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The possibility of the 8He and 9Li clusters in atomic nuclei is discussed. Until now most of the clusters in
the conventional models have been limited to the closures of the three-dimensional harmonic oscillators, such
as 4He, 16O, and 40Ca. In the neutron-rich nuclei, however, the neutron-to-proton ratio (N/Z) is not unity, and it
is worthwhile to think about more neutron-rich objects with N > Z as the building blocks of cluster structures.
Here the nuclei with the neutron number six, which is the subclosure of the p3/2 subshell of the j j-coupling shell
model, are assumed to be clusters, and thus we study the 8He and 9Li cluster structures in 16Be (8He + 8He),
17B (8He + 9Li), 18C (9Li + 9Li), and 24C (8He + 8He + 8He). Recent progress of the antisymmetrized quasi-
cluster model (AQCM) enables us to utilize j j-coupling shell-model wave functions as the clusters rather easily.
It is shown that the 8He + 9Li and 9Li + 9Li cluster configurations cover the lowest shell-model states of 17B
and 18C, respectively. To predict cluster states with large relative distances, we increase the expectation value
of the principal quantum numbers by adding the nodes to the lowest states under the condition that the total
angular momentum is unchanged (equal to Jπ = 0+). As a result, developed cluster states are obtained around the
corresponding threshold energies. The rotational band structure of 24C, which reflects the symmetry of equilateral
triangular configuration (D3h symmetry) of three 8He clusters, also appears around the threshold energy. We
suggest a novel mechanism whereby the spin-orbit interaction induces the clustering, which is distinctive of
neutron-rich nuclei.
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I. INTRODUCTION

4He nuclei have been known as α clusters, which can be
subsystems in some light nuclei [1,2]. The binding energy
of 4He is quite large in the light-mass region, and, on the
contrary, the relative interaction between 4He nuclei is weak.
Therefore, each 4He can be considered as a subunit called an
α cluster. The candidates for α cluster structures have been
discussed for many years [3], including the second 0+ state of
12C with a developed three-α cluster structure called a Hoyle
state [4].

In most conventional cluster models, the clusters have
been limited to the closure of the three-dimensional harmonic
oscillator, such as 4He, 16O, and 40Ca, where the contri-
bution of the noncentral interactions (spin-orbit and tensor
interactions) vanishes. However, in the nuclear systems, the
symmetry of the j j-coupling shell model is more important,
where the contribution of the spin-orbit interaction breaks
the symmetry of the three-dimensional harmonic oscillator,
and the subclosure of j-upper shells, f7/2, g9/2, and h11/2, is
essential in explaining the observed magic numbers of 28, 50,
and 126 [5]. Indeed, this spin-orbit interaction is also known
as a driving force in breaking the α clusters [6]. Therefore,
it would be meaningful to extend the traditional definition
of the clusters; different objects could be candidates for the
clusters.

Now we focus on neutron-rich nuclei, which have been
the main subject of nuclear structure physics for decades. In
neutron-rich nuclei, the ratio of proton number and neutron
number deviates from unity. Therefore, it is worthwhile to
consider neutron-rich clusters whose neutron numbers cor-
respond to the subclosure of the j-upper orbits of the j j-
coupling shell model, where the spin-orbit interaction works
attractively. Here we discuss the possibility that nuclei with
the neutron number six, which is the subclosure of the j-upper
shell, p3/2, can be clusters. Previously we have discussed
the possibility of the 14C cluster as the building block of
medium-heavy nuclei [7], whose proton number (six) corre-
sponds to the subclosure of p3/2. As the next step, we show
the possibility of the 8He (two protons and six neutrons)
and 9Li (three protons and six neutrons) cluster structures in
16Be (8He + 8He), 17B (8He + 9Li), 18C (9Li + 9Li), and 24C
(8He + 8He + 8He).

It has been reported that Be isotopes are well described
as two α clusters with valence neutrons. Here, the molecular-
orbit structure of the valence neutrons, where each valence
neutron rotates not around only one α cluster but around
two α clusters, has been found to be important [8–14]. Thus,
4He + 6He and 5He + 5He configurations mix, for instance, in
10Be. However, it is also known that some of the excited states
of 12Be has not the molecular-orbit but the atomic-orbit struc-
ture of the 6He + 6He or 4He + 8He configuration [13,15,16],
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where each valence neutron sticks to one of the α clusters.
It should be stressed that the appearance of both molecular-
and atomic-orbit structures in Be isotopes, including 16Be, has
been systematically studied with the generalized two-center
cluster model (GTCM) [17]. In the present study, we treat 8He
as a cluster based on the atomic-orbit picture and go beyond
the Be isotopes.

The nucleus 8He is located at the dripline of the He isotopes
and has a neutron-halo structure. The valence neutrons are
known to have an intermediate character of a di-neutron struc-
ture and independent particle motion [18,19]. Nevertheless,
the two-neutron separation energy of 2.12 MeV is larger than
that of 6He (0.98 MeV), and here we simplify it with the
j j-coupling shell-model configuration with the 4He core and
consider this nucleus as a subunit.

We also introduce the 9Li cluster and discuss 17B
(8He + 9Li) and 18C (9Li + 9Li). The neutron separation en-
ergy of 9Li is 4.06 MeV and not very large, but this is larger
than that of 8He and various 9Li + n + n models have been
applied to 11Li so far [20]. Although the structure of 9Li itself
is a subject to be carefully investigated, here we simplify it as a
cluster by using the lowest shell-model configuration, as in the
8He case, and discuss the cluster structure in the heavy nuclei.
The two-center-like deformation was predicted in 17B with
the 8He + 9Li configuration [21], and we further investigate
the appearance of more developed cluster states around the
threshold energy.

The neutron-rich clusters introduced in this article have
smaller binding energies compared with those of traditional
cluster models. However, the final goal of the present study
is to verify how weakly bound neutrons around these “newly
defined” clusters stabilize the binding of the molecular states.
For instance, one of the targets is the 9Li + 9Li + n + n con-
figuration of 20C around the four-body threshold. The 11Li
nucleus is the famous halo-nucleus, and how two 9Li clusters
share the two weakly bound neutrons around the threshold
energy is an intriguing question. The 8He and 9Li clusters
are considered to be well bound compared with these weakly
bound valence neutrons and could be treated as clusters. In the
present article, the weakly-bound valence neutrons are not yet
added and the main focus is on the cluster structure of the core
part (8He +9 Li and 9Li +9 Li), but this is the important first
step.

Recently, the wave functions of the j j-coupling shell
model were easily prepared by starting from the cluster model.
Indeed, the antisymmetrized quasi-cluster model (AQCM)
proposed in Refs. [7,22–32] allows for a smooth transforma-
tion of the cluster model wave functions to the j j-coupling
shell-model wave functions, as well as the incorporation of the
effects of the spin-orbit interaction, which is absent in many
of the traditional α cluster models. Therefore, now we can
utilize j j-coupling shell-model wave functions as the building
blocks of the cluster structure. In this article, we introduce 8He
and 9Li clusters by using the AQCM.

In this paper, we discuss how the 8He + 9Li and 9Li + 9Li
cluster configurations cover the lowest shell-model states of
17B and 18C, respectively. Also, we show the appearance of
developed cluster states around the corresponding threshold
energies by orthogonalizing them to the lowest states. In

addition, the rotational band structure of 24C, which reflects
the symmetry of the equilateral triangular configuration (D3h

symmetry) of three 8He clusters, will be presented. Although
these cluster states are above the neutron-threshold energies,
they appear around the cluster-threshold energies.

This paper is organized as follows: The framework of
AQCM is described in Sec. II. The results are shown in
Sec. III, where the 8He + 8He structure in 16Be, the 9Li + 8He
structure in 17B, the 9Li + 9Li structure in 18C, and the three
8He structure in 24C are discussed in Secs. III A–III D, respec-
tively. The conclusions are presented in Sec. IV.

II. FRAMEWORK

A. Wave function

We analyze the 8He and 9Li cluster structures within the
framework of the AQCM. The neutrons of these clusters
correspond to the subclosure of p3/2 in the j j-coupling shell
model, which can be easily prepared starting from the cluster
model; the AQCM allows for the smooth transformation of the
cluster model wave functions to the j j-coupling shell-model
wave functions.

In the AQCM, each single particle is described by a
Gaussian form, as in many other cluster models, including the
Brink model [1],

φ =
(

2ν

π

) 3
4

exp[−ν(r − ζ)2]χ, (1)

where the Gaussian center parameter ζ is related to the ex-
pectation value of the position of the nucleon, and χ is the
spin-isospin part of the wave function. For the size parameter
ν, we use ν = 0.23 fm−2.

The Slater determinant �SD is constructed from these
single-particle wave functions by antisymmetrizing them, and
then �SD is projected onto the eigenstates of the angular
momenta by numerical integration,

�J
MK = 2J + 1

8π2

∫
d�DJ

MK
∗
R(�)�SD. (2)

Here DJ
MK is the Wigner D function and R(�) is the rotation

operator for the spatial and spin parts of the wave function.
This integration over the Euler angle � is numerically per-
formed.

Next we focus on the Gaussian center parameters {ζ}. As in
other cluster models, here four single-particle wave functions
with different spin and isospin sharing a common ζ value
correspond to an α cluster. This cluster wave function is
transformed to j j-coupling shell model based on the AQCM.
When the original value of the Gaussian center parameter ζ

is R, which is real and related to the spatial position of this
nucleon, it is transformed by adding the imaginary part as

ζ = R + i	espin × R, (3)

where espin is a unit vector for the intrinsic-spin orientation of
this nucleon. The control parameter 	 is associated with the
breaking of the cluster and with a finite value of 	, the two
nucleons with opposite spin orientations have the ζ values,
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which are complex conjugates of each other. This situation
corresponds to the time-reversal motion of two nucleons.

Here we explain the intuitive meaning of this procedure.
The inclusion of the imaginary part allows us to directly
connect the single-particle wave function to the spherical
harmonics of the j j-coupling shell model. Suppose that the
Gaussian center parameter ζ has the x component, and the
spin direction is defined along the z axis (this is the spin-
up nucleon). According to Eq. (3), the imaginary part of
ζ is given to its y component. Then we think about the
cross term of the exponent in Eq. (1), exp[2νζ · r]. After the
Taylor expansion, the p-wave component is proportional to
ζ · r ∝ (x + i	y). At 	 = 1, this is proportional to Y11 of
the spherical harmonics. The nucleon is spin-up, and thus
the coupling with the spin part gives the stretched state of
the angular momentum, |3/2 3/2〉 of the j j-coupling shell
model, where the spin-orbit interaction acts attractively. For
the spin-down nucleon, we introduce the complex conjugate
ζ value, which gives |3/2 − 3/2〉. The next two nucleons
are generated by rotating the ζ values and spin-directions
of these two nucleons by 2π/3. The last two nucleons are
generated by changing the rotation angle to 4π/3. Eventu-
ally, all six nucleons have spin-stretched states and, after the
antisymmetrization, the configuration becomes the subclosure
configuration of (s1/2)2(p3/2)4. The details are shown in
Ref. [27].

For the description of 8He, at first, di-nucleon clusters
are prepared; in each di-nucleon cluster, two nucleons with
opposite spin and the same isospin share a common value
for the Gaussian center parameters. For the proton part, one
di-proton cluster is placed at the origin, which corresponds
to the lowest (0s)2 configuration of the shell model. For the
neutron part, three di-neutron clusters are introduced with
an equilateral triangular configuration and a small distance
R between them, and the imaginary parts of the Gaussian
center parameters are given by setting 	 = 1 in Eq. (3), which
corresponds to the subclosure of the p3/2 shell [22,27]. In
the actual calculations, R is set to 0.1 fm. This 8He cluster
is the eigenstate of Jπ = 0+, and projection of the total
angular momentum of the total system just gives the orbital
angular momentum of the relative motion in the case of 16Be
(8He - 8He).

For 9Li, one more proton in the p3/2 orbit is added. The
Gaussian center parameter of the proton in the p3/2 orbit is
introduced in the following way: The proton is placed with
a small x component (R = 0.1 fm), and the y component is
given following Eq. (3), where the spin orientation is defined
along the z axis (corresponding to a spin-up or spin-down
proton). This 9Li cluster is the eigenstate of Jπ = 3/2−.

For the calculations of 16Be, 17B, and 18C, we translation-
ally shift the Gaussian center parameters of the 8He and 9Li
clusters and place them on the z axis. For 24C, three 8He
clusters are placed to have an equilateral triangular shape.

B. Hamiltonian

The Hamiltonian consists of the kinetic-energy and
potential-energy terms. The potential energy has central
(V̂central), spin-orbit (V̂spin-orbit), and Coulomb parts. For the

central part, the Tohsaki interaction (F1 parameter set) [33] is
adopted, which has finite-range three-body nucleon-nucleon
interaction terms in addition to two-body terms. This inter-
action is designed to reproduce both the saturation properties
and scattering phase shifts of two α clusters. For the spin-orbit
part, that of the G3RS interaction [34], which is a realistic
interaction originally developed to reproduce the nucleon-
nucleon scattering phase shifts, is adopted. The combination
of these central and spin-orbit interactions has been investi-
gated in detail in Refs. [31,32].

The Tohsaki interaction for the central part consists of two-
body (V (2)) and three-body (V (3)) terms:

V̂central = 1

2

∑
i �= j

V (2)
i j + 1

6

∑
i �= j, j �=k,i �=k

V (3)
i jk , (4)

where V (2)
i j and V (3)

i jk have three ranges,

V (2)
i j =

3∑
α=1

V (2)
α exp

[ − (�ri − �r j )
2/μ2

α

](
W (2)

α + M (2)
α Pr

)
i j
,

(5)

V (3)
i jk =

3∑
α=1

V (3)
α exp

[ − (�ri − �r j )
2/μ2

α − (�ri − �rk )2/μ2
α

]

×(
W (3)

α + M (3)
α Pr

)
i j

(
W (3)

α + M (3)
α Pr

)
ik . (6)

Here, Pr represents the exchange of the spatial part of the
wave functions of two interacting nucleons. The position
of the ith nucleon is expressed by �ri. The details of the
parameters are shown in Ref. [33].

The G3RS interaction is a realistic interaction, and the
spin-orbit part has the following form:

V̂spin-orbit = 1

2

∑
i �= j

V ls
i j , (7)

V ls
i j = (

V 1
lse−d1(�ri−�r j )2 − V 2

lse−d2(�ri−�r j )2)
P(3O)�L · �S. (8)

We use the original “case 1” values shown in Ref. [34] for the
range and the strength of the spin-orbit interaction. Here �L is
the angular momentum for the relative motion between the ith
and jth nucleons, and �S is the sum of the spin operator for
these two interacting nucleons. The operator P(3O) stands for
the projection onto the triplet-odd state.

III. RESULTS

A. 8He + 8He cluster structure in 16Be

We start the discussion with the 8He + 8He cluster structure
in 16Be. The dripline nucleus of the Be isotopes is 14Be,
and thus 16Be is located outside the neutron dripline. Exper-
imentally, the two-neutron separation energy is −1.35 MeV
(unbound), but the ground state is lower than the 8He + 8He
threshold by 5.77 MeV.

First, we show that the 8He + 8He model space covers the
lowest principal quantum number of 16Be. The expectation
value for the principal quantum number n of the harmonic
oscillator for the 0+ state of 16Be is shown in Fig. 1 as a
function of the distance between two 8He clusters. The dotted
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FIG. 1. Expectation value for the principal quantum number of
the harmonic oscillator (n) for the 0+ state of 16Be as a function of
the distance between two 8He clusters. Dotted and dashed lines are
results for the protons and neutrons, respectively.

and dashed lines represent the results for the protons and
neutrons, respectively, which converge to 2 and 14 at small
relative distances. These values agree with those for the lowest
shell-model configuration; for the protons, two are in the
lowest 0s shell and two are in the p shell (2 × 1 = 2), and,
for the neutrons, two are in the lowest 0s shell, six are in
the p shell, and four are in the sd shell (6 × 1 + 4 × 2 = 14).
Hence, the lowest shell-model configuration is included in the
model space. Upon increasing the relative distance between
the two 8He clusters, the components of higher shells mix,
and the n value rapidly increases.

Next, the energy curves for 16Be measured from the two-
8He threshold is shown in Fig. 2 as a function of the distance
between two 8He clusters. The solid, dotted, and dashed lines
are the results for the 0+, 2+, and 4+ states, respectively. It
can be seen that the optimal energy for the 0+ state is obtained
with the relative distance of ≈3 fm. This means that the lowest
energy is not obtained at the limit of the shell model, and
clustering is found to be important, which is indeed higher
shell mixing in terms of the shell model. Although we do
not have adjustable parameters, the lowest energy is close
to the experimental binding energy of 5.77 MeV. Despite
this binding energy, which is sufficiently large, the optimal
distance is large owing to the Pauli-blocking effect at short
relative distances between two 8He clusters, and developed
cluster structure appears. For the 2+ and 4+ states, the optimal
distances are slightly larger than that for the 0+ state due to the
centrifugal force.

B. 9Li + 8He cluster structure in 17B

We add one proton and show the result of 9Li - 8He cluster
configuration in 17B. The dashed line in Fig. 3 shows the
energy for the lowest 3/2− state of 17B measured from the
9Li - 8He threshold as a function of the distance between 9Li

FIG. 2. Energy curves for 16Be measured from the two-8He
threshold as a function of the distance between two 8He clusters.
Solid, dotted, and dashed lines correspond to the 0+, 2+, and 4+

states, respectively.

and 8He. Experimentally, the 17B nucleus is bound from the
9Li + 8He threshold by 12.86 MeV. It is not perfect, but the
lowest energy obtained is fairly close to this value. Similarly
to the 8He + 8He case, despite this large binding energy, the
relative distance at the optimal energy is also large owing to
the Pauli-blocking effect at short relative distances between
the two clusters. In this calculation, 9Li and 8He clusters are
placed on the z axis, while the last proton in 9Li stays on the
perpendicular plane, and there is no additional excitation to
higher shells for this proton when the 8He cluster approaches.
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FIG. 3. Energy for the 3/2− state of 17B measured from the
9Li - 8He threshold as a function of the distance between 9Li and 8He
(dashed line). Energy curve for the 3/2− state orthogonal to the state
having the optimal distance of 3 fm (solid line).
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FIG. 4. Energy for the 0+ state of 18C measured from the two-
9Li threshold as a function of the distance between two 9Li clusters
(dashed line). Energy curve for the 0+ state orthogonal to the state
having the optimal distance of 2.5 fm (solid line).

Therefore, again the lowest principal quantum number of 17B
is included in the model space.

The energy curve for the 3/2− state orthogonal to the low-
est state (relative distance of 3 fm) is shown as the solid line.
It is intriguing to see that the energy minimum point appears
around the threshold energy with a very large relative distance
of 4 fm. The appearance of very developed cluster structure
around the threshold is expected, and adding neutrons to this
state and investigating the molecular-orbital structure will be
performed in the near future.

C. 9Li + 9Li cluster structure in 18C

For 18C, we introduce a 9Li + 9Li model. Here the spin
directions of the valence protons in two 9Li clusters are

introduced to be antiparallel, and two valence protons occupy
the time-reversal orbits. Thus again the model space covers
the lowest principal quantum number of 18C. The dashed line
in Fig. 4 shows the energy for the lowest 0+ state of 18C
measured from the two-9Li threshold as a function of the
distance between two 9Li clusters. The optimal energy is ob-
tained around the relative distance of 2.5 fm. Experimentally,
the ground state of 18C is lower than the two-9Li threshold
by 24.99 MeV. Again, although we do not use any adjustable
parameter, the obtained optimal energy is fairly close to this
value.

The solid line in Fig. 4 shows the energy curve for the 0+
state orthogonal to the lowest state with the relative distance of
2.5 fm. Again, the appearance of the significantly clusterized
state around the threshold energy with the relative distance
of ≈4 fm is expected. The intrinsic densities of this state on
the xz plane (y = 0) with the relative distance of 4 fm are
represented by Figs. 5(a) and 5(b) for protons and neutrons,
respectively. As a future work, adding neutrons to this state
would be interesting.

D. Three 8He cluster structure in 24C

Finally, we discuss the three 8He cluster structure in 24C.
The dripline nucleus of the C isotopes is 22C and hence 24C
is beyond the neutron dripline. Nevertheless, the three-8He
states are shown to appear around the threshold energy. First,
we show that the three 8He configuration with the equilateral
triangular configuration covers the lowest principal quantum
number of the shell model. The expectation value for the
principal quantum number of the harmonic oscillator for the
0+ state of 24C with the equilateral triangular configuration
of three 8He clusters is shown in Fig. 6 as a function of
the distance between two 8He clusters. Here the dotted and
dashed lines represent the results for the protons and neutrons,
respectively. They converge to 4 and 26 at small relative
distances, respectively. These values are ones for the lowest
shell-model configuration; for the protons, two are in the
lowest 0s shell and four are in the p shell (4 × 1 = 4), and

FIG. 5. Intrinsic density of 9Li - 9Li with the relative distance of 4 fm on the xz plane (fm−3): (a) protons, (b) neutrons.
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FIG. 6. Expectation value for the principal quantum number of
the harmonic oscillator for the 0+ state of 24C with the equilateral
triangular configuration of three 8He clusters as a function of the dis-
tance between two 8He clusters. Dotted and dashed lines correspond
to the result for the protons and neutrons, respectively.

for the neutrons, two are in the lowest 0s shell, six are in
the p shell, and ten are in the sd shell (6 × 1 + 10 × 2 = 26).
Therefore, surprisingly enough, the lowest principal quantum
number of 24C is included within the three-8He model with an
equilateral triangular configuration. However, experimentally,
the three-8He threshold is located quite high (more than Ex =
25 MeV) in the excitation energy, and thus the three-8He
configuration corresponds to a highly excited state.

In Fig. 7, the energy curves of 24C with the equilateral
triangular configuration of three 8He clusters measured from
the three-8He threshold are shown as a function of the distance
between two 8He clusters. Here Fig. 7(a) displays the result
for the positive-parity states with K = 0 (0+, 2+, and 4+),
and those for the negative-parity states with K = 3 (3−, 4−,
and 5−) can be found in Fig. 7(b). We can see that both
bands appear around the three-8He threshold energy with
large relative distance.

It sounds contradictory that, even if the three-8He model
covers the lowest principal quantum number state of 24C, the
three-8He cluster configuration has the lowest energy around
the three-8He threshold located quite high in the excitation en-
ergy of 24C. This puzzle is interpreted as the spin-orbit effect.
Although the three 8He clusters can have the lowest principal
quantum number of the shell model, the spin configuration
is not necessarily associated with the lowest j j-coupling
shell-model state; the spin configuration of the neutrons is
designed to reproduce the subclosure configuration of p3/2

in each 8He (for the description of the ground state, we have
to change the spin orientations). As a result, the energy goes
up when three 8He clusters approach in spite of a decrease
of the principal quantum number to the lowest shell-model
value. This tendency is confirmed in Fig. 8, which shows the
spin-orbit energy for the 0+ state of 24C with the equilateral
triangular configuration of three 8He clusters as a function
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FIG. 7. Energy curves of 24C with the equilateral triangular
configuration of three 8He clusters measured from the three-8He
threshold as a function of the distance between two 8He clusters.
(a) Positive-parity K = 0 band, 0+, 2+, and 4+, and (b) negative-
parity K = 3 band, 3−, 4−, and 5−.

of the 8He - 8He distance. The spin-orbit interaction is the
origin of the barrier at smaller relative distances. On the other
hand, upon increasing the relative distance, the spin-orbit
energy converges to the dotted line at −32.0 MeV, which
shows the value three times the contribution in a free 8He
cluster. This barrier effect at short relative distances due to
the spin-orbit interaction only occurs in the three 8He-cluster
case of 24C and not in the binary cluster cases of 16Be, 17B,
and 18C. It becomes important with increasing number of
clusters.

It has been known that, if the system has the equi-
lateral triangular configuration (D3h symmetry), both K =
0 (0+, 2+, 4+, . . . ) and K = 3 (3−, 4−, 5−, . . . ) rotational
bands are possible. The appearance of these rotational bands
has been extensively discussed in 12C [35], which is the
signature of the equilateral triangular symmetry of the three α
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FIG. 8. The spin-orbit energy for the 0+ state of 24C with the
equilateral triangular configuration of three 8He clusters as a function
of the 8He - 8He distance. The dotted line at −32.0 MeV shows the
spin-orbit energy three times the contribution in a free 8He cluster.

clusters. Now the α clusters are replaced with the 8He clusters
and what we discuss here is considered to be the neutron-rich
version of the D3h symmetry.

The energy eigenstates of the three-8He cluster states are
obtained by superposing the Slater determinants with different
relative distances and diagonalizing the Hamiltonian based on
the generator coordinate method (GCM). The rotational band
structure of the three-8He configuration is shown in Fig. 9,
where the solid and dashed lines correspond to the result for
K = 0 (positive parity, 0+, 2+, 4+, . . . ) and K = 3 (negative
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FIG. 9. Rotational band structure of three-8He configuration.
Solid and dashed lines are the results for the K = 0 (positive parity,
0+, 2+, 4+, . . . ) and K = 3 (negative parity, 3−, 4−, 5−, . . . ) bands,
respectively.

parity, 3−, 4−, 5−, . . . ) bands, respectively. Two rotational
band structures appear around the threshold energy and they
have similar slopes as a function of J (J + 1).

IV. CONCLUSIONS

Most of the conventional clusters so far investigated have
been limited to the closure of the three-dimensional harmonic
oscillator, such as 4He, 16O, and 40Ca. Here we discussed the
possibility that nuclei with the neutron number six, which is
the subclosure of the p3/2 subshell of the j j-coupling shell
model, can be clusters; the 8He and 9Li cluster structures have
been investigated in 16Be (8He + 8He), 17B (8He + 9Li), 18C
(9Li + 9Li), and 24C (8He + 8He + 8He).

We have shown that the lowest principal quantum numbers
of 16Be, 17B, 18C, and 24C can be covered within this model.
We have just adopted Tohsaki interaction, which has finite-
range three-body terms, and there is no adjustable parameter
in the Hamiltonian. Nevertheless the optimal energies of these
nuclei measured from the corresponding threshold energies
are fairly close to the experimental values. By orthogonaliz-
ing the wave functions to the lowest states, very developed
cluster states were obtained around the corresponding thresh-
old energies in 17B and 18C.

The appearance of K = 0 (0+, 2+, 4+, . . . ) and K = 3
(3−, 4−, 5−, . . . ) rotational bands has been extensively dis-
cussed in 12C [35], which is the proof for the equilateral trian-
gular symmetry of the three α clusters. In this study, we have
replaced the α clusters with the 8He clusters and shown the
neutron-rich version of the rotational band structures for the
configuration reflecting D3h symmetry. The energy eigenstates
of the three-8He cluster states are obtained by superposing the
Slater determinants with different relative distances and diag-
onalizing the Hamiltonian. The two rotational band structures
of the three-8He configuration appear around the threshold
energy and have similar slopes as a function of J (J + 1).

It is found that, although the three-8He cluster model
covers the lowest principal quantum number of 24C at short
relative distances between clusters, the spin configuration of
the neutrons is designed to reproduce the subclosure configu-
ration of p3/2 in each 8He and is not necessarily associated
with the ground state of 24C. As a result, the energy goes
up when three 8He clusters approach, and the spin-orbit
interaction works as a barrier for the smaller relative distances.

This is a novel mechanism for the clustering. Until now,
in most of the conventional cluster models, clusters were
spin-zero systems and the contribution of the spin-orbit inter-
action vanished after assuming these clusters. In addition, the
spin-orbit interaction was considered to be the driving force,
which breaks these clusters and promotes the symmetry of
the j j-coupling shell model [6]. However, here we learn that,
if we define j j-coupling shell-model wave functions as the
“new” clusters, a completely opposite role of the spin-orbit
interaction can be seen; the spin-orbit interaction induces
the clustering when it acts attractively in each cluster. This
barrier effect at short relative distances due to the spin-orbit
interaction cannot be seen in the binary cluster cases of 16Be,
17B, and 18C. It becomes evident with increasing number of
clusters, as in the three 8He-cluster case of 24C.
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As future work, the appearance of the molecular-orbital
structure will be studied by adding neutrons to the developed
cluster states obtained here in 17B and 18C. One of the targets
is the 9Li + 9Li + n + n configuration of 20C around the four-
body threshold. The 11Li nucleus is the famous halo nucleus,
and how two 9Li clusters share the two weakly bound neutrons
around the threshold energy is an intriguing question. Also,
we investigate the role of the cluster states obtained, including
resonances above the cluster emission threshold around the

Gamow window, in the nuclear reactions including the big-
bang nucleosynthesis.
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