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Ternary fission of α-structured nuclei with 12 � A � 60: A three-body decay approach
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We study the ternary fission of various even-even α-structured parent nuclei with 12 � A � 60, such as 12C,
16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, and 60Zn, within a three-body decay approach. In
the present study, we consider the three spherical ternary fission fragments with the lightest fragment A3 at the
middle of the other two main fission fragments, A1 and A2. The effects of hyperradius and the hypermomentum
quantum number in the ternary fission potential energy barrier are also studied. Further, the total excitation
energy and the ternary fission relative yields are calculated for the possible ternary fragmentation of each parent
nuclei considered. From the results obtained, we find the emission of α-structured ternary fragments is more
favored than the other ternary fragment combinations.
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I. INTRODUCTION

There has recently been considerable renewed interest in
the study of nuclear ternary fission (TF) since it has a larger
energy release than in the conventional binary fission process.
The term “ternary fission” refers to the breakup of a nucleus
into three fragments and is known as an exotic process be-
cause of its very low occurrence compared to binary decays.
Generally, the exotic TF process can happen in three different
ways, i.e., two direct fission modes (equatorial, referring to or-
thogonal emission, and collinear, referring to polar emission)
and one cascade fission mode. The TF process is often referred
to as light-charged-particle-accompanied (LCP-accompanied)
fission since the third fragment is very light and, in most
cases, is an α particle emitted in a direction perpendicular
to the main fission fragments. Interestingly, a new kind of
phenomenon of the emission of three fragments with similar
masses was reported in the recent experimental studies [1,2]
and the authors called this exotic decay mode “collinear
cluster tripartition.” In addition, the ternary emission proba-
bility in thermal-neutron-induced and spontaneous fission of
different heavy radioactive nuclei, such as 235U(nth, f) [3–5],
241Pu(nth, f) [6], 249Cf(nth, f) [7,8], and 252Cf(sf) [4,5,8–15]
have been reported within the framework of various theoret-
ical models and different experimental techniques. Further,
the TF of superheavy and hyperheavy (Z � 126) nuclei was
also studied [16–18], using different theoretical approaches.
Overall, the recent experimental studies [1,2] and the various
theoretical model predictions [10,11,19–21] suggest that the
collinear configuration is preferred relative to the equatorial
configuration. However in Ref. [22], the authors showed from
general principles that direct collinear fission is improbable.
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Within the statistical approach of a two-step binary pro-
cess, Andreev et al. [9] studied the TF charge distribution
for the spontaneous fission of 252Cf and induced fission of
56Ni, which was formed in the reaction 32S + 24Mg at a large
angular momentum and an excitation energy of about 84 MeV.
Further, they obtained a good comparison with the experi-
mental data for the TF yields of 56Ni with 8Be and 12C as
third particles. In Refs. [23,24], Oertzen et al. experimentally
studied the binary fission and coplanar ternary cluster decay
of hyperdeformed 56Ni and 60Zn formed in the reactions
32S + 24Mg and 36Ar + 24Mg, respectively, and obtained the
double differential cross-section data for the ternary decay
with third fragment missing charges from 2 to 8. The authors
reported that the ternary decay with third fragment missing
charge 2 has the largest yield value than the other measured
TF channels.

Royer et al. [20,25–28] studied the potential energy barri-
ers for the TF of 36Ar, 40Ca, 44Ti, 48Cr, 56Fe, and 56Ni within
a rotational liquid drop model taking into account the nuclear
proximity energy and found the TF barrier heights were
competitive with the binary ones at high angular momenta.
Further, the energies of the 8Be, 12C, 16O, 20Ne, 24Mg, and
32S nuclei have been studied [29,30], within an α-particle
model approach. The authors assumed different planar and
three-dimensional shapes of the α molecules (linear chain,
triangle, square, tetrahedron, pentagon, trigonal bipyramid,
square pyramid, hexagon, octahedron, octagon, and cube)
and found that the binding energies of the three-dimensional
shapes at the contact point were higher than the ones of the
planar configurations. Further, they reported that the core +
α cluster configuration leads always to the lowest potential
energy barrier.

The binding energy per nucleon as a function of the nuclear
mass number shows a large deviation for light nuclei with
maximal value for the α-structured nuclei, especially for 4He,
8Be, 12C, and 16O, which indicates a strong preference of α
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FIG. 1. Schematic illustration of the emission of the three spher-
ical fragments in a three-body decay. Here the lightest fragment A3 is
kept at the center of the other two fission fragments, A1 and A2. The
center-to-center distances Ri j and the surface separation distances di j

are also labeled. The horizontal solid arrow line represents the fission
axis.

clustering in the nucleosynthesis of these elements as well as
the heavier ones. The clustering phenomenon, which is an im-
portant ingredient in nuclear dynamics, has long been known
from the earlier studies on α-cluster models by Wheeler [31]
and Hafstad and Teller [32]. A recent review on cluster models
can be found in Ref. [33]. The effects of four body interactions
of α particles on properties of nuclear α particle condensates
in heavy self-conjugate nuclei was studied in Ref. [34] and a
quartet model approach [35] was proposed to study α cluster-
ing. Using this approach, the authors calculated the numerical
results of nuclear radius and α-cluster formation probability
for 20Ne, 44Ti, and 212Po nuclei and obtained good agreement
with the experimental data and other theoretical model results.
Further, they reported that their proposed approach could help
in deepening the understanding of α clustering across the
nuclide chart.

The aim of this paper to study the total excitation en-
ergy and the ternary fission yields and/or charge distribution
of fragments from the TF of different parent nuclei with
12 � A � 60. The organization of the paper is as follows:
A brief description of the theoretical approach used in our
calculations is given in Sec. II. The calculations and results
are discussed in Sec. III. Finally, the summary of our results
and conclusions is given in Sec. IV.

II. THEORETICAL APPROACH

In the present study, the ternary fission is assumed to occur
in a single step, i.e., direct decay. Further, the ternary fission
fragments are considered to be in spherical shape. Figure 1
represents the schematic illustration of the spherical ternary
fragments with the lightest fragment A3 kept in the middle of
the other two fragments, A1 and A2.

To study the exotic ternary decay process within the three-
body decay approach, we parameterized the system using a
quantity called hyperradius (ρ) which depends on the masses
of each fragment mi and their distance Ri j . It is defined as

ρ ≡
√√√√ 1

mM

3∑
i< j

mimjR2
i j, (1)

where M = ∑3
i=1 mi, m is an arbitrary normalization mass

taken as equal to the nucleon mass, and Ri j is the center-
to-center distance between the interacting fragments, i and
j. Ri j = Rt

i j + di j , where Rt
i j is the sum of the radii of frag-

ments, i and j, and di j is the surface separation distance
between the fragments. The radius of each fragment is cal-
culated as Rx = 1.2536A1/3

x − 0.80012A−1/3
x − 0.0021444/Ax

fm [36] with x = 1, 2, and 3 corresponding to three fragments
A1, A2, and A3. The surface separation distances for the ternary
configuration presented as in Fig. 1 are considered as d13 =
d23 = d and d12 = 2(R3 + d ), and d = 0 refers the touching
configuration.

A particular decay orientation is defined by the positive
scaling factors Si j and it can be calculated as

S2
i j ≡ R2

i j

ρ2
. (2)

For example, S13 = S23 = S12 represents the equatorial emis-
sion with three identical fragments and S13 + S23 ≈ S12 the
ternary decay proceeds through a linear chain as depicted in
Fig. 1.

The total potential energy V (ρ) of the ternary fission
fragments is considered as the sum of the Coulomb potential
VC , nuclear potential VN , and the centrifugal potential VK and
is given by

V (ρ) = VC + VN + VK . (3)

The Coulomb interaction energy defines the force of repulsion
between the three fragments and it can be parameterized by
the hyperradius and scaling factors [37] as

VC =
3∑

i< j

ZiZ je2

Ri j
= 1

ρ

3∑
i< j

ZiZ je2

Si j
, (4)

and the centrifugal potential is defined as in Ref. [37],

VK = h̄2(K + 3/2)(K + 5/2)

2mρ2
, (5)

where K is the hypermomentum quantum number.
For the calculation of nuclear interaction potential VN

between the three spherical fragments, we have used the form
given in Ref. [8] defined as

VN =
3∑

i< j

V N
i j {di j[Ri j, Ri, Rj]}, (6)

with

V N
i j {di j[Ri j, Ri, Rj]} = ν1C + ν2C1/2

1 + exp
[ di j

(d1+d2 )/C

] , (7)

where ν1 = −27.190 MeV fm−1, ν2 = −0.93009 MeV
fm−1/2, d1 = 0.78122 fm, d2 = −0.20535 fm2, and C =

RiR j

Ri+Rj
fm. In this paper, the TF potential barrier is calculated

as a function of hyperradius of the three fission fragments [see
Fig. 2(a) for the ternary decay of 60Zn]. The top and bottom of
the potential barrier are defined as Vmax and Vmin, respectively,
and the quasifission potential barrier (Bqf ) is calculated as the
difference of potential energies between Vmax and Vmin. The
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FIG. 2. The x axis is the hyperradius (ρ in fm) of the ternary system as defined in Eq. (1) and the y axis is the total potential energy [V (ρ )
in MeV] as a function of hyperradius, which can be calculated from Eq. (3). (a) Potential energy barrier as a function of hyperradius of the
ternary fragments from the ternary fission of 60Zn. Different lines correspond to the various charge combinations of the ternary fragments and
we labeled them in the order of considered fragment geometry, i.e., A1 + A3 + A2. The top (Vmax in MeV) and bottom (Vmin in MeV) of the
potential barrier and its height (Bqf in MeV) are also labeled. (b) Variation of potential energy barrier as a function of the hypermomentum
quantum number (K in h̄) and the hyperradius (ρ in fm) for the emission of 3α particles from 12C decay. The solid line corresponds to
VK = 0 MeV and the other lines refer to different K values.

height of the potential barrier decreases with increasing K ,
which is presented in Fig. 2(b) for the decay of 12C into 3α

particles.
The total excitation energy (E∗

tot) of three fission fragments
is related to the Q value of the ternary fission reaction as
follows:

E∗
tot = ξ ∗

f + Q − Vmin. (8)

Here ξ ∗
f is the excitation energy of the fissioning parent

nucleus and we consider ξ ∗
f = 50 MeV. Further, the Q value

of the ternary fission reaction can be calculated as

Q =
3∑

i=1

BEi − BE f , (9)

where BEi (i = 1, 2, and 3) and BE f are the ground-state bind-
ing energies of the three fission fragments and the fissioning
nucleus, respectively, which are taken from Ref. [38].

The relative ternary fission yield, Y (Ai, Zi ), of a particular
ternary system with given masses and charges of the ternary
fragments is statistically calculated as follows:

Y (Ai, Zi ) = Y0 P(Ai, Zi ) W (Ai, Zi ), (10)

where the formation probability P(Ai, Zi ) can be calculated as
in Ref. [39],

P(Ai, Zi ) = P0 exp

[
− U

Tf

]
, (11)

and the decay probability W (Ai, Zi ) can be found as in
Ref. [39],

W (Ai, Zi ) = W0 exp

[
−Bqf

Tη

]
. (12)

In Eqs. (10), (11), and (12), Y0, P0, and W0 are normalization
factors for the corresponding distributions. Here U = Vmin −
Q is called the driving potential of the ternary system. Tf and
Tη are correspond to the temperature values of the fissioning
compound nucleus and the ternary system, respectively: Tf =√

ξ ∗
f /a and Tη = √

E∗
tot/a, where a = A/8 is the level density

parameter with A is the mass number of the fissioning nucleus.
In Eq. (12), the term exp [−Bqf/Tη] accounts the thermal
penetration of the decay barrier.

Finally, for the calculation of ternary fission charge distri-
bution, the following expression is used:

Y (Zi ) = Y0 max[Y (Aj, Zi )], (13)

where Y0 is the normalization factor. From the above Eq. (13),
for a certain set of Zi (i.e., Z1, Z2, and Z3) the maximum yield
is identified over different sets of Aj (i.e., A1, A2, and A3). In
this study, all the distributions and the yields are normalized
to unity. Further, it is to be noted that our yield results are
limited only to prompt disintegration of a parent nucleus into
three fragments.
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III. RESULTS AND DISCUSSION

In the present paper, the ternary fission of different even-
even α-structured parent nuclei 12C, 16O, 20Ne, 24Mg, 28Si,
32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, and 60Zn are studied
within a three-body decay approach. It is to be noted that
the above-considered nuclei are negative Q-value systems
and, hence, would decay if they were produced in heavy-ion
reactions with sufficient compound nucleus excitation energy,
which is taken here as ξ ∗

f = 50 MeV. Further, we consider the
three fission fragments are in spherical shape and the fragment
A3 is also assumed at the middle of the other two fragments,
A1 and A2.

A. Total excitation energy

For the considered α-structured parent nuclei, the pos-
sible ternary fission fragment configurations with the third
fragment not lighter than 4He are generated by the use of
AME2016 data. The procedure for the generation of all pos-
sible ternary fragment combinations is already described in
Refs. [15,40]. For thus-generated ternary fragment combi-
nations, the potential energy barrier among the three fission
fragments is calculated as a function of hyperradius (ρ in fm)
of the ternary system, using Eq. (3) and the ternary fission
reaction Q value is also calculated from Eq. (9). In Fig. 2(a),
the calculated potential energy barrier, for different possible
charge combinations of the ternary fragments from the ternary
decay of 60Zn, is presented as a function of hyperradius (ρ).
From this figure, it is found that the height of the potential
barrier decreases with the increase of charge asymmetry of the
ternary fragments. The top and bottom of the potential barrier
are also mentioned for the 28Si + 4He + 28Si fragmentation. In
Fig. 2(b), the variation of potential barrier with respect to the
hypermomentum quantum number (K in h̄) and ρ is presented
for the ternary decay of 12C into 3α particles. The potential
barrier corresponds to VK = 0 MeV is also shown. From this
figure, it is seen that there is no potential barrier from K = 8 h̄
onward. Further, the height of the potential barrier decreases
with the increase of K values.

The total excitation energy E∗
tot is calculated for the pos-

sible ternary combinations of each considered α-structured
parent nuclei, using Eq. (8). To identify the maximal E∗

tot value
from each ternary charge combination of a parent system,
a two-dimensional minimization approach [15,40] is used.
In which the minimization of the possible ternary fragment
combinations with respect to the charge number (Z1, Z2, and
Z3) of the ternary fragments has been carried out. In Fig. 3,
the maximal E∗

tot of spherical fragments from the ternary
fragmentation of different nuclei are presented in ternary
contour plots as a function of the charge numbers of the proton
minimized ternary fragments. The total excitation energy
results presented in this figure are due to K = 0h̄. Different
Figs. 3(a)–3(k) correspond to the maximal E∗

tot of the charge
minimized ternary fragments from the ternary fragmentation
of various parent nuclei, such as 20Ne, 24Mg, 28Si, 32S, 36Ar,
40Ca, 44Ti, 48Cr, 52Fe, 56Ni, and 60Zn, respectively. The proton
magic numbers are also shown here as dashed lines to see the
importance of closed-shell effects. For 12C ternary decay, the

emission of 3α particles has pronounced the largest E∗
tot value

than the other possible ternary fragmentation of the parent
system. Further, it is worthwhile to mention that the emission
of 3α particles in triangular direction is preferred over the
collinear type emission, which supports the earlier predictions
as well. However, the E∗

tot results for the ternary fission of
12C and 16O nuclei are not shown here due to their smaller
possibility of fragment combinations. In Fig. 3, the maximal
E∗

tot is found for the ternary fragmentation which involves
Z3 = Z2 = 2, i.e., 4He. In addition, the calculated E∗

tot for the
ternary fragmentation involves the α-structured fragments is
larger compared to the other neighboring ternary combination
which consists of non-α-structured fragments. This indicates
the preference for the emission of α-structured fragments over
the non-α-structured fragments. A similar kind of results was
already reported in Ref. [41] for the binary fission potential
energy studies of 56Ni∗.

B. Ternary fission yields

For the possible ternary fragment combinations with E∗
tot >

0 MeV of each parent nuclei, the formation and decay prob-
abilities of the ternary fragments are calculated by using
Eqs. (11) and (12), respectively. With the use of these two
quantities, the relative ternary fission yield is also calculated
from Eq. (10). By using a two-dimensional approach, which
was mentioned earlier, the maximal yield value of every
possible ternary charge combinations (Z1, Z2, and Z3) from
each parent nuclei is identified. In Fig. 4, the ternary fission
charge distribution of different parent nuclei with various
possible even-charge third fragments is presented as a func-
tion of charge numbers (Z1 and Z2) of the accompanying
fission fragments. Here different lines with various symbols
correspond to yield results due to various possible even-charge
third fragments. It is to be noted here that the ternary fission
charge distribution due to the other third fragments is also
calculated but not presented here because of their smaller
significance. Further, it is to be noted that the presented yield
results are due to K = 0h̄ only. To show the ternary fission
charge distribution results as a function of charge numbers
of the accompanying fragments, the calculated yield values
are normalized to 2. Similarly to E∗

tot, the calculated relative
yield results have pronounced the largest values for the emis-
sion of 3α particles from the ternary fission of 12C. From
the charge distribution results presented in Fig. 4, ternary
configurations with Z3 = 2 are shown to have larger yield
values than the other possible even-charge third fragment
configurations. In particular, the prominent peaking structure
is obtained for the ternary fragmentation which involves
Z3 = Z2 = 2. In addition, the calculated relative yield values
for a ternary fragmentation which contains the α-structured
fragments are larger compared to the other non-α-structured
ternary fragments. Note that our calculated ternary fission
yield results, for the case of 56Ni, shows larger yield value
for Cr + α + α, Ti + α + Be, Ca + α + C, Ar + α + O, Si +
α + Mg ternary configurations, whereas it has been found for
the Si + α + Mg ternary combination from the experimental
observation [23].
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FIG. 3. The total excitation energy E∗
tot of charge-minimized (Z1, Z2, and Z3) spherical fragments from the ternary fragmentation of different

parent nuclei at the excitation energy of ξ ∗
f = 50 MeV. Panels (a)–(k) correspond to the different parent systems considered. The dashed lines

correspond to the proton magic numbers.

IV. SUMMARY AND CONCLUSIONS

Within a three-body decay approach, we have studied
the ternary fission of various even-even α-structured parent
nuclei with 12 � A � 60. In the present study, the ternary
fragments are considered to be spherical and the ternary
breakup is also assumed to occur in a single stage, i.e., a
direct decay into three fragments. For 12C ternary decay,
the effects of hyperradius and the hypermomentum quantum
number in the ternary fission potential energy barrier are
explicitly presented. Note that the total excitation energy E∗

tot
of the ternary fragments has been calculated from the proper
energy conservation in a ternary fission reaction and it is

found to vary as a function of mass and charge numbers
of the ternary fragments. Interestingly, for each α-structured
parent nuclei, the largest E∗

tot is obtained for the ternary
fragmentation with Z2 = Z3 = 4He. Further, the ternary frag-
mentation which involves α-structured fragments have larger
E∗

tot values than the other ternary fragmentation consisting of
non-α-structured fragments. This indicates the preference for
the emission of α-structured fragments over the other non-
α-structured ternary fragments. The effect of strong maxima
in the total excitation energy E∗

tot for α-structured ternary
fragments is also reflected in the ternary fission yields. In
other words, the calculated ternary fission yields are larger
for the emission of α-structured ternary fragments than the
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FIG. 4. For different parent nuclei with various possible even-charge (Z3) third fragments, the ternary fission charge distribution plotted as
a function of charge numbers (Z1 and Z2) of the accompanying fragments. Different lines with solid symbols represent the relative yield values
due to various possible even-charge third fragments. Panels (a)–(l) correspond to the different parent systems considered.
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other ternary fragments. In addition, for different parent nuclei
with various possible even-charge third fragments, the ternary
fission charge distribution results are also presented.

Further, the emission of ternary combinations contain α-
structured fragments are shown here as favorable ternary
modes to look for from the ternary fission of α-structured
nuclei with 12 � A � 60, at ξ ∗

f = 50 MeV. As a future
course of study, the effects of deformation and orien-
tation of ternary fragments will be explored within this
approach.
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