Carlo integration
techniques solve the issue of calculating Z , but essentially
reverse the previous issue by placing a diminished focus
on the calculation of the posterior distributions. This means
that separate calculations have to be carried out for our
two tasks of parameter estimation (spectroscopic factors) and
model selection (� assignment). Our evidence calculation is
carried out using the nested sampling procedure introduced
by Skilling [40,41], as implemented in the DYNESTY PYTHON

package [42]. A brief description of this algorithm is given in
Appendix C.

For this paper all nested sampling runs used 250 live
points bounded with multiple ellipsoids and updates per-
formed through slice sampling. The stopping criteria was
set at Zi < 0.01. Since the nested sampling is subject to
statistical uncertainties in ln Z , it is necessary to propagate
these uncertainties to both Bi j and the probabilities for each
� transfer defined by Eq. (12). This was done by drawing
106 random samples from the Gaussian distributions for each
ln Zi, and then applying either Eq. (12) or Eq. (11) to each
sample, yielding a set of samples for each quantity. From these
samples we report the 68% credibility intervals, constructed
from the 16th, 50th, and 84th percentiles.

IV. ANALYSIS OF 70Zn(d, 3He) 69Cu

The Bayesian model of Sec. III allows us to extract spec-
troscopic factors and assign � values to observed transfers,
while taking into account uncertainties associated with the
optical potentials. In order to test these methods, we will focus
on a reanalysis of the 70Zn(d,3 He) 69Cu reaction, which was
originally presented in Ref. [13]. For reference, data were
collected by impinging a 27-MeV deuteron beam onto a thin
target of enriched 70Zn. The reaction products were measured
with a magnetic spectrograph. The original study should be
referred to for complete experimental details. This reaction
and the measured data set have two important conditions that
simplify our study. First, since 70Zn has a 0+ ground state,
only a unique � transfer is allowed for a given final state.
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TABLE II. Summary of the spectroscopic factors derived in this
paper. Comparisons to the zero-range (ZR) and finite range (FR)
calculations of Ref. [13] are made. All calculations use the same
bound-state parameters.

Ex(MeV) � Jπ a C2S (ZR) [13] C2S (FR) [13] C2S (this paper)

0.0 1 3/2− 1.40(15) 1.50(17) 2.06+0.87
−0.68

1.11 1 1/2− 0.35(11) 0.48+0.52
−0.25

1.23 3 (5/2−) 0.80(11) 0.70(10) 1.10+0.81
−0.48

1.71 3 7/2− 2.00(11) 2.50(14) 2.37+1.36
−0.84

1.87 3 7/2− 0.40(10) 0.50(10) 1.07+0.93
−0.51

3.35 3 (7/2−) 1.60(10) 2.40(15) 2.67+1.83
−1.06

3.70 2 (3/2+) 1.90(25) 1.50(20) 1.74+1.05
−0.62

3 (7/2−) 2.90+2.75
−1.43

3.94 0 1/2+ 0.70(6) 0.70(10) 1.03+0.71
−0.44

aThese assignments are discussed in depth in Sec. IV A through
Sec. IV G.

Second, only eight low-lying bound states were observed,
meaning no additional theoretical model is needed for treating
transfers to the continuum. Our results are summarized in
Table II. Comparisons are made to the original values of the
zero-range and finite range calculations of the previous work.
Plots of the DWBA cross sections generated from the MCMC
calculations are shown in Fig. 1. The purple and blue bands
show the 68 and 95% credibility bands, respectively. Using
samples directly from the Markov chain means that these
credibility bands accurately account for all of the correlations
present between the parameters. Each of these states will
now be discussed in detail, with additional calculation details
provided for the ground state in order to demonstrate the use
of our Bayesian method.

A. Ground state

The MCMC calculations for the ground state were carried
out using 8000 steps and 400 walkers in the ensemble. As
an example we have provided the trace plot for the value of
C2S as a function of step in Fig. 2. Parameter values were
estimated by using the last 2000 steps and thinning by 50.

As noted before, all of our MCMC calculations simulta-
neously fit the elastic-scattering and transfer data. This means
that the posterior distributions shown in Fig. 4 are functions of
both the elastic and ground-state transfer data. The impact of
the choice of potential parameters and the scale parameter η

on the elastic fit is quite dramatic. If we were to adopt the
global values in Table I without adjusting any parameters,
the agreement between theory and experiment would be quite
poor as shown by the dashed black line in Fig. 3. It should also
be noted that the experimental uncertainties for these points
are roughly 10%. On the other hand, the purple and blue bands
in Fig. 3 show the fit obtained when we use our Bayesian
model, which quite clearly provides a better description of
the data. A significant difference is found between the nor-
malization of the data and the optical model prediction, with
η 
 23%.

By examining the correlations between the parameters, our
model should display the continuous ambiguity discussed in
Sec. III A. The pairwise correlation plots in Fig. 4 show the
posterior samples from the entrance (top) and exit (bottom)
channel potentials and how they relate to those of g, C2S,
δD0, and f . The intrapotential correlations are quite striking
for the entrance channel. All of the real potential parameters,
V, r0, and a0, show strong correlations with one another, and
slightly weaker correlations existing between V , r0, ri, and
Ws. Strong relationships also exist between ai and Ws, which
is also another known continuous ambiguity [17]. There is a
much different situation for the exit potentials, where almost
no intrapotential correlations are seen. This result is expected
since there are no elastic-scattering data to constrain these
parameters and because the Bayesian model parameter f
limits the amount of information that can be drawn from the
transfer channel data. However, there is a surprisingly strong
relationship between the exit channel imaginary radius and
C2S. A similar relationship can be seen with the entrance
channel imaginary radius, but the effects on C2S are dramati-
cally less.

The results of the fit for the ground state are shown in
Fig. 1(a). The circular orange data points were the only
data considered in the fit in order to not bias our deduced
spectroscopic factor as discussed in Sec. III C. The ground
state of 69Cu is known to have a spin parity of 3

2
−

, so the
transfer was calculated assuming a 2p3/2 state.

B. 1.11-MeV state

The 1.11-MeV state was only seen at four angles. Fur-
thermore, only the first two data points lie within the first
minimum. The Jπ = 1

2
−

assignment is based on the observed
angular distributions of Ref. [44] and the analyzing power
measurement of Ref. [45]. In order to check that the data
analyzed in the current work are consistent with these conclu-
sions, the evidence integrals were calculated for � = 0, 1, 2,
and 3 transfers using all the data points. The data support
an � = 1 transfer, but do not rule out an � = 3 transfer. For
this case, the median Bayes factor defined in Eq. (11) is
B13 = 6.32 (i.e., the 50th percentile of Z1/Z3), indicating that
there is substantial evidence in favor of � = 1. Since the data
are consistent with the � assignments of Ref. [45,46], we
carried out the MCMC calculations assuming a 2p1/2 state.
The results of this calculation are plotted in Fig. 1(b).

C. 1.23-MeV state

The state located at 1.23 MeV is definitely associated with
an � = 3 transfer. The previous analysis assumed a firm Jπ =
5
2

−
; however, the literature does not provide direct evidence

for this. The analyzing power of Ref. [45] was inconclusive,
and the authors suggested the presence of a doublet based
on the observed width of the peak in the spectrum. The
(d, 3He) experiment of Ref. [44] also suggested a doublet
and noted the high spectroscopic factor obtained (C2S = 1.5)
if a 5

2
−

assignment was assumed. Other studies have also

assigned a firm Jπ = 5
2

−
[46–48], but it is unclear if these

results are actually independent determinations, or if they
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FIG. 1. DWBA calculations for the states of 69Cu. The 68 and 95% credibility intervals are shown in purple and blue, respectively. Only
the data points shown in orange circles were considered in each calculation. For the 3.70-MeV state the 68% bands are shown for the two most
likely � transfers.
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FIG. 2. Trace of the MCMC walkers as a function of step and
ln(C2S). Only the last 2000 steps were used for the posteriors.

follow Table II of Ref. [44]. We therefore follow the Evaluated
Nuclear Structure Data File evaluation [49] by recommending
Jπ = ( 5

2
−
, 7

2
−

), but only present the C2S value for 1 f5/2 with
the fit shown in Fig. 1(c).

D. 1.71- and 1.87-MeV states

From the parity constraints of Ref. [44,45] and the γ -ray
anisotropies observed in Ref. [50], a firm Jπ = 7

2
−

assignment
has been made for the 1.71-MeV state. The results from
our DWBA fit for a 1 f7/2 state are shown in Fig. 1(d). The
arguments from the 1.71-MeV state also apply to the state at
1.87 MeV. A firm Jπ = 7

2
−

was assumed and a fit for a 1 f7/2

state is shown in Fig. 1(e).

E. 3.35-MeV state

The state at 3.35 MeV was reportedly seen in Ref. [44], but
no information was presented other than its possible existence.
The previous analysis found an � = 3 nature to the angular

FIG. 3. Bayesian fit of the elastic data calculated simultaneously
with the 0.00-MeV state. The 68 and 95% credibility intervals are
shown in purple and blue, respectively, while the black dashed curve
was calculated using the global values from Table I.

distribution, and made a tentative assignment of Jπ = ( 7
2

−
).

Our methods support this conclusion as shown in Table III.
B3� > 10 for each other � transition, indicating strong evi-
dence for the � = 3 transfer. The probability the final state
was populated with an � = 3 transfer is P(� = 3) = 91+3

−4%.
However, DWBA is still unable to discriminate between Jπ =
( 5

2
−
, 7

2
−

). Our fit assuming a 1 f7/2 state is shown in Fig. 1(f).

F. 3.70-MeV state

The state at 3.70 MeV was also seen for the first time
in Ref. [13]. However, our Bayesian method indicates an
ambiguous � assignment. As can be seen in Fig. 1(g), the
measured angular distribution is relatively flat, and does not
appear to differ from other states with � = 3. However, an
assignment of � = 2 was made in the previous analysis.
Comparing the evidence integral for each case, we indeed find
the data effectively rule out � = 0 and 1, while supporting an
� = 2 or 3 assignment. Looking at Table III, we find a Bayes
factor of B32 = 8.47 for � = 3 over � = 2, which suggests
substantial evidence in favor of the � = 3 assignment. Using
Eq. (12), the 68% credibility intervals for the probabilities are
P(� = 3) = 88+4

−6% and P(� = 2) = 10+5
−4%, with the uncer-

tainties coming from the statistical uncertainties of the nested
sampling evidence estimation. The kernel density estimates
(KDEs) for the two dominate transfers are shown in Fig. 5
[51]. Our fits for both � = 2 and 3 are shown in Fig. 1(g).

G. 3.94-MeV state

The 3.94-MeV state was also observed for the first time
in the previous study. The suggested � = 0 assignment was
found to be supported by the data. The second most likely
transfer was found to be � = 1. In this case B01 = 72.24, indi-
cating very strong evidence in favor of the � = 0 assignment.
The transfer to a 2s1/2 state is shown in Fig. 1(h).

V. DISCUSSION

A. Spectroscopic factors

The results of the previous section merit closer exami-
nation, especially with regards to the spectroscopic factors.
Comparing our results with those previously obtained in
Table II, two things are clear: our median values tend to be
larger than those in Ref. [13] and the uncertainties are much
larger. To the first point, a majority of the shift comes from
the lower value of Ws used in the previous analysis. Though
not stated in Ref. [13], the surface potential was given a value
of Ws ≈ 7.5 MeV, which has the effect of lowering the value
of C2S. Our values on average are higher due to the Bayesian
analysis favoring Ws = 11.93 MeV and the inclusion of η, but
these are somewhat offset due to the posterior values of ri

and ai being lower than their global values. To the second
point, when all of the sources of uncertainty are included
in the analysis, we find highly asymmetric and data-driven
uncertainties on C2S ranging from 35 to 108%. This is a
substantial increase with regards to the common assumption
that the extraction of spectroscopic factors comes with an
approximately 25% uncertainty [7]. This may still be the case
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FIG. 4. The pairwise correlation plots for the ground-state transfer. The top plot shows the entrance potential parameters, while the bottom
shows the exit channel parameters. Both channels are compared to the model parameters as defined in Eq. (25). The 68% credibility intervals
are listed at the top of each column with the dashed lines showing their relationship to the 1D parameter distributions. The plots were generated
using the PYTHON package CORNER [43].

when the data are sufficiently informative, but the results of
a single experiment should be viewed more conservatively.
In particular, low angular coverage in the entrance channel
elastic-scattering data, the absence of any elastic-scattering
data in the exit channel, and transfer angular distributions with
just a few points all play a role in final uncertainty that can be
reported for C2S.

To gain a clearer picture of the role each potential plays
in the final uncertainty, the calculations for the ground state
were repeated for the following cases: (1) uncertainty in just
the entrance channel potential parameters, (2) uncertainty in
both the entrance and exit channel potential parameters, and

(3) uncertainty in the entrance, exit, and bound-state potential
parameters.

For case 1 we find the lowest uncertainty with C2S =
1.88+0.44

−0.37 (≈24%). Case 2 is the same model used for all of
the states in Sec. IV. This gives C2S = 2.06+0.87

−0.68 (≈42%).
Case 3 first requires that we specify the priors for the ra-
dius and diffuseness parameters of the bound-state poten-
tial. Analogously to the exit channel, which also lacks data
to directly constrain these parameters, we assign VBound ∼
(μcentral,k, {0.10μcentral,k}2). Again, k is an index that runs over
the radius and diffuseness parameters, and “central” refers
to r = 1.25 and a = 0.65. This case has the largest final
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TABLE III. Results of the model comparison calculations for
the 3.35- and 3.70-MeV states. For each � value we list the log Z
value calculated with nested sampling, the median Bayes factor when
compared to the most likely transfer � = 3, and the probability of
each transfer.

� log Z� B3� P(�)

0 3.856(330) >104 <0.01%

Ex = 3.35 MeV 1 10.662(359) 15.94 6+3
−2%

2 9.961(363) 32.14 3+2
−1%

3 13.431(349) 1.0 91+3
−4%

0 10.393(365) >103 <0.02%

Ex = 3.70 MeV 1 14.947(351) 45.98 2+1
−1%

2 16.640(346) 8.47 10+5
−4%

3 18.776(336) 1.0 88+4
−6%

uncertainty with C2S = 2.04+1.15
−0.85 (≈56%). The comparison

between the final distribution for the spectroscopic factors
obtained for just the entrance channel, entrance channel and
exit channel, and all of the potentials including the bound state
is shown in Fig. 6. This demonstrates the strong dependence
of C2S on each of these potentials.

These results point toward ways to improve the precision of
C2S. Examination of the correlations in the posterior samples
in Fig. 4 show that the imaginary radius in the exit channel is
the parameter responsible for much of the uncertainty in C2S.
The samples for the exit channel also show little intrapotential
correlation between the parameters. This is expected since
the only data that could inform these parameters are in the
transfer channel. If elastic data for the exit channel were
available, then the proper parameter correlations could be
inferred, thereby reducing the uncertainty in the extracted
spectroscopic factors. This could bring the uncertainty closer
to the roughly 24% seen in the case when just the entrance
potential is considered.

Bound-state parameter dependence could have significant
impact on astrophysical applications as well. In these ap-
plications, the extraction of C2S is an intermediate step to-
wards calculation of quantities relevant to astrophysics such
as particle partial widths and direct capture cross sections.

FIG. 5. The KDE representations of the probabilities of the � =
2, 3 transfers for the 3.70-MeV state.

FIG. 6. Ridge line plot that compares the KDE distributions for
the ground state C2S when there is variation in the entrance potential;
in the entrance and exit potentials; and in the entrance, exit, and
bound-state potentials. The percentage uncertainties are 24, 42, and
56%, respectively.

It was noted in Ref. [26] that it is essential to use the same
bound-state parameters for both the extraction of C2S and
calculation of the direct capture cross section or partial width.
This procedure was found to significantly reduce the final
uncertainties on these quantities. If the bound-state parameters
are included in a Bayesian model to extract C2S, then it
becomes possible to calculate these quantities not only using
the same bound-state parameters, but using fully correlated
statistically meaningful samples informed directly by the
transfer reaction measurement. Future work should investigate
the effectiveness and impact of determining partial widths and
direct capture cross sections using a Bayesian framework.

B. Nuclear structure of 69Cu

Structure properties of 69Cu are also influenced by our
results. The occupancy of orbitals tends to be higher than
expected for both the open p f orbitals and the closed 1 f7/2

proton shell. In order to propagate the uncertainties from each
C2S, we use the MCMC samples to construct a KDE for each
state. From these densities we pull 105 samples to estimate the
occupancy:

n =
N∑
i

C2Si, (25)

where i refers to each of the N states considered in the sum.
Similarly, the energy of the 1 f7/2 shell can be determined from

E (1 f7/2) =
∑N

i C2Si(1 f7/2)Ei(1 f7/2)

n1 f7/2

. (26)

The occupancy above the closed shell was found to be
np f = 3.90+1.03

−1.28, which is consistent with but systematically
higher than the value of 2.55(23) from the finite range calcula-
tions of the previous analysis. For the 1 f7/2 shell we have two
scenarios dependent on the identity of the state at 3.70 MeV.
If the state does not belong to the f shell, we have n1 f7/2 =
6.64+2.47

−1.79 and E (1 f7/2) = 2.43+0.23
−0.25, or, if it does, we have

n1 f7/2 = 10.03+3.63
−2.66 and E (1 f7/2) = 2.86+0.23

−0.26. Looking at the
median value for np f , we would expect n1 f7/2 = 6.10. This
may point to the � = 2 assignment of the 3.70-MeV state
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being the correct one, but it must be recognized that there are
still large uncertainties on all of these quantities. Furthermore,
since the optical model parameters are shared by these states,
these derived values are susceptible to significant systematic
shifts. In light of this fact, these credibility intervals should be
viewed as approximations. Perhaps more importantly is that
if the 3.70 state belongs to the 1 f7/2 then the full strength
of this shell has been observed. The shell model calculations
in Ref. [13] predict a much higher energy than E (1 f7/2) =
2.86 due to the presence of more states at higher excitation
energies. A future experiment with a higher incident beam
energy that would be capable of populating these predicted
higher-lying states could help clarify these discrepancies.

C. Comparison to other Bayesian studies

It is also worthwhile to compare our methods with those of
several recent publications, which have also applied Bayesian
methods to optical potentials [11,12]. These papers differ
from our approach in a few key ways: the data come from
multiple experiments, exit and entrance channels are fitted
separately, transfers are calculated using finite range effects,
and the prior distributions are much wider than ours (100%
of the initial global values). In a fully Bayesian framework,
fitting the data in the entrance and exit channels separately
or simultaneously is equivalent as long as the same model is
used [28]. While our priors are narrower, they could likely
be made broader if there were elastic-scattering data over a
wider range of angles. Full finite range calculations could be
important to include in future studies, but, as seen in Table II,
for this reaction the average difference is roughly 16%, well
within the uncertainty arising from the optical potentials.
Including these effects will require a more efficient way to
evaluate the likelihood function. Specifically, a finite range
calculation takes roughly 50 times longer than a calculation
using the zero-range approximation. For this paper 2 × 106

likelihood evaluations took approximately 22 h, meaning the
finite range calculation would take over 1000 h. As well as
those differences, our results differ from those of Ref. [12]
in one important aspect. Here, we confirmed the strong cor-
relations between optical model parameters that are expected
from historical studies [15], and treat them in a statistically
meaningful way. We stress that our method does not assume
these correlations, but that they appear to be a consequence
of the Wood-Saxon potential form factor. On the other hand,
in their comparison of frequentist and Bayesian methods the
authors of Ref. [12] do not observe such correlations, with the
exception of the V0 and r0 anticorrelation, and ascribe their
finding to the non-Gaussian posterior distributions, which
would be poorly described by the frequentist model. We do
not know the origin of this disagreement, and suggest that it
should be investigated further.

VI. CONCLUSIONS

In this paper we have presented a method to calculate
uncertainties in spectroscopic factors and angular momentum
assignments that include the uncertainty of the nuclear optical
model parameters by using Bayesian inference. We find that

for the 70Zn(d, 3He) 69Cu data analyzed here spectroscopic
factors are subject to large uncertainties that can approach
100%. If the exit channel elastic scattering is measured, this
uncertainty could be reduced significantly due to the high
correlation between the exit channel imaginary radius and the
spectroscopic factor. Application of Bayesian model selection
also found that there is substantial evidence in the data to
suggest an � = 3 transfer for the 3.70-MeV state, which
differs from the previous conclusion of an � = 2 assignment.
Further work is needed to resolve the ambiguity of this state.
We also find that the Bayesian approach confirms the highly
correlated nature of the optical model potential parameters.
The application of these techniques to other data sets and
global potentials could significantly improve the ability of
future works to accurately assign uncertainties to calculations
involving the optical model.

ACKNOWLEDGMENTS

The authors would like to thank Christian Iliadis, Rafael
S. De Souza, and Kiana Setoodehnia for their valuable input.
This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear
Physics, under Award No. DE-SC0017799 and Contract No.
DE-FG02-97ER41041.

APPENDIX A: POTENTIAL AMBIGUITIES
FOR 70Zn(d, d ) 70Zn

As discussed in Sec. III A, the continuous and discrete am-
biguities pose serious issues to any uncertainty quantification
of optical model potentials. It is worthwhile to demonstrate
that these issues occur naturally in our data set, and that
they are not consequences of the Bayesian methods devel-
oped throughout this paper. We do this by using artificially
generated data that possess the same characteristics of our
measured data points. In particular, we use limited angular
coverage, θc.m. � 50◦, and equivalent statistical uncertainties
of 10%. The data are generated by randomly perturbing the
theoretical cross section from FRESCO according to

dσ

d�Artificial,i
= dσ

d� Fresco,i
+ εi, (A1)

where i refers to the center-of-mass angle and εi is defined as

εi ∼ N
[

0,

(
0.10

dσ

d� Fresco,i

)2]
. (A2)

Using a maximum likelihood estimate, four different val-
ues were used for the real potential, V = 40, 80, 150, and
200 MeV. For each of these starting values 100 minimization
runs were performed, with each run consisting of a minor
perturbation of all of the starting parameters. This procedure
effectively probes the continuous ambiguity for each family
of V . These results are plotted in Fig. 7, which shows each
solution’s value of V and r0. Their color is based on the
minimized value, with the least likely being darker and the
most likely being brighter. This result shows that the two
ambiguities will be present even in an idealized situation, and
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FIG. 7. The V and r values from the exploration of the maximum
likelihood solutions. The colors correspond to the likelihood values.
As the colors get brighter, the values become more likely. The
continuous and discrete ambiguity can be seen clearly.

that any effort to quantify uncertainties must be able to address
the issues they create.

APPENDIX B: a PARAMETER
FOR ENSEMBLE SAMPLING

As mentioned in the main text, all of our MCMC calcula-
tions used an ensemble sampler with a stretch move parameter
set to a = 2. We now detail the meaning of this parameter as
defined in Ref. [38].

A single step of the entire ensemble is taken by updating
the positions for each walker individually. The stretch move
does this for a walker k by selecting at random another walker
from the ensemble and proposing an update of the form

Xk (t ) → Y = Xj + z(Xk (t ) − Xj ), (B1)

where Xk (t ) is the position of walker k at step t , Xj is the
position of the randomly selected walker in the ensemble (k �=
j), and z is a scaling variable drawn from the distribution g(z).
This distribution is defined by the single free parameter, a, and
is given by the function

g(z) ∝
{ 1√

z if z ∈ [
1
a , a

]
,

0 otherwise.
(B2)

The proposed position Y in a parameter space of N dimensions
is then accepted with probability

q = min

(
1, zN−1 p(Y )

p[Xk (t )]

)
. (B3)

It is possible to improve the performance of the sampler by
adjusting a. Lower values will tend to increase the number of
accepted proposals, while higher values will tend to decrease
them. All calculations in this paper had acceptance fractions
between 0.2 and 0.5, indicating the choice of a = 2 was
adequate [39].

APPENDIX C: DESCRIPTION OF NESTED SAMPLING

We give a brief overview of the nested sampling algorithm
here, but Refs. [40–42] should be consulted for a more de-
tailed explanation. The idea of nested sampling is to estimate
the evidence by defining a prior mass, X , defined by an
integral over the priors, P(θ ), with respect to the likelihood,
L:

X (λ) =
∫
L>λ

P(θ )dθ. (C1)

As λ increases, X decreases from 1 to 0. This definition
allows the evidence integral to be written:

Z =
∫ 1

0
L(X )dX ≈

m∑
i=1

1

2
(Xi−1 − Xi+1)Li, (C2)

where the sum comes from the application of the trapezoid
rule. The quantity 1

2 (Xi−1 − Xi+1) is also referred to as the
weight, wi. Thus, the algorithm becomes the following.

(1) Set Z0 = 0 and X0 = 1.
(2) Draw n live points from the prior distributions.
(3) Select the live point with the lowest value of Li, and

calculate ln Xi ≈ i+√
i

n .
(4) Add the weighted sample Liwi to Z .
(5) Update the selected live point by drawing a new point

from the prior satisfying Li+1 � Li.
(6) Repeat.

The number of samples, m, required for an accurate deter-
mination of Z can be estimated from the upper bound at a step
by Zi ≈ LmaxXi, where Lmax is the highest likelihood value
of the remaining live points.
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