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Properties of a separable representation of optical potentials
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Background: Separable interactions have a long history in nuclear physics. In the last few years, separable
expansions have been used to represent the optical potential between a nucleon (proton or neutron) and a target.
Purpose: We explore the nonlocal properties of these separable optical potentials as well as their convergence
behavior.
Method: For a couple of cases, we use the generalized Ersnt-Shakin-Thaler scheme to generate separable
interactions starting from local optical potentials. We study the variation of the interaction with energy range
and rank.
Results: We find that, overall, the off-diagonal behavior of the converged separable interaction deviates from the
Gaussian form assumed by Perey and Buck [F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962)]. However, in the
region surrounding the maximum depth the Gaussian form works quite well. Focusing on this region, we study
potentials describing neutron elastic scattering on 16O and 48Ca for beam energies in the range of E = 10–50
MeV and explore several measures of nonlocality of the separable interactions.
Conclusions: When the energy range considered for generating the separable interaction is 0 � Erange � 50
MeV, the resulting nonlocality is large and target dependent. Contrarily, the nonlocality obtained including
larger energy ranges in the separable procedure is independent of the target and other details of the original
local potential. We find that, even when including in the expansion many support points with energy ranges
0 � Erange � 2400 MeV, the resulting potential retains nonlocal behavior. Connections with microscopic optical
potentials as well as other transformations used in the nucleon-nucleon domain are made.
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I. INTRODUCTION

One of the greatest challenges in the physics of nuclei
concerns the interactions themselves. Effective interactions
are developed to incapsulate the many degrees of freedom
contained in the system. Much work has been devoted to the
development of both nucleon-nucleon effective interactions
[1], the so-called NN force, and nucleon-nucleus effective in-
teractions, referred to as optical potentials (e.g., Refs. [2–4]).
In this work we focus on the latter and in particular on their
properties when represented in separable form.

In the past, NN forces were derived phenomenologically
with different levels of complexity (e.g., AV18 [5] and Min-
nesota [6]). In the last two decades the field has shifted toward
generating these interactions in a more controlled fashion
through effective-field theory (EFT) [7]. Different transforma-
tions on NN forces have also been proposed to enable greater
efficiency when used in many-body problems: these include
Vlowk [8,9] and similarity renormalization group methods [10].
In both of these examples high-momentum components of the
interaction are shifted to low-momentum off-diagonal behav-
ior, while preserving the on-shell properties of the interaction.
When analyzed in coordinate space, these transformations
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induce nonlocality properties that do not affect the two-body
observables but can have an impact in three- and more-body
calculations. As is discussed here, a similar situation can occur
when considering nucleon-nucleus optical potentials.

Separable interactions have a long history in few-nucleon
physics (e.g., Refs. [11–13]). Because the three-body Faddeev
equations in momentum space [14] simplify greatly when
using separable interactions, this approach was originally
very popular. As computational capabilities increased, the
few-nucleon field evolved to using more realistic nonsep-
arable interactions (e.g., Refs. [15,16]). The complications
introduced by the infinite-range Coulomb force in the three-
nucleon problem were handled separately by screening and
renormalization techniques [17].

For over a decade, the few-nucleon techniques have been
ported into nuclear reactions and in particular to describe
deuteron-induced reactions [18]. Deuteron-induced reactions
are typically modeled as a three-body problem, n + p + A, the
input being the effective nucleon-target optical potentials. As
was later realized, the Coulomb screening method introduced
by the Lisbon group [17] could not be applied to deuteron-
induced reactions involving heavy targets, due to the increased
strength of the Coulomb force [19]. It turns out that, by using
a separable representation for the optical potential, those diffi-
culties can be overcome [20]. As a result, in the past few years
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separable interactions have made a come back [21–23]. These
developments use the Ernst, Shakin, and Thaler scheme (EST)
[24] to generate separable representations for the nucleon
optical potential.

While most optical potentials being used to interpret nu-
clear reaction data are local [3,4], separable interactions with
realistic truncations are intrinsically nonlocal. Even though at
the two-body level the EST scheme ensures that scattering
observables are exactly reproduced within a chosen energy
range, this is not guaranteed when using these interactions in
the context of deuteron-induced reactions, because the three-
body equations will pick up off-shell contributions. It has
been shown that local and nonlocal optical potentials can give
rise to very different transfer cross sections even if they are
equivalent at the two-body level [25–28]. It is therefore timely
to perform a dedicated study on the effect that the separable
EST transformation has on the properties of optical potentials.
This is precisely the goal of this work.

We study the scattering of neutrons on two closed-shell
nuclei 16O and 48Ca at beam energies of experimental interest
and explore the nonlocality properties of the separable inter-
actions in coordinate space. This paper is organized in the
following way. In Sec. II we briefly introduce the EST method
and the standard Gaussian nonlocality form used to extract the
nonlocal parameter for the interaction. In Sec. III we present
the results obtained for both targets and discuss these results
in the context of previous work. Finally, the conclusions are
presented in Sec. IV.

II. THEORETICAL CONSIDERATIONS

Deuteron-induced reactions on intermediate- to heavy-
mass targets A are treated as three-body problems consisting
of n + p + A. In such cases, the three-body dynamics of
the reaction is generated from the pairwise interactions: Vnp

reproducing the properties of the deuteron and its continuum,
and the nucleon optical potentials UnA and UpA, typically
describing nucleon scattering from the target A. In general,
these optical potentials are energy dependent and contain an
important imaginary term that effectively takes into account
the removal of flux from the incident channel into other
channels in the reaction that are not explicitly included.

Although there have been many efforts to derive the optical
potential from first principles, the common practice is to use
a larger set of elastic data to fit it [3,4]. For convenience
these potentials are most often made local, although isolated
studies have been performed to include nonlocality in these
interactions [29]. For simplicity, in this study, we focus on the
neutron-target potentials, although the results can be trivially
generalized to proton-target potentials.

To construct separable representations of the n-A optical
potentials UnA, the generalized EST scheme of [30] is adopted.
Although the original EST scheme focused only on Hermitian
potentials, the generalization presented in Ref. [30] extends
its applicability to potentials that are complex and energy de-
pendent. Because this work focuses only on n-A interactions,
we refer to these as U and drop the nA subscript hereafter.

The key features of the generalized EST separable expan-
sion can be summarized as follows. First, one defines the

states |ψ (+)
Ei

〉 and |ψ (−)
Ei

〉, which are eigenstates of the Hamil-
tonians H = H0 + U and H∗ = H0 + U ∗, respectively, with
eigenvalues Ei � 0 and H0 being the free Hamiltonian. The
states |ψ (+)

Ei
〉 are the usual scattering wave functions fulfilling

outgoing boundary conditions, while the asymptotic behavior
of |ψ (−)

Ei
〉 is that of an incoming spherical wave. Second,

the two-body potential U is expanded using the basis states
{|ψ (+)

Eiα
〉} and {|ψ (−)

Eiα
〉}, leading to the partial-wave separable

potential

uα (E ) =
N∑

i, j=1

|hiα〉λα
i j (E )〈h̃ jα|, (1)

where |hiα〉 ≡ Uα (Ei )|ψ (+)
Eiα

〉, |h̃iα〉 ≡ U ∗
α (Ei )|ψ (−)

Eiα
〉, and E is

the two-body center-of-mass (c.m.) energy. Here α ≡ {l j}
denotes a single channel, with l being the the orbital angular
momentum and j = |l ± 1/2| the total angular momentum.
The number of basis states N defines the rank of the separable
potential and the energy eigenvalues Ei are called EST support
points. We note that |hiα〉 and 〈h̃iα| are related to the half-shell
transition (t) matrix by

|hiα〉 = Uα (Ei )|ψ (+)
Eiα

〉 = tα (Ei )|pi〉, (2)

〈h̃iα| = 〈ψ (−)
Eiα

|Uα (Ei ) = 〈pi|tα (Ei ), (3)

where pi = √
2μEi is the on-shell momentum, with μ being

the reduced mass. The absolute square of the on-shell t-
matrix elements relates directly to the cross section for elastic
scattering. The half-shell t matrix elements are obtained in
momentum space by solving the Lippmann-Schwinger (LS)
equation

tα (Ei )|pi〉 = Uα (Ei )|pi〉 + Uα (Ei )G0(Ei )tα (Ei )|pi〉. (4)

Negative-energy EST support points can also be included in
the expansion, and in that case the bound-state wave func-
tions replace the incoming and outgoing scattering states (see
Ref. [23] for details).

Finally, one defines the coupling matrix λα
i j (E ) by impos-

ing the constraint

〈ψ (−)
Eiα

|Uα (E )|ψ (+)
Ejα

〉 = 〈ψ (−)
Eiα

|uα (E )|ψ (+)
Ejα

〉

=
N∑

n,m=1

〈ψ (−)
Eiα

|hnα〉λα
nm(E )〈h̃mα|ψ (+)

Ejα
〉.

(5)

This definition of λα
i j (E ) ensures that the matrix elements of

the original potential U (E ) and the separable potential uα (E )
between the basis states are identical for all energies E . For the
special case where E corresponds to one of the EST support
points, Eq. (5) implies that the eigenstates of H0 + u(Ei ) coin-
cide with those of H0 + U (Ei ). This guarantees that the wave
functions obtained using the original potential U are identical
to the ones computed with its separable representation u at
the EST support points. This is a crucial property of the
original EST scheme and is by construction preserved in the
generalized expansion for complex potentials.
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TABLE I. The EST parameters for the n-48Ca separable poten-
tials. Erange specifies the highest support point used, and N is the
number of EST support points needed for convergence with a given
Erange. The specific energies of the support points are shown in the
last column; when a range of energy is given, it means that an even
spacing of support points within that range were included.

Erange (MeV) N Support points Ei (MeV)

EST10-Ca 10 10 0.5 MeV; 0.5–10
EST40-Ca 40 12 0.5, 7 MeV; 7–40
EST400-Ca 400 14 0.5, 10, 30, 60, 100; 100–400
EST800-Ca 800 22 0.5, 10, 30, 60, 100; 100–800
EST1200-Ca 1200 27 0.5, 10, 30, 60, 100; 100–1200
EST1600-Ca 1600 35 0.5, 10, 30, 60, 100; 100–1600
EST2000-Ca 2000 45 0.5, 10, 30, 60, 100; 100–2000
EST2400-Ca 2400 53 0.5, 10, 30, 60, 100; 100–2400

III. RESULTS

We consider the energy-dependent CH89 global optical
potential [3] and apply the EST scheme to produce separable
forms. We analyze the properties of the resulting potential at
two scattering energies, E = 5 MeV and E = 20 MeV, which
span beam energies of experimental interest for applications
involving transfer reactions. We consider both the number of
support points included in the expansion (the rank N) and
the energy range Erange for the support points. Support points
are chosen wisely based on the structure of the two-body
continuum. One can consider that effectively in EST we are
interpolating the S matrix S(E ) (or T matrix) and, as such, we
need to choose the set Ei that will enable the reproduction of
the original S(E ).

In Table I the specifications of the EST parameters, in-
cluding the rank used in the expansions and the energies
corresponding to the support points, are provided. When a
range of energy is given, it means that an even spacing of
support points within that range were included. While a rank
N < 10 is usually sufficient to describe nucleon scattering ob-
servables up to 20 MeV, a much higher rank is needed to reach
convergence of the potential matrix elements uα (r′, r). Thus
we performed calculations up to N = 53. We find that the
separable interactions obtained depend strongly on the energy
range included in the EST procedure. Again, to fully explore
this dependence, we consider multiple values of Erange, going
all the way up to 2400 MeV.

The S matrices generated with the separable interactions
agree with those obtained directly with the original CH89 po-
tential within their corresponding energy range but expectedly
fail to provide an accurate description outside their energy
range. Plotted in Fig. 1 is the real part of the S-matrix resulting
from separable interactions with different Erange, for s-wave
neutrons scattering off 48Ca.

A. Radial dependence of the separable interaction

Next we consider the radial dependence of the separable
interactions. While the original CH89 optical potential is
local, the resulting separable interactions are nonlocal. To best

FIG. 1. Real part of the S matrix as a function of the scattering
energy for the various energy ranges considered in the EST expan-
sion [example shown for 48Ca(n, n) scattering for � = 0].

illustrate this, we present in Figs. 2 and 3 the real part of
the n-48Ca separable potential Re[uα (r, r′)] for E = 5 MeV
and E = 20 MeV, respectively. We show two relevant partial
waves (Jπ = 1/2+ in the left panels and Jπ = 3/2− in the
right panels) as well as the two extreme cases for the energy
range (the lowest Erange = 10 MeV on the top and the highest
Erange = 2400 MeV on the bottom).

Several characteristics emerge from the analysis.

(i) The separable interactions for Jπ = 1/2+ and � = 0
have the minimum at r = 0, independently of their
rank or energy range. This is shown in panels (a)
and (c) of Figs. 2 and 3. Expectedly, introducing
the repulsion from the centrifugal barrier shifts the

FIG. 2. Radial dependence of the real part of the separable inter-
action obtained for 48Ca(n, n) at 5 MeV: (a) Jπ = 1/2+ (Erange = 10
MeV), (b) Jπ = 3/2− (Erange = 10 MeV), (c) Jπ = 1/2+ (Erange =
2400 MeV), and (d) Jπ = 3/2− (Erange = 2400 MeV). The pale (yel-
low) and dark (blue) colors correspond to the maxima and minima,
respectively. The color scale varies significantly between panels; in
this figure we focus only on the geometry of the potentials.
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FIG. 3. Radial dependence of the real part of the separable inter-
action obtained for 48Ca(n, n) at 20 MeV: (a) Jπ = 1/2+ (Erange = 20
MeV), (b) Jπ = 3/2− (Erange = 20 MeV), (c) Jπ = 1/2+ (Erange =
2400 MeV), and (d) Jπ = 3/2− (Erange = 2400 MeV). The pale (yel-
low) and dark (blue) colors correspond to the maxima and minima,
respectively. The color scale varies significantly between panels; in
this figure we focus only on the geometry of the potentials.

minimum of the potential away from r = 0 [shown
in panels (b) and (d) of Figs. 2 and 3 for the partial
wave Jπ = 3/2− and � = 1].

(ii) The potentials with the smaller energy range [shown
in panels (a) and (b) of Figs. 2 and 3] have strong
off-diagonal components. As we increase the energy
range included in the EST procedure, the off-diagonal
components shrink gradually toward the diagonal. Ul-
timately the potentials with the highest energy range
[shown in panels (c) and (d) of Figs. 2 and 3] approach
the diagonal form of the original CH89 potential.

(iii) The off-diagonal structures of the separable interac-
tions produced for E = 5 MeV (Fig. 2) are identical
to those obtained for E = 20 MeV (Fig. 3). One
should keep in mind that CH89 is energy dependent
and therefore one might expect the corresponding
separable interaction to be energy dependent too. We
return to this point in Sec. III C.

The three broad features discussed before are persistent
throughout our investigations, whether looking into the real or
the imaginary parts of the potential, and whether considering
low or high angular momentum �. Also, the separable inter-
actions generated for 16O(n, n) 16O have the same qualitative
characteristics as those shown in Figs. 2 and 3.

To best quantify the off-diagonal properties, we con-
sider the separable potential cross diagonals by plotting
Re[uα (r, r′)] as a function of (r − r′), while fixing (r + r′),
in the region where the potential has its deep pocket. For
� = 1, we take (r + r′) such that the cross-diagonal curve
goes through the minimum of each potential. For � = 0, these
minima occur at the origin, so we instead fix (r + r′) at 0.4

FIG. 4. Cross diagonal of the real part of the separable interac-
tion obtained for 48Ca(n, n) at 5 MeV, Jπ = 1/2+: (a) comparing
different ranks for Erange = 40 MeV, with (r + r′) = 0.4 fm, (b) com-
paring different Erange with (r + r′) = 0.4 fm, and (c) comparing
different Erange through the potential maxima.

fm. In Fig. 4 we show the cross-diagonal behavior for the
� = 0 potential for neutrons on 48Ca at 5 MeV. A similar plot
is shown in Fig. 5 for � = 1 neutrons on 48Ca also at 5 MeV.

Figures 4(a) and 5(a) show the convergence of the poten-
tial with rank for a fixed energy range of Erange = 40 MeV.
Results for N = 12 are already converged and the behavior
of the cross diagonal in this deep pocket is approximately
Gaussian. In contrast, Figs. 4(b) and 5(b) show a very strong
dependence of the cross-diagonal potentials with the energy
range included when calculating the separable interaction.
With increasing Erange, the interactions become deeper and
more localized. In addition, we can analyze the cross-diagonal
plots in the surface region when the interaction reaches its
maximum [Figs. 4(c) and 5(c)]. The cross-diagonal plots show
a strong dependence on the Erange. This behavior merits further
inspection.

B. Nonlocality behavior of the separable expansion

To quantify the nonlocality induced in the interaction we
use the form introduced by Perey and Buck [29]. Perey-
Buck assume that the nonlocality of the optical potential is
Gaussian:

U PB(r, r′) = exp

(
−

∣∣∣∣r − r′

β

∣∣∣∣
2
)

UWS

(
r + r′

2

)
, (6)
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FIG. 5. Cross diagonal of the real part of the separable interac-
tion obtained for 48Ca(n, n) at 5 MeV, Jπ = 3/2−: (a) comparing
different ranks for Erange = 40 MeV through the potential minima,
(b) comparing different Erange through the potential minima, and
(c) comparing different Erange through the potential maxima.

where UWS is a local Woods-Saxon form and β is the nonlo-
cality parameter.

The partial-wave-decomposed interaction takes the follow-
ing form (See Ref. [29]):

uPB
� (r, r′) = 2i�

π
1
2 β

UWS

[
1

2
(r + r′)

]

× j�

(
−i

2rr′

β2

)
exp

(
− r2 + r′2

β2

)
. (7)

To quantify the nonlocality, Eq. (7) was used to fit the
cross-diagonal shapes of Figs. 4(a) and 5(a) and extract the
nonlocality parameter β. In the fits, an arbitrary normalization
was chosen and only the cross-diagonal behavior at a fixed
r + r′ was considered. These fits are shown by the black solid
lines in Figs. 4(a) and 5(a) for 48Ca(n, n) at 5 MeV.

We repeat this procedure for each Erange considered and
find that, consistently, around the minimum, and in the vicin-
ity of (r − r′) = 0, the separable interaction can be approxi-
mated by the functional form in Eq. (7). However, outside the
deep pocket of the potential, the behavior is not well repre-
sented by the Perey and Buck [29] form and, for that reason,
we also study other measures of nonlocality. Particularly, we
consider the distance between the innermost roots �roots and
the distance between the peaks �peaks of the interaction, along

FIG. 6. Nonlocality properties as a function of the energy range
for � = 0 interactions: (a) the nonlocality parameter β, (b) the
distance between peaks �peaks (fm), (c) the distance between roots
�roots (fm), and (d) the depth in the minimum Udepth (MeV).

the cross diagonal in the surface region depicted in Figs. 4(c)
and 5(c).

The results for β as a function of Erange are compiled in
Figs. 6(a) and 7(a) for � = 0 and � = 1. We include all cases
considered, namely neutrons on 16O at 5 MeV (red squares),
48Ca at 5 MeV (green diamonds), 16O at 20 MeV (blue
circles), and 48Ca at 20 MeV (yellow stars). The values of β

include an error bar corresponding to one standard deviation
obtained in the fit. In addition, Figs. 6(b) and 7(b) show the
distance between maxima along the cross-diagonal �peaks and
Figs. 6(c) and 7(c) show the distance between the innermost
roots of the potential �roots along the cross diagonal taken
through the maxima of the potential. Finally, the depth Udepth,
defined as the minimum along the same cross diagonal as β,
is also shown as a function of Erange in Figs. 6(d) and 7(d).

We first focus on the energy dependence of the separa-
ble potential. Figures 6 and 7 illustrate clearly that results
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FIG. 7. Nonlocality properties as a function of the energy range
for � = 1 interactions: (a) the nonlocality parameter β, (b) the
distance between peaks �peaks (fm), (c) the distance between roots
�roots (fm), and (d) the depth in the minimum Udepth (MeV).

for the nonlocal parameters for E = 5 MeV are essentially
identical to those for E = 20 MeV (yellow stars are on
top of green diamonds and blue circles are on top of red
squares). As mentioned before, this may come as a surprise
given that CH89 is strongly energy dependent. However, that
energy dependence in the interaction is included through the
model space (namely Erange) and becomes encoded in the
off-diagonal t-matrix terms. It was shown in Ref. [31] (see
page 18) that the optical model potential is intrinsically non-
local and energy-dependent. Imposing locality on the optical
potential introduces an additional form of energy dependence.
The similarity of the results at 5 and 20 MeV reveals that
the intrinsic energy dependence of the optical model potential
is weak, which is consistent with the findings of Ref. [30].
In that work it was observed that the t matrices obtained
with the energy-independent EST scheme [21] were in close

agreement with those obtained with the energy-dependent
scheme discussed in Sec. II.1

Second, we examine the dependence of the nonlocal behav-
ior of the separable potential with the target. For small values
of the energy range, i.e., Erange < 50 MeV, the results for 16O
differ from those corresponding to 48Ca. This is not surprising
because the CH89 potential depends on the mass of the
target. However, this difference vanishes as the energy range
approaches hundreds of MeV. In fact, for a given channel,
the nonlocality is determined exclusively by the energy range.
This suggests a universal correlation between the nonlocality
and the energy range. To understand how this universality
arises we recall that the basis states for the EST expansion are
given by the Lippmann-Schwinger equation |ψEi〉 = |pi〉 +
G0(Ei )U (Ei )|ψEi〉. The term containing the potential is thus
inversely proportional to the energy, so that |ψEi〉 = |pi〉 in
the limit Ei → ∞. Therefore, the potential should approach
a limit that is independent of the details of the original
interaction for large energy ranges.

Third, although qualitatively the same, these properties are
quantitatively dependent on the partial wave considered. In
fact, when increasing the angular momentum, the deviation
from the Gaussian form is more pronounced. However, as
mentioned before, around the minimum, the Gaussian form
is a good approximation.

While the nonlocality parameter varies significantly within
the energy ranges considered, one does expect it to go to
zero when Erange → ∞ because the original CH89 potential
is local. To investigate this, we next consider the functional
dependence of β(Erange ) and fit its Erange dependence with
to two trial functions, the first assuming the behavior is
exponential and the second assuming the behavior is a power
law:

β1(Erange) = a exp
(
bEc

range

) + d, (8)

β2(Erange) = a

(Erange + b)c
+ d. (9)

The results for the exponential fit of neutrons on 16O at 5 MeV
are plotted in Figs. 6 and 7 (black solid line). As expected,
the results are mostly consistent with β(Erange → ∞) = 0.
However, the rate of convergence differs strongly with angular
momentum and is always slower for the partial waves with
higher angular momentum. For the other nonlocality mea-
sures, the fits [solid black lines in panels (b) and (c) of Figs. 6
and 7] assume the same exponential form as for β, while for

1To understand how this occurs, consider an energy-independent
nonlocal potential Ũ (r, r′) so that H = H0 + Ũ has the eigen-
states ψE , with E being the energy eigenvalue. The local poten-
tial U (r) that yields the same wave function fulfills U (r)ψE (r) =∫

dr′r′2Ũ (r, r′)ψE (r′). Clearly U (r) must be adjusted for each value
of the energy to reproduce the wave functions corresponding to
Ũ (r, r′), so that U (r) ≡ U (r, E ). When the EST scheme is invoked,
it seeks to obtain a general nonlocal potential that reproduces the
wave functions ψE across a whole energy range, although it does not
contain the energy dependence induced by localization.
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TABLE II. Parameters for the fits of β(Erange ).

E (MeV) Target Type d (J = 1/2+) d (J = 3/2−)

5 16O Exponential 0.27 ± 0.05 −0.03 ± 0.60
Power law −0.04 ± 0.23 −0.79 ± 0.85

20 16O Exponential 0.27 ± 0.05 −0.06 ± 0.62
Power law −0.04 ± 0.24 −0.86 ± 0.88

5 48Ca Exponential 0.31 ± 0.06 0.29 ± 0.03
Power law −0.09 ± 0.82 −0.07 ± 0.06

20 48Ca Exponential 0.31 ± 0.06 0.29 ± 0.03
Power law −0.09 ± 0.83 −0.07 ± 0.06

the depths [solid black lines in Figs. 6(d) and 7(d)] the fit is
linear.

The asymptotic value β(Erange → ∞) = d for all cases
here considered are summarized in Table II. Note that in all
practical applications used before [23,32], the range consid-
ered was Erange = 50 MeV, and therefore the potentials would
exhibit strong nonlocality.

C. Connection with other frameworks

Now that the properties of the nonlocal separable potentials
have been uncovered, it is useful to compare the separable
EST to other approaches. We first discuss the assumptions by
Perey and Buck [29]. Perey and Buck use a Gaussian form for
the nonlocality, estimate the nonlocality parameter to be β =
0.85 fm, and obtain the remaining parameters of the interac-
tion from fitting angular distributions of neutrons scattering
off 208Pb at 7 and 14.5 MeV. The separable interaction we
obtain based on a global phenomenological potential for this
energy range is β = 0.89–0.97 fm for � = 0, consistent with
Perey and Buck’s assumptions [29]. The value for the nonlocal
parameter is significantly larger for higher partial waves, β =
1.46–1.59 fm for � = 1. It is important to realize that the
original Perey and Buck phenomenological interaction [29]
has no energy dependence nor target dependence (except for
the standard radius scaling with the mass).

Next we consider microscopic potentials such as those in
Refs. [33,34]. These are generated from a truncated many-
body framework that effectively imposes an Erange in the
calculation of the optical potential. Although the behavior of
the microscopic optical potential is not Gaussian, the overall
shape of u(r, r′) cross diagonals for the case of 48Ca [34] are
similar to those shown in Fig. 5. The microscopic interaction
exhibits β̂ ≈ 1 fm. For 16O [33], the cross diagonals are
sufficiently different that a quantitative comparison makes
no sense. If we used our separable framework to determine
the effective energy range included in a given interaction,
one would conclude that the microscopic optical potentials of
Refs. [33,34] contain physics in the region Erange < 10 MeV.

IV. CONCLUSIONS

Because the EST separable method is now being applied
to nucleon-nucleus optical potentials for nuclear reaction
calculations [21–23], it is important to understand in detail
the properties this procedure is inducing in the interactions.

Of particular importance is the nonlocality, which has been
shown to modify reaction observables. With this goal in mind,
we have performed a systematic study, for neutron scattering
on two stable targets (16O and 48Ca) at two beam energies
E = 5 MeV and E = 20 MeV. Starting from a local phe-
nomenological optical potential, we have generated separable
interactions that represent the neutron scattering process. We
have studied the convergence with the rank and the energy
range included in constructing the interaction.

We find that the separable procedure induces a large non-
locality in the interaction when Erange < 50 MeV. Moreover,
we observe that, even when including in the expansion many
support points with energy ranges up to 0 � E � 2400 MeV,
the resulting potential retains nonlocal behavior. This non-
locality becomes considerably smaller as Erange is increased,
eventually tending to zero as Erange → ∞ as expected. While
for small Erange the magnitude of the nonlocality depends on
the target, this dependence is washed away for increasing
Erange, following a universal curve. Focusing on the deep
pocket of the separable interaction, for all cases we find that
the nonlocality increases with angular momentum.

While there is a strong dependence of the separable optical
potential with Erange used to construct it, there is virtually
no dependence on the beam energy. The strong energy de-
pendence in the original phenomenological optical potential
disappears once nonlocality is allowed in the interaction.

We also compare our results with other studies on nonlocal
optical potentials. We find that overall the separable interac-
tions are not well described by the Gaussian form used by
Perey and Buck [29]. However, around the minimum, they
can be approximated by a Gaussian form, and for s waves the
magnitude of nonlocality we obtain is similar to that assumed
by Ref. [29]. We also compare our interactions for 48Ca with
those obtained from ab initio calculations [34].

In closing, it is useful to think about the EST pro-
cedure in the context of renormalization group theory. In
Ref. [9], the effective potential is defined through the Block-
Horowitz equation. This equation explicitly resums all the
higher-momentum modes while preserving the low-energy
momentum scattering amplitudes. Because the effective in-
teraction produced this way is energy dependent, another
transformation is needed to arrive at an interaction that is
only momentum-dependent Vlowk (k, k′). A direct comparison
between EST and Vlowk is currently not possible (because
Vlowk has not been applied to optical potentials) but could be
very enlightening. For both the EST and Vlowk schemes, the
potentials are constrained so that the bound and scattering
states of the original interaction are reproduced over a finite
energy range. As such, both techniques have the effect of
shuffling high-momentum components into nonlocal behavior
of the effective interaction.
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