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Excitation of 229mTh in the electron bridge via continuum, as a scattering process
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Excitation of the isomer 229mTh with energy 8.3 eV in the electron bridge (EB) via continuous electron
spectrum is treated as a two-step process. At first an outer atomic electron absorbs the laser photon and leaves
the atom, afterwards it returns to the atom transferring its energy to the nucleus. This EB transition is described
in the framework of strict scattering theory for the atomic-nuclear system with two overlapping resonances. The
derived EB cross section differs in some details from the results of P. V. Borisyuk et al. [Phys. Rev. C 100,
044306 (2019)].
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I. INTRODUCTION

The 229Th takes up a unique place in the nuclear chart,
having the first-excited isomeric level 3/2+ with extremely
low energy, which lies in the ultraviolet region. Intense in-
terest in the isomer 229mTh is dictated for many years by
its fascinating applications, where the most striking one is
the nuclear clock [1–3], which will become a more precise
standard of frequency than already existing optical clocks.
Besides, it would be highly stable against external influences
because of the electron shielding. Among other applications
there is a nuclear laser in the optical region [4], search of
time variation of the physical constants [5–9], the Mössbauer
effect at 229Th nuclei with the absorption and emission spectra
represented only by phononless lines [10], etc.

Kroger and Reich [11] have been the first to show that
within 100 eV from 5/2+[633] ground state of 229Th lies
the level 3/2+[631]. It is a band head for the rotational
band with the second level 5/2+[631] at 29.2 keV. Further
measurements showed that the isomeric level lies in optical
region with the energy Eis equal to 3.5 eV [12] or 5.5 eV
[13]. However, recently it was already reported Eis = 7.8 eV
[14], 8.30 ± 0.92 eV [15]. In these works [11–15] the energy
Eion was measured indirectly by comparing the energies of
γ transition from the level 29.2 keV to the isomeric one and
cross-band transition to the ground state.

Only Wense et al. [16] succeeded to determine Eis of
the isomer 229mTh, measuring directly the energy of conver-
sion electrons, produced in the decay of the isomer. They
established that Eis lies in the interval from 6.3–18.3 eV.
The last refined experiment of Seiferle et al. [17] provided
a more definite result 8.28 ± 0.17 eV, which can be con-
sidered today as the most reliable evidence. Note also that
the 229mTh in neutral atom predominantly decays through the
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internal conversion (IC) channel (the conversion coefficient
α ≈ 109 [17]).

All these investigations used α decay of 233U to populate
229mTh via the second-excited level 29.2 keV. Verlinde et al.
[18] proposed to use for this aim β decay of 229Ar and
discussed the advantages of this alternative. Most straight-
forward optical experiment had been done by Jeet et al.
[19], who excited 229mTh by synchrotron radiation lying in
the ultraviolet region and observed spontaneous decay of the
isomer. However strange it may seem, they stated that the
energy is outside the interval 7.3–8.8 eV, which contradicts the
results of Ref. [17]. Another version of the 229Th population
by narrow beam of synchrotron radiation via the second level
29.2 keV has been reported in Ref. [20].

The discovery of such extremely low-lying isomer-
stimulated theoretical studies of the possibility of 229mTh exci-
tation by optical lasers [21–27]. Starting from the pioneering
works of Tkalya [21,22], different kinds of the electronic
bridges have been analyzed, evolving one or two lasers.
Recall that the name electron bridge (EB) was suggested by
Krutov [28] for the processes of the third and higher order
with intermixed nuclear and atomic transitions. Different laser
excitation schemes for 229mTh have been considered also in
Ref. [29]. The only successful experiment [30] on 229mTh
with optical lasers was addressed to study of the hyperfine
structure of its spectra. It allowed us to define the magnetic
and quadrupole moments, as well as the mean-square radius of
the isomer. It is worth to notice also the work [31], analyzing
decay of the 229mTh via atomic Rydberg states.

Previously all the theorists [21–27] were discussing the
EB, which only evolves discrete atomic spectra. A new step
in this direction has been undertaken by Borisyuk et al.
[32], who regarded the possibility to populate 229mTh via
the electron continuum. Indeed, this can be realized for the
thorium atom, which has the ionization energy 6.3 eV, that
is, the nuclear isomeric level is drowned in the electronic
continuum spectrum. Such a fact facilitates laser tuning to
the resonance. In the framework of quantum electrodynamics
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FIG. 1. Sketch of the EB via continuum, induced by laser, with
excitation of the isomer 229mTh. The continuum lies above the dashed
line (vacuum). (a) EB begins from the upper 7s level of a Thorium
atom and ends in the excited 7p one. (b) EB begins from the level
7p, excited by the second laser, and ends when electron is captured
by the atom into the 7s vacancy. In both cases ionization of the
atom proceeds in E1 transitions. Resonant excitation of the nucleus
happens at the reverse electron transitions of the same type and
multipolarity as the nuclear M1 transition.

(QED) Borisyuk et al. [32] determined the EB cross section
σEB of the isomer excitation and outlined possible schemes
of the experiment. The authors considered three scenarios of
EB, two of them are shown in the figure. In all three cases
the atomic electron first absorbs the laser photon and flies
away from the atom into the continuum spectrum. Then some
of the electrons return into the atom, filling a vacancy and
transferring its energy via virtual photons to the nucleus. The
excited level 229mTh afterwards decays through the radiative
or conversion channel. In Ref. [32] it was shown that the
contribution to photoionization cross section of the Th atom
from M1 transitions is by eight orders weaker than from E1
transitions. Therefore in Fig. 1 only realistic EB are presented,
which start with the electric dipole transitions.

The S matrix for such EB transition was calculated in
Ref. [32] in the third order of the perturbation theory, intro-
ducing the complex energy Eis − i�is/2 for the isomeric state,
where �is is the level width. This is typical procedure for
the QED calculations of such kind. Then the wave function
�is(x) = �is(r)e−i(Eis−i�is/2) diverges as t → −∞. Therefore
Borisyuk et al. integrated this function only at positive times
t (see Eq. (4) of Ref. [32]), although in the chronologically
ordered series for S f i the integration over t is carried on
the whole time axis [33]. By definition, the S matrix relates
the initial and final states of the system, departed by the

time interval T → ∞. As is well known from the scattering
theory [34–36], the transition probability per unit time and,
respectively, the cross section are determined by the ratio
limT →∞ (|S f i|2/T ). However, in Ref. [32] ad hoc the infinite
time T was replaced by the isomer lifetime τis = h̄/�is.

The main problem on the way of creation of the nuclear
clock is an effective population of the 229mTh and high-
precision determination of its energy. This can be achieved
only with lasers, having small frequency dispersion. Taking
into account the great importance of this task, I rederive here
the cross section for the EB through continuum, by apply-
ing strict methods of the scattering theory [34–36]. Possible
realistic scenarios of EB, proposed in Ref. [32], are shown
in Fig. 1. In case (a) the atomic electron from the upper 7s
state absorbs the laser photon and performs E1 transition
to the p state of the continuum, where it carries the orbital
angular momentum l = 1. In the alternative case (b) the initial
state is the 7p atomic level, excited by an additional laser,
while in the intermediate s state |c〉, ensured again by E1
transition, l = 0. In both events the electron, coming back
to the thorium atom, excites the isomer. The EB over the
path 7s → s → 7s can be ignored, since the corresponding
ionization cross section at M1 transition is by eight orders
less than that at E1 transitions [32]. A similar EB process,
generated in the K-electron capture by 153Gd and leading to
fusion of the energies of nuclear and atomic transitions, was
considered in Ref. [37].

II. BASIS WAVE FUNCTIONS

The Hamiltonian of the whole system (229Th + atomic
electron + electromagnetic field) is written as

H = H0 + Vr, (1)

where the unperturbed Hamiltonian H0 is represented by a
sum of the Hamiltonians for the nucleus Hn, electron He

and the field Hrad, while the perturbation Vr = V n
r + V e

r is
responsible for interaction of the nucleus and electron with
the field,

V n(e)
r = −1

c

∫
Jn(e)(r)A(r)dr, (2)

where Jn(r) and Je(r) are the electric current density oper-
ators for the nucleus and electron, respectively, A(r) is the
vector potential operator of the field. The operator He is a sum
of the kinetic energy operator of the electron and the screened
Coulomb field of the nucleus VC(r).

In the initial state of the system

|a〉 = |IgMg〉φ jimi (r)|1kλ〉 (3)

there are the nucleus in the ground state |IgMg〉 with spin Ig

and its projection on the quantization axis Mg, the electron
with the total angular momentum ji and its projection mi, and
one photon with the wave vector k and circular polarization
λ = ±1. The corresponding energy Ea = ω + εi, where ω is
the energy of the incident photon (for brevity h̄ is omitted), εi

is the electron energy in the initial state | jimi〉.
Having absorbed a photon, the electron passes to the con-

tinuous spectrum with the wave vector κ, energy ε and spin
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projection ν. Such a first intermediate state of the system is
described by the wave function

|c1〉 = |IgMg〉ψ+
κν (r)|0〉, (4)

where ψ+
κν (r) describes the conversion electron, the factor |0〉

stands for the vacuum of the field.
Afterward the free electron can return to a vacant atomic

level | j f m f 〉 transferring its energy via a virtual photon to
229Th, which goes to the excited isomeric level |IeMe〉 with
spin and parity Iπ

e = 3/2+. The system then passes to the
second intermediate state |c2〉. The corresponding eigenvalues
of H0, associated with these intermediate states, are

Ec1 = ε, Ec2 = Eis + ε f , (5)

where ε means the energy of the conversion electron, ε f is the
final energy of the electron.

At the final stage of the EB process the isomer decays
mainly through the conversion channel. In this case the
final energy Eb equals the energy of the final conversion
electron ε′.

Let us consider now in some details the distorted wave
functions ψ+

κν (r), which describe scattering of electrons in
the Coulomb field VC(r). They are eigenfunctions of He with
normalization∫ ∞

0
ψ+∗

κν (r)ψ+
κ′ν ′ (r)dr = δ(κ − κ′)δνν ′ . (6)

Forming a complete set, these functions are most suitable
for description of the intermediate states of electrons in the
continuous spectrum.

It is useful to expand ψ+
κν in partial waves [34]:

ψ+
κν (r) =

∞∑
l=0

il eiδl (κ ) wl (κ; r)

κr

l∑
m=−l

Y ∗
lm(κ̂)Ylm(r̂)usν, (7)

where usν is the spin factor (s = 1/2, ν = ±1/2), the spher-
ical angles of the vectors κ and r are denoted by κ̂ and r̂,
respectively. The radial functions wl (κ; r) satisfy the equation

w′′
l (κ; r) − [l (l + 1)/r2 + v(r) − κ2]wl (κ; r) = 0, (8)

where the reduced potential

v(r) = 2μVC(r)/h̄2. (9)

With growing r the screened Coulomb potential VC(r)
attenuates faster than a pure Coulomb one. Respectively, at
r → ∞ the functions wl (κ; r) have more simple asymptotics
than the Coulomb functions [34]:

wl (κ; r) ≈
√

2

π
sin

(
κr − lπ

2
+ δl (κ )

)
, (10)

where δl (κ ) stands for the phase shift.
Since the Hamiltonian H is invariant with respect to rota-

tions it is more convenient to expand ψ+
κν (r) in terms of the

eigenfunctions of the operators j2, l2, and jz, where j = l + s
is the total angular momentum operator of the electron, l and
s are its orbital momentum and spin operators, respectively.

Such eigenfunctions are represented by the generalized spher-
ical harmonics [35]:

Y mc
jcls(r̂) =

∑
mν

(lsmν| jcmc)Ylm(r̂)us,ν , (11)

where ( j1 j2m1m2| jm) are the Clebsh-Gordan coefficients.
After substitution of the inverse transformation

Ylm(r̂)usν =
∑
jcmc

(lsmν| jcmc)Y mc
jcls(r̂) (12)

into the wave function (7), it takes the form

ψ+
κν (r) =

∞∑
l=0

∑
jcmc

φ jclmc (r)Ym∗
c

jc
(lsν; κ̂), (13)

depending on the products of the wave functions

φ jclmc (r) ≡ | jcmc〉 = wl (κ, r)

κr
Y mc

jcls(r̂), (14)

and subsidiary functions

Ymc
jc

(lsν; κ̂) = i−l e−iδl

l∑
m=−l

(lsmν| jcmc)Ylm(κ̂). (15)

The functions φ jclmc (r) describe free electron, carrying the
orbital momentum l and the total angular momentum jc with
projection mc. They are normalized as∫

drφ∗
jclmc

(r) · φ j′cl ′m′
c
(r) = δ jc j′cδll ′δmcm′

c
, (16)

where the dot specifies a scalar product in the spin space.
From orthogonality relations for the Clebsh-Gordan coef-

ficients as well as for spherical functions Ylm(κ̂) it follows that

∑
ν

∫
d�κY

m′
c∗

j′c
(l ′sν; κ̂)Ymc

jc
(lsν; κ̂)

= δll ′δ jc j′cδmcm′
c
. (17)

III. TRANSITION MATRIX

The EB transition a → b is determined by the T matrix,

Tba =
∑
c2,c1

〈b|R|c2〉G+
c2c1

(Ea)〈c1|Vr |a〉, (18)

where the level shift operator R is given by a series

R = Vr + Vr
1

Ea + iη − H0
Vr + . . . , η → +0, (19)

and G+
c2c1

(Ea) denotes the matrix of Green’s operator

G+(Ea) = (Ea + iη − H )−1. (20)

In (18) the summation over c1 includes integration over the
wave vector of the conversion electron κat infinity and sum-
mation over its spin projections ν = ±1/2. The summation
over c2 is carried over the magnetic quantum numbers Me

and m f .
In Tba the factor 〈b|R|c2〉 is associated with the decay of the

isomeric 5/2+ level, whose total width is defined by standard
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formula [34]:

�is = 2π
∑

b

|〈b|R|c2〉|2δ(Eb − Ea). (21)

This �is amounts the sum of the radiative partial width �γ and
the internal conversion width �e.

Thus, there are two overlapping resonant levels |c1〉 and
|c2〉, having the widths �1 and �2. Here �1/h̄ determines the
rate of the electron capture from the continuous spectrum to
any vacant atomic level, following by emission of a photon.
In some cases the photon may be absorbed by the nucleus,
exciting it. The latter effect, called nucleus excitation by
electron capture (NEEC), was intensively explored in past
years (see Ref. [38] and references therein). �2 stands for
the width �is of the nuclear 3/2+ isomer. Notice also that the
level |c2〉 is degenerated over the magnetic quantum numbers.
In this case the Green’s matrix is determined by a system of
algebraic equations [39](

Ea − E1 + i
�1

2

)
G+

c1c1
−

∑
c2

R+
c1c2

G+
c2c1

= 1,

−R+
c2c1

G+
c1c1

+
(

Ea − E2 + i
�2

2

)
G+

c2c1
= 0, (22)

where the R matrix

R+
c1c2

=
∑

b′ 
=c1,c2

Vc1b′Vb′c2

Ea + iη − Eb′
+ . . . (23)

is responsible for the NEEC process.
From Eqs. (22) it follows that the off-diagonal elements of

Green’s matrix are

G+
c2c1

= R+
c2c1(

Ea − E1 + i �1
2

)(
Ea − E2 + i �2

2

) − ∑
c2

∣∣R+
c2c1

∣∣2 .

(24)
The term

∑
c2

|Rc2c1 |2 may be eliminated here since it is much
less than �is�1. Substituting next (5) and (24) into (18) one
can write the transition matrix in the form

Tba = −
∑
c2,c1

V ′
bc2

R+
c2c1

Vc1a

(ε − ε0 − i�1/2)(ω − ωres + i�is/2)
, (25)

where the energy ε0 = h̄2κ2
0 /2me = ω + εi indicates the max-

imum of the energy distribution of the virtual conversion
electrons, ωres = Eis + ε f − εi is the resonance value of the
laser photon energy.

The matrix element Vc1a determines the first stage of the
EB process, caused by absorption of the laser photon by an
electron, which initially occupies the level | jimi〉. Applying
the multipole expansion of the interaction Vr [40], one can
write the matrix element for the E1 transition with absorption
of one photon as

Vc1a = −2π i

√
2h̄ω

3

×
1∑

μ=−1

D1
μλ(αβ0)〈ψ+

κν |Nμ(E1)
∣∣φ jimi

〉
, (26)

where D1
μλ(αβ0) is the rotation matrix, depending on the

spherical angles β, α of the wave vector k of the photon
with polarization λ = ±1. The electric dipole operator for the
electron is given by

Nμ(E1) = −erY1μ(r̂) (e > 0). (27)

The R matrix, which determines exchange by virtual pho-
ton between two charged particles, has been calculated by
Alder et al. (see Eq. (II B.15) in Ref. [41]). In accordance
with their results, neglecting penetration of electrons inside
the nucleus, one has for M1 transitions

R+
c2c1

= 4π

3

∑
μ

(−1)μ〈IeMe|Mμ(M1)|IgMg〉

× 〈 j f m f |N−μ(M1)| jcmc〉, (28)

where Mμ(M1) and Nμ(M1) denote the magnetic dipole
operators for the nucleus and electron, respectively. In the
nonrelativistic approximation the magnetic dipole operator for
the nucleus is [41]

Mμ(M1) = μn

√
3

4π

A∑
i=1

[gl (i)lμ(i) + gs(i)sμ(i)], (29)

where μn = eh̄/2mpc is the nuclear magneton, mp the mass
of proton, lμ(i) and sμ(i) are the spherical projections of
the orbital angular momentum and spin operators for the ith
nucleon, gl (i), gs(i) the corresponding g factors.

At the same time, for the electron the magnetic dipole
operator looks like [41]

Nμ(M1) = − k2

2c

∫
Je · l

(
h(1)

1 (kr)Y1μ(r̂)
)
dr, (30)

where h(1)
l (x) is the spherical Hankel function of the first kind.

In the same nonrelativistic (long-wave) approximation this
reduces to

Nμ(M1) = μe

√
3

4π
[lμ + 2sμ], (31)

where μe = eh̄/2mec is the Bohr magneton for the electron.
However, only the exact operator (30) binds the states | jimi〉
and |c〉 but not its approximate version (31). Recall also that
the spherical and Cartesian projections are connected by

j0 = jz, j±1 = ∓ 1√
2

( jx ± jy). (32)

IV. CROSS SECTION

The cross section of the EB process is expressed by stan-
dard formula

σEB(ω) = 2π

h̄c

1

(2Ig + 1)(2 ji + 1)

×
∑

Mg,mi

∑
b

|Tba|2δ(Eb − Ea). (33)

024604-4



EXCITATION OF 229mTh IN THE ELECTRON … PHYSICAL REVIEW C 102, 024604 (2020)

Substituting here (25) and taking into account that the total
width of the isomeric level is given by Eq. (21), one arrives at

σEB(ω) = (2π )3 2k

3

(
4π

3

)2

× �is

(ω − ωres)2 + (�is/2)2
F (ω), (34)

where the factor F (ω) is

F (ω) = 1

(2Ig + 1)(2 ji + 1)

∑
Me,Mg

∑
m f ,mi

∣∣∣∣∣∣
∑
μμ′

(−1)μ+μ′

× 〈IeMe|Mμ(M1)|IgMg〉D1
μ′λ(αβ0)Iμμ′

∣∣∣∣∣∣
2

, (35)

and Iμμ′ designates the integral

Iμμ′ =
∫ ∞

0

fμμ′ (κ )κ2dκ

κ2 − κ2
0 − iγ

, γ = me�1/h̄2, (36)

depending on the function

fμμ′ (κ ) = 2me

h̄2

∑
ν

∫
d�κ̂〈 j f m f |N−μ(M1)|ψ+

κν〉

× 〈ψ+
κν |Nμ′ (E1)| jimi〉. (37)

It simplifies by employing the expressions (13) for ψ+
κν and

using the orthogonality relation (17):

fμμ′ (κ ) = 2me

h̄2

∑
jcmc

〈 j f m f |N−μ(M1)| jcmc〉

× 〈 jcmc|Nμ′ (E1)| jimi〉. (38)

Further, the integral Iμμ′ is transformed to

Iμμ′ = 1

2κ0

∫ ∞

0
fμμ′ (κ )

×
(

1

κ − κ0 − iγ ′ − 1

κ + κ0 + iγ ′

)
κ2dκ. (39)

Here fμμ′ (κ ) is an even function, i.e., fμμ′ (−κ ) = fμμ′ (κ ),
since

wl (−κ; r) = (−1)lwl (κ; r). (40)

This allows us to rewrite the above integral as

Iμμ′ = 1

2κ0

∫ ∞

−∞

fμμ′ (κ )κ2dκ

κ − κ0 − iγ ′ (41)

with the integrand, which may be transformed to a product of
smooth function and the sharp factor like a δ function

1

π

γ ′

(κ − κ0)2 + γ ′2 ≈ δ(κ − κ0). (42)

Therefore trivial estimation gives

Iμμ′ = π iρ(ε0)
∑
jcmc

〈 j f m f |N−μ(M1)| jcmc〉

× 〈 jcmc|Nμ′ (E1)| jimi〉, (43)

where

ρ(ε0) = κme

h̄2 (44)

is the density of the electron states on the unit energy interval
(see also Ref. [34]).

Next I use the fact that the transition matrix Tba contains a
number of matrix elements of the irreducible tensor operators
Mμ(λl ) and Nμ(λl ), where λ = E or M. Their dependence on
the magnetic quantum numbers is determined by the Wigner-
Eckart theorem (see, e.g., Ref. [42]). In particular,

〈 j f m f |Mμ(λl )| jimi〉

= ( jilmiμ| j f m f )√
2 j f + 1

〈 j f ||M(λl )|| ji〉, (45)

where 〈 j f ||M(λl )|| ji〉 is the reduced matrix element, related
to the reduced transition probability by [42]

B(λl; i → f ) = (2 ji + 1)−1|〈 j f ||M(λl )|| ji〉|2. (46)

Keeping also in mind the orthogonality rule for the Clebsh-
Gordan coefficients∑

m1m

( j1 j2m1m2| jm)( j1 j′2m1m′
2| jm) = 2 j + 1

2 j2 + 1
δ j2 j′2δm2m′

2
,

(47)
unitarity of the Wigner functions

j∑
μ=− j

D j∗
μν (αβγ )D j

μν ′ (αβγ ) = δνν ′ , (48)

as well as the connection of the reduced probabilities for direct
and reverse transitions

B(λl; i → f )

B(λl; f → i)
= 2 j f + 1

2 ji + 1
, (49)

one arrives at

F (ω) = ρ2(ε0)
(π

3

)2
g jc Bn(M1; Ie → Ig)

×
∑

jc

Be(M1; j f → jc)Be(E1; ji → jc), (50)

where the reduced probabilities Bn and Be refer to the nuclear
and electronic transitions, respectively, and the spin factor

g jc = 2Ie + 1

2Ig + 1

2 j f + 1

2 jc + 1
. (51)

For the EB, shown in Fig. 1(a), the intermediate electron state
|c〉 is a coherent mixture of the waves with angular momenta
jc = 1/2 and jc = 3/2, while for the EB in Fig. 1(b) it reduces
to single wave with jc = 1/2.

Substitution of (50) into (34) completely determines the
EB cross section:

σEB(ω) =
∑

jc

σ
jc

EB(ω), (52)

where the partial cross section for the branching transition via
the electron state jc with the positive energy ε is

σ
jc

EB(ω) = 1

8
g jc

�is�
jc
IC( f )

(ω − ωres)2 + (�is/2)2 σ
jc

ion(ω). (53)
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Besides, here σ
jc

ion(ω) is the partial ionization cross section
for an atomic electron, occupying initially the ji shell and
carrying away the total angular momentum jc:

σ
jc

ion(ω) = (2π )4 4k

9
Be(E1; ji → jc)ρ(ε0), (54)

while the complete ionization cross section is

σion(ω) =
∑

jc

σ
jc

ion(ω). (55)

The partial width for the internal electron conversion
through transition j f → jc is given by

�
jc
IC( f ) = 4

(
2π

3

)3

Bn(M1; Ie → Ig)

× Be(M1; j f → jc)ρ(ε0) (56)

and complete width �IC is a sum of �
jc
IC.

For the transition (a) = {s → p → p}, shown in Fig. 1(a),
the intermediate electron state |c〉 is a coherent mixture of
the waves with angular momenta jc = 1/2 and jc = 3/2. On
the electron path (b) = {p → s → s}, shown in Fig. 1(b), it
reduces to single wave with jc = 1/2. By employing Eqs. (11)
and (13) for the wave functions | jcmc〉, one finds that in the
first case

Be(E1; 1/2 → 3/2) = 2Be(E1; 1/2 → 1/2). (57)

Respectively, the partial ionization cross sections are

σ
3/2
ion (ω) = 2

3σion(ω), σ
1/2
ion (ω) = 1

3σion(ω). (58)

Then, combining (33), (53), and (58), one can rewrite the EB
cross section for the transition [Fig. 1(a)] as

σ
(a)
EB (ω) = 1

24

�is
(
2g3/2�

3/2
IC + g1/2�

1/2
IC

)
(ω − ωres)2 + (�is/2)2 σion(ω). (59)

If the laser frequency is tuned to resonance, i.e., ω = ωres, then
ε0 coincides with the energy ε0 = Eis − |ε f | of the ejected
electron in standard IC experiment without any lasers.

The radiation emitted by a laser source is characterized by
some energy distribution ws(ω), concentrated at the energy
ω0, having the width �s and normalized to unity:∫ ∞

0
ws(ω)dω = 1. (60)

In order to find the experimentally measured cross section we
should average σ

jc
ion(ω) over ws(ω):

〈
σ

jc
ion(δ)

〉 =
∫ ∞

−∞
dωws(ω)σ jc

ion(ω), (61)

where δ is a detuning of the incident laser pulse from the
resonance,

δ = ωres − ω0. (62)

Following Ref. [32] I take the Lorentzian distribution

ws(ω) = 1

2π

�e

(ω − ω0)2 + (�s/2)2
. (63)

Inserting into (61) its integral representation

ws(ω) = 1

π
Re

∫ ∞

0
dμei(ω−ω0 )μ−�sμ/2 (64)

and applying the contour integration one finds

〈
σ

jc
EB(δ)

〉 = 〈
σ

jc
EB(0)

〉 (�/2)2

δ2 + (�/2)2 , (65)

where � = �s + �is and the resonant value of the averaged
cross section is

〈
σ

jc
EB(0)

〉 = 1

2
g jc

�
jc
IC

�
σ

jc
ion(ωres). (66)

The isomer 229mTh mainly decays through the internal con-
version channel (α ≈ 109), so that �IC(7s) ≈ �is. Therefore
the resonant value of the cross section, corresponding to the
path [Fig. 1(b)], will be

〈σEB(0)〉b ≈ 1

2

(
2Ie + 1

2Ig + 1

)
�is

�s + �is
σion(ωres). (67)

Let us compare it with the absorption cross section of
ultraviolet photons, averaged over the same distribution (63),

〈σγ (δ)〉 = 〈σγ (0)〉 (�/2)2

δ2 + (�/2)2 , (68)

with the cross section at the resonance

〈σγ (0)〉 = 2π

k2
0

(
2Ie + 1

2Ig + 1

)
�

γ

is

�
, (69)

where k0 = ω0/c and �
γ

is is the partial radiation width of
the isomer [�γ

is = �is/(1 + α) ≈ 10−9�is]. Taking the value
σion(8.3 eV) ≈ 3 × 10−18 cm2, calculated in Ref. [32], one
gets the estimation 〈σγ (0)〉/〈σIB(0)〉b ≈ 0.02. In the case (a)
the cross section 〈σ (a)

EB (0)〉 is by order of magnitude less than
〈σEB(0)〉b (see also Ref. [32]).

V. CONCLUSION

I derived Eqs. (33), (53) for the cross section of the electron
bridge via continuum, generated by a monochromatic laser
wave, as well as Eqs. (65)–(67) for the EB cross section,
averaged over the frequency distribution of incident photons
(63). It is shown that the T matrix, which describes transition
(a) = 7s → p → 7p, splits into two terms, corresponding to
the intermediate electron states in the continuum with the
angular momenta jc = 1/2 and 3/2. Straightforward calcula-
tions show that such amplitudes do not interfere, but give rise
to the EB cross section σEB(ω) as a sum of two terms with
jc = 1/2 and 3/2. Besides, Eq. (53) for the spin factor g does
not contain a spurious factor (2 jc + 1)−2, taking place in [32],
but Eq. (53) contains extra factor 1/8.

As a whole, my calculations confirm the conclusion of the
paper [32] that EB via continuum, and especially its version
(b), is more perspective than the direct photoexcitation of
the isomer 229mTh. The EB via the continuum has also an
advantage compared to the EB via discrete atomic levels
(see also Ref. [32]). In the last case we have to realize two
resonances. At first, the laser frequency ω should match the
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transition frequency in the atom ωa, i.e., it should be ω ≈
ωa = (εc − εi )/h̄, where εi, εc and ε f are the energies of
initial, intermediate and final atomic levels. Furthermore, we
have to provide one more constraint ω ≈ (Eis + ε f − εi )/h̄.
Comparing these two requirements we get the main resonance
condition for the atomic and nuclear transitions Eis ≈ εc − ε f ,
which ensures effective transfer of the atomic energy to the
nucleus. Note that the same resonance condition is needed for
nuclear excitation by electron transition (NEET), theoretically
studied in Refs. [42–49]. However, it is difficult to find such
atomic transitions between bound levels, which are almost in
the resonance with the nuclear transition. At the same time,
in the case of the continuum EB two resonance conditions,
which are reduced to single one ω ≈ ωres, are always fulfilled
automatically.

As an additional advantage of the scheme (b) Borisyuk
et al. [32] indicated that the photons emitted in the atomic
transition from the 7p level to 7s one may serve as a signal
of the isomer excitation. But their detection only indicates
that the 7p level is populated under the influence of the first
laser. At the same time, as a benchmark of the population of
229mTh one can employ the products of its decay: the conver-
sion electrons. The prompt photoelectrons are emitted during
the action of the laser pulse, while the delayed conversion
electrons are ejected during the isomer decay. These electrons

are easily separated in the time-delay experiment by choosing
duration of the laser pulse τs = h̄/�s much larger than the iso-
mer lifetime τis = h̄/�is. However, this corresponds to wide
frequency distribution of the laser photons, �s  �is and,
respectively, to weakening of the counting rate of successful
events.

Typical experiments with the optical clock are performed
with ions in a neutral gas, captured in the Paul trap [50].
There the electric field, oscillating with the frequency �,
hold the ions in a confined volume. The spectra of such ions
consist of the central line and the side bands spaced by �.
The EB cross section in the case of ions conserves the same
form (33), (53). Nevertheless, the ionization cross section
σ

3/2
ion (ω) and the width �

jc
IC( f ) depend on the number of outer

electrons involved in the process. In particular, in the scheme
(a) σ

3/2
ion (ω) for Th+ is half a cross section for the neutral atom.

Peculiarities of the most realistic two-laser experiment (b) will
be analyzed in the next paper.
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