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Contribution of the ρ meson and quark substructure to the nuclear spin-orbit potential

Guy Chanfray and Jérôme Margueron
Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622, Villeurbanne, France

(Received 12 June 2020; accepted 6 August 2020; published 26 August 2020)

The microscopic origin of the spin-orbit (SO) potential in terms of sub-baryonic degrees of freedom is
explored and discussed for application to nuclei and hypernuclei. We thus develop a chiral relativistic approach
where the coupling to the scalar- and vector-meson fields are controlled by the quark substructure. This approach
suggests that the isoscalar and isovector density dependence of the SO potential can be used to test the
microscopic ingredients which are implemented in the relativistic framework: the quark substructure of the
nucleon in its ground state and its coupling to the rich meson sector where the ρ meson plays a crucial role.
This is also in line with the vector dominance model phenomenology and the known magnetic properties of the
nucleons. We explore predictions based on Hartree and Hartree-Fock mean field, as well as various scenarios for
the ρ-nucleon coupling, ranked as weak, medium, and strong, which impacts the isoscalar and isovector density
dependence of the SO potential. We show that a medium-to-strong ρ coupling is essential to reproduce Skyrme
phenomenology in N = Z nuclei as well as its isovector dependence. Assuming an SU(6) valence quark model,
our approach is extended to hyperons and furnishes a microscopic understanding of the quenching of the N�

spin-orbit potential in hypernuclei. It is also applied to other hyperons, such as �, �, and �.
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I. INTRODUCTION

Despite its crucial role for understanding nuclear magic
numbers [1,2] and consequently element abundances in our
Universe [3], the microscopic origin of the spin-orbit (SO)
interaction is still a matter of discussion. For practical nonrel-
ativistic nuclear interactions and application to finite nuclei,
it is often introduced as a phenomenological term correcting
the nuclear interaction [4,5]: it is represented by a short-range
interaction describing the coupling of the particle i with spin
si to its orbital angular momentum li = pi × ri. As a conse-
quence, the SO potential is characterized by a density-gradient
term (boost) with isoscalar and isovector contributions; see,
for instance, Refs. [6,7] and references therein.

One major success of the relativistic hadrodynamic model
initiated by Walecka and coworkers [8,9] comes from the
natural framework it provides for the SO coupling without the
need to introduce an explicit interaction. The SO interaction
originates from the relativistic nature of the hadrodynamic
model, often referred to in nuclear physics as the relativistic
mean field (RMF) where only the Hartree potential is con-
sidered [5], since it is generated by the coupling between
the up and down components of the Dirac spinor [8]. In
particular, a nonrelativistic potential can be derived from the
hadrodynamic model showing that the coupling constant of
the SO potential is a function of the meson coupling constants,
which are determined from the bulk properties of nuclear
matter and/or fits to the nuclear masses. The SO splitting
appears thus as a prediction of the model since it is not fit
a priori. Its detailed density functional, e.g., isoscalar and
isovector density dependence, may, however, change from one
Lagrangian to another.

A functional difference between Skyrme [5] and RMF
[5] nuclear interaction has been suggested by Reinhard and
Flocard [6]: the Skyrme SO potential combines together
isoscalar and isovector density gradient, while the RMF is
purely isoscalar. It should however be noted that the RMF
Lagrangian in Ref. [6] includes only the contribution of the
σ and ω mesons to the SO potential. In Ref. [10], for instance,
the additional effect of the ρ vector meson and of the Fock
term has been discussed, but restricting the ρ to its vector
coupling to the nucleon and neglecting the ρ-tensor coupling.
In this paper, we explicitly detail the contribution of different
mesons to the SO potential and we explore three scenarios for
the ρ meson coupling: the weak coupling which neglects the
ρ-tensor contribution, and the medium and strong coupling
which include it with increasing strength. The medium cou-
pling reproduces the pure vector dominance model (VDM)
picture [11] while the strong coupling requires an extension of
the pure VDM picture and is compatible with the π nucleon
scattering data [12]. We show that the ρ-tensor coupling and
the Fock contribution to the mean field are crucial to reconcile
relativistic approaches with Skyrme nuclear phenomenology
and, more generally, to adapt to the experimental data in nuclei
and hypernuclei.

In the pure VDM picture the ρ-tensor coupling fully con-
tributes to the anomalous magnetic moment of the nucleons.
In a microscopically based chiral relativistic approach, this
coupling originates from the composite nature of baryons
into three quarks. Hence, although the SO potential can be
seen as a pure relativistic effect, its precise form deeply roots
into the nature of the strong (nuclear) interaction, e.g., its
chiral realization, the contribution of the scalar and vector
meson field dynamics as well as the quark substructure.
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In other words, anchoring the relations between the meson
coupling constants into a quark substructured (bag) model, the
confrontation of the chiral relativistic predictions for the SO
potential to nuclear data can drive to a better understanding
of some microscopic aspects of baryons and of their mutual
interaction. There are indeed important questions involving
finite nuclei and hypernuclei, yet unresolved, which can con-
tribute to the better understanding of the strong interaction and
of the quark substructure, such as (i) what is the isoscalar and
isovector dependence of the SO interaction? and (ii) how is
the SO interaction modified in hypernuclei? To achieve this
program we investigate the role of the quark wave functions in
governing the SO coupling of the exchanged mesonic degrees
of freedom with the nucleons and the hyperons. We also
show the effect of the strange quarks to the SO interaction,
providing a deep microscopic understanding of SO splitting
in hypernuclei. In the following, our microscopic quark-level
derivation of the spin-orbit potential closely follows the one
from Guichon et al. [13].

Interestingly the quark substructure of the nucleon impacts
also the saturation mechanism of the energy per particle in
nuclear matter. Experimentally, the curvature of the energy per
particle is directly measured from the energy of the isoscalar
giant monopole resonance (ISGMR). It has been suggested
that the softening of the equation of state around saturation
density is induced by the polarization of the quark internal
structure of the nucleons [14–16]. This subnucleonic polariza-
tion appears in the Lagrangian as a nonlinear meson coupling
for the σ field or alternatively as a density dependence of the
scalar-meson coupling constant. It impacts also the SO poten-
tial, but at a subleading order which is neglected in this study.
It is, however, interesting to note that, through the SO inter-
action and the saturation mechanism, the quark substructure
appears to have, at least, two concrete realizations impacting
the modeling of the interaction between nucleons. While it
is possible to ignore the microscopic mechanism suggested
by the quark substructure in practical nuclear modeling by
introducing new terms in the Lagrangian fit to the properties
of finite nuclei, the mechanism we refer to suggests a more
global picture which provides a deep understanding of the
nature of the nuclear interaction.

This paper is organized as follows: we recall the derivation
of the SO potential in atomic and nuclear physics in Sec. II.
We then present a derivation of the nucleonic spin-orbit
potential from a chiral Hartree-Fock description in Sec. III.
Our approach is by many aspects based on the one pre-
sented in Ref. [13] and also opens the possibility to perform
a fully consistent relativistic Hartree-Fock calculation. The
connection to nuclear physics is emphasized in our study.
In Sec. IV we show the impact of the nucleon substruc-
ture in nuclei and we compare our findings to widely used
parametrizations used in nuclear structure, such as Skyrme
energy density functionals (EDFs) or relativistic mean field
(RMF) [5,6]. In particular, we discuss the isospin dependence
of the spin-orbit interaction. Since the present approach can
easily be extended to predict the SO interaction for any kind
of baryon, we present an application to hyperons in Sec. V.
We therefore apply our generic results to the �N spin-orbit,
which is known to be largely quenched, and predict SO

potential for the other hyperon systems. We then conclude this
study in Sec. VI.

II. THE SPIN-ORBIT INTERACTION IN ATOMIC AND
NUCLEAR PHYSICS

The SO interaction exists in many quantum bound systems
from atoms to quarkonia; see, for instance, Ref. [17]. In
atomic physics its origin is well known: it is generated by
the coupling of the electron magnetic moment (spin) moving
in the electric field of the nucleus, to which shall be added
the Thomas precession [18]. An atomic electron—located
at position R—having orbital l and internal spin s angular
momenta and moving in a central mean-field potential U (R)
feels a spin-orbit potential of the form

Wso,e(R) = e2

m2
e

1

R

dU

dR
l · s − 1

2

e2

m2
e

1

R

dU

dR
l · s . (1)

The first term in Eq. (1) comes from the interaction of the
electron magnetic moment (represented by the internal spin s)
with the mean magnetic field existing in its instantaneous rest
frame (IRF): this is a boost effect (generating the gradient)
since this mean magnetic field in the IRF originates from the
Lorentz transformation of the mean electric field in the rest
frame. However, even in the absence of electric and magnetic
fields, the rotation of the particle curvilinear orbit involves
an additional boost (perpendicular to the motion), which is
known as the Thomas precession. It is a pure relativistic effect
that is independent of the structure and that yields the second
term in Eq. (1). The Thomas precession reduces the impact of
the first boosted term to the total SO potential.

The SO interaction in finite nuclei is quantitatively very
different. Not only it is much larger—see, for instance, the
discussion in Ref. [17]—but it has also the opposite sign com-
pared with the atomic-physics case. While in atomic physics,
the coupling of the electromagnetic field to the particle is only
of vector type, in nuclear physics, the interaction is spread
over more coupling channels. In particular, there is also a
scalar interaction which contributes to the SO interaction.
The very large attractive scalar and repulsive vector self-
energies, typically �S ≈ −400 MeV and �V ≈ +350 MeV
in the interior of finite nuclei, combine together to produce
the mean field (sum) and the spin-orbit potential (difference).
Consequently, the atomic formula for electrons (1) is trans-
formed for nucleons (N = p, n) as

Wso,N (R) � 1

2

1

m2
N

�V − �S

�V + �S

1

R

dU

dR
l · s . (2)

Note that the structure of Eq. (1) can be recovered from Eq. (2)
by setting �S = 0. In Eq. (2) the nuclear spin-orbit potential
is amplified by an order of magnitude since �V − �S is much
larger than |�V + �S|, and the negative sign is given by the
sign of �V + �S .

Moreover, in this picture, nucleons in the mean field couple
to potentials—�V and �S—which are of the order of one third
of their own mass. One can thus expect that these huge scalar
and vector fields probe more than just the global structure
factor of nucleons, represented by its mass, but that they
are also sensitive to nucleon internal degrees of freedom,
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such as quarks, gluons, pion cloud, etc. Conversely, it is
difficult to imagine that these huge fields have no effect on the
internal structure of the nucleon. This is the motivation of the
quark-meson coupling (QMC) model proposed by Guichon
in Ref. [14]. The composite nature of nucleons and the huge
fields produces a polarization which softens the density de-
pendence of the energy per particle around saturation density.
This mechanism induces a nonlinear sigma-meson coupling
or alternatively a density correction to the sigma coupling
constant [14–16].

A question immediately arises: where do these huge scalar
and vector fields come from? How are they generated from
QCD and how do they couple to the quarks (and possibly
to the pion cloud) inside the nucleon? This will be partially
answered in the next section.

III. RELATIVISTIC CHIRAL APPROACH WITH
CONSTRAINTS FROM NUCLEON STRUCTURE

The link between QCD in its nonperturbative regime and
the dynamical interactions among nucleons is not yet com-
pletely understood. Since the spin-orbit interaction between
baryons is essentially short ranged [19], a number of authors
have linked its microscopic origin to the quark degrees of
freedom; see, for instance, the original Ref. [20]. The rela-
tion between a quark model and the spin-orbit interaction
has also been investigated in the following works, e.g., see
Refs. [13,14] for nuclei and Refs. [21,22] for hypernuclei. In
these models, one usually starts with an effective realization of
the low-energy QCD Lagrangian, which can be, for instance,
the Nambu–Jona-Lasinio (NJL) model or nucleon orbital
models. Recent progresses in lattice QCD will hopefully help
the understanding of the nucleon interaction and the role of
the quark substructure.

A. Foundational aspects

In this section we detail one type of strategy which con-
nects the low-energy realization of QCD and the SO potential.
Here the SO potential, among other things, emerges from a
local coupling of vector and scalar fields to the quarks, which
are themselves confined by a scalar (string) potential. This can
been done in three steps.

The first step is to perform a gluon averaging of the (eu-
clidean) QCD partition function to generate—at the so-called
Gaussian approximation level—a chiral invariant four-quark
effective Lagrangian. An efficient way is to apply the field
correlator method (FCM) elaborated by Simonov and cowork-
ers [23]: a very important outcome is the simultaneous and
automatic generation of scalar confinement and dynamical
chiral symmetry breaking. The whole approach depends on
two QCD parameters—the string tension σ and the gluon
correlation length, or string width Tg, itself related to the gluon
condensate—and yields a long-range scalar confining poten-
tial VC (r) = σ r. What plays the role of a constituent quark
mass emerges as M ≈ σ Tg. A possible crude realization but
not so bad phenomenologically is the NJL model associated

with the following Lagrangian:

L = ψ̄ (iγ μ∂μ − m)ψ + G1

2
[(ψ̄ψ )2 + (ψ̄ iγ5�τψ )2]

− G2

2
[(ψ̄γ μ�τψ )2 + (ψ̄γ μγ5�τψ )2 + (ψ̄γ μψ )2],

(3)

and complemented by a confining force of a string type [16].
In the second step, as explicitly worked out in Ref. [16],

qq̄ fluctuations in the Dirac sea can be integrated out and
projected onto mesonic degrees of freedom. This bozonization
procedure generates a scalar field σ (with quantum numbers
of the “sigma” meson) and vector fields ω, ρ (with quantum
numbers of the ω and ρ mesons) which couple locally to the
constituents of the nucleon (the quarks and also possibly the
pion cloud which is ignored here). In addition, quantum fluc-
tuations generate their kinetic-energy Lagrangian. The model
allows us to calculate quark-scalar and quark-vector coupling
constants gqS and gqV , as well as the mass parameters mS =
mσ and mV = mω = mρ , which are not the on-shell meson
masses but rather represent the inverse of the corresponding
propagators taken at zero momentum. According to the FCM
approach [23] and following Ref. [16], the NJL model can
be completed by adding a confining force acting on the NJL
constituent quarks whose masses are directly proportional to
the in-medium scalar field.

The third step is to evaluate the coupling of these QCD
fields to the nucleon where the quarks move in a scalar
confining potential. It thus consists in the emergence of an
effective nucleon-meson interaction, as detailed in the next
section.

B. From quarks to nucleons

We now evaluate the coupling of the QCD scalar and vector
fields to the nucleons, where constituent quarks move in a
(scalar) confining potential. We call generically this type of
orbitals model approach a “bag model.” As in Ref. [13], let
us consider a nucleon at center of mass (CM) position R
with in-medium effective mass M∗

N and velocity V = P/M∗
N ,

embedded in the nuclear mesonic fields σ , ω, and ρ. The
quark located at R + r feels scalar and vector potentials:

UqS (R + r) = gqSσ (R + r),

UqV (R + r) = gqV [ω(R + r) + τ3qρ(R + r)], (4)

where τ3q is the isospin Pauli matrix in the third direction.
The coupling of these mesonic fields to the mov-

ing nucleons—including relativistic effects—necessitates the
knowledge of the three-quark wave functions inside the “bag,”
as discussed in Ref. [13]. For that purpose the instantaneous
rest frame (IRF) of the nucleon is introduced, with rapidity ξ

such that V = tanh ξ . In the spirit of the Born-Oppenheimer
approximation, one can assume that these quark wave func-
tions are known in the IRF since the quarks have time to adjust
their motion so that they are in their lowest-energy state (see
discussion in Ref. [13] for details). Performing the boost with
rapidity ξ in the IRF of this orbital model, one can define the
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nucleon mean-field potential as (N = p, n):

UN (R) =
∫

IRF bag
dr′ 〈N |q̄(r′)[UqV (R + r′)(γ0 cosh ξ

+ γ · V̂ sinh ξ ) + UqS (R + r′)]q(r′)|N〉. (5)

We now expand the fields to first and second orders in r′ ac-
cording to UqS (R + r′) = U (R) + r′ · �∇U (R). Working out
the quark-nucleon matrix elements, this generates to leading
order the ordinary mean-field potential:

UN (R) ≡ UV (R) + US (R)

= gωω(R) + gρρ(R)〈τ3N 〉 + gσ σ (R), (6)

where the couplings of the meson fields to the nucleons are
defined as gω = 3gqV , gρ = gqV , and gσ = 3gqSqS , with qS =∫

d3r[u2(r) − v2(r)] � 1 the integrated one-quark scalar den-
sity in the nucleon (u and v are the up and down quark
radial wave functions in standard notation). These relations
reflect the quark substructure of the nucleon where the factor
three refers to the quark number. Let us also mention that the
scalar piece of the mean-field potential and the decrease of
the nucleon mass in the medium are related to the decrease of
the chiral condensate associated with partial chiral symmetry
restoration at finite density [15,16].

Moreover, after performing exactly the inverse boost, this
procedure allows us to build a nucleon located at point R with
energy in the laboratory frame [13],

E0(R) =
√

M∗
N (R)2 + P∗(R)2, (7)

with

M∗
N (R) = MN + �S (R), and P∗(R) = M∗

N (R)V̂ sinh ξ . (8)

At this level, one comment concerning the coupling to the
scalar field is in order. In the detailed approach described
in Refs. [16,24], the treatment of the nucleon coupling to
the scalar field—seen as a fluctuation of the chiral field—
is a little more involved since it leads to the concept of
the nucleon response to the scalar field as was originally
introduced by Guichon [14]. One net effect is the density
dependence of the scalar coupling constant corresponding
to the progressive reduction of the scalar field, which thus
generates the repulsion needed for the saturation mechanism.
This mechanism is precisely what was proposed by Guichon
in his pioneering paper [14] at the origin of the QMC model.
Although this scalar-field decoupling mechanism is essential
for the saturation properties, here we disregard this effect
for the SO potential since it is a subleading effect. Another
consequence of the scalar nature of the coupling would be to
replace in the scalar potential the baryonic density ρ by the
scalar density ρS . This is again a subleading correction which
goes beyond the scope of the present study.

For practical applications to nuclear physics, our rela-
tivistic chiral approach is very similar to the original QMC
model [25] but they are at least two important differences
at the principle level. First, in the QMC model, the nucleon
(MIT bag) model only insists on confinement whereas, in our
approach, chiral symmetry breaking (and its partial restoration
at finite density) is present by construction; in particular, the

sigma field has a perfectly-well-defined chiral status; it is
chiral invariant and reflects part of the evolution of the quark
condensate associated with partial chiral restoration at finite
density [15,16]. Second, in the QMC model the local coupling
of the three meson fields to the quarks is introduced by hand
with six parameters (three coupling constants and three mass
parameters), whereas in our approach, they are generated by
the underlying bosonization of the effective QCD Lagrangian.

C. Spin-orbit potential

From Eq. (5), the SO potential is defined as the second
order in the gradient expansion of the quark position r′,

Wso,N (R) = gqV

M∗
N (R)

∫
IRF bag

dr′ 〈N |q̄(r′)

× [�γ · P r′ · ( �∇ω(R) + τ3q �∇ρ(R))]q(r′)|N〉.
(9)

The ω contribution involves the nucleon matrix element of a
one-body quark operator, which can be calculated knowing
the up and down quark wave functions:〈

gqV

∑
i

riγi · P

〉
= −2

3
gqV

∑
i

〈σi × P〉
∫

d3rrui(r)vi(r)

= −gω

2

9
〈σN × P〉

∫
d3rru(r)v(r)

≡ −gω

μS

2MN
〈σN × P〉, (10)

and the ρ contribution gives〈
gqV

∑
i

riγi · Pτ3i

〉
= −2

3
gqV

∑
i

〈σiτ3i × P〉
∫

d3rrui(r)vi(r)

= −gρ

10

9
〈σN × Pτ3N 〉

∫
d3rru(r)v(r)

≡ −gρ

μV

2MN
〈σN × Pτ3N 〉, (11)

where in the above equations we used the octet matrix ele-
ments,

〈N |
∑
u,d

σi|N〉 = 〈N |σN |N〉, (12)

〈N |
∑
u,d

σiτ3i|N〉 = 5

3
〈N |σNτ3N |N〉. (13)

The ω and ρ contributions to the SO potential associated
with the boost are directly proportional to the isoscalar and
isovector nucleon magnetic moments μS and μV , defined in
Eqs. (10) and (11), respectively, and calculated in this type of
bag model. For the SO potential we have implicitly used in the
matrix elements the vacuum quark wave functions, ignoring
the quark polarization (see above discussion). To be consistent
the nucleon effective mass is replaced by its free value. From
Eqs. (10) and (11), we see that the magnetic moments satisfy
the SU(6) bag model ratio μV /μS = 5 which is compatible
with the values deduced from the experimental neutron and
proton magnetic moments: μV = μp − μn = 4.70 and μS =
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μp + μn = 0.88 [26]. Moreover, it is also possible to explic-
itly evaluate the radial integral

∫
d3rru(r)v(r) to get the ab-

solute value of μS and consequently μp = 3 μS , μn = −2μS ,
μV = 5μS . In bag models with a scalar confining interaction,
the above radial integral can be obtained independently of the
precise shape of the confining interaction by using the Dirac
equation. The result is

μS = 2MN

9ε0

(
1 + qS

2

)
≡ MN

10ε0

(
gA + 5

3

)
, (14)

where ε0 is the eigenenergy of the lowest orbital, qS is the
integrated one-quark scalar density, and gA is the weak axial-
vector coupling constant calculated in the model. Considering
the experimental value gA = 1.26 and taking MN ≈ 3ε0, one
automatically obtains the correct order of magnitude, μS ≈
0.9. However, the MIT bag model predicts gA = 1.09 and
ε0 = 2.043/R, which tends to give too low a magnetic mo-
ment for a reasonable value of the bag radius R � 0.8 fm. In
the FCM approach discussed above, chiral symmetry breaking
and confinement are simultaneously generated. As already
mentioned, this QCD mechanism produces a scalar linear
confining interaction, i.e., with Lorentz structure, V̂C (r) =
γ0σ r where σ is the string tension, giving good results for
both gA and the magnetic moments [27].

In the following we introduce the anomalous isoscalar κω

and isovector κρ magnetic moments through the following
definitions: μS ≡ 1 + κω and μV ≡ 1 + κρ , in units of the
nuclear magneton μN .

Injecting Eqs. (10) and (11) into Eq. (9), the boost piece of
the SO potential takes the following form:

W boost
so,N (R) = −gω

(2 + 2κω )

4MN M∗
N (R)

�∇ω(R) · 〈σN × P〉

− gρ

(2 + 2κρ )

4MN M∗
N (R)

�∇ρ(R) · 〈σN × Pτ3N 〉. (15)

This contribution has to be supplemented by the Thomas
precession (TP) piece, also derivable in the above approach
[13]:

W T P
so,N (R) = − gσ

4MN M∗
N (R)

�∇σ (R) · 〈σN × P〉

+ gω

4MN M∗
N (R)

�∇ω(R) · 〈σN × P〉

+ gρ

4MN M∗
N (R)

�∇ρ(R) · 〈σN × Pτ3N 〉. (16)

Again, for consistency, we also replace the nucleon effective
mass coming from the boost by the bare nucleon mass in the
following.

Finally, the SO potential is given by the sum of the boost
and TP contributions,

Wso,N (R) = W boost
so,N (R) + W T P

so,N (R). (17)

As a side remark, let us mention that the above results
can also be derived from a relativistic theory such as that
utilized in Ref. [24] where the nucleon-vector meson coupling

Lagrangian written with standard notation reads

Lω = −gωωμ�̄γ μ� − gω

κω

2MN
∂νωμ�σ̄μν�,

Lρ = −gρρaμ�̄γ μτa� − gρ

κρ

2MN
∂νρaμ�σ̄μντa�. (18)

The origin of the tensor (ρ and ω) couplings in such a
Lagrangian is not resolved but instead given as an input. In our
approach instead, these couplings are derived from the quark
substructure of the baryons.

IV. SPIN-ORBIT POTENTIAL IN NUCLEI

The equations of motion for the meson fields can be
used to express the SO potential in terms of the nucleon
densities. Starting from Eqs. (15) and (16) and assuming
large vector-meson masses (i.e., neglecting Darwin terms),

e.g., ω(R) = g2
ω

m2
ω

n0(r), we obtain, after elementary manipu-
lations [namely, R · 〈σN × P〉 = −2(l · s)], an expression for
spherical nuclei involving the radial derivative of the total nu-
cleon density n0(r) ≡ np(r) + nn(r) and the isovector density
n1(r) ≡ np(r) − nn(r) (note the convention for n1 which is
opposite to the usual nuclear one) as

W boost
so,N (R) = 1

2RM2
N

[
g2

ω

m2
ω

(2 + 2κω )
dn0

dR

± g2
ρ

m2
ρ

(2 + 2κρ )
dn1

dR

]
(l · s)τ , (19)

and

W T P
so,N (R) = 1

2RM2
N

[
g2

σ

m2
σ

dn0

dR
− g2

ω

m2
ω

dn0

dR
∓ g2

ρ

m2
ρ

dn1

dR

]
(l · s)τ .

(20)
where the ± and ∓ signs in the previous equations refer
respectively to the proton and neutron cases.

In practice, due to the small value of κω ≈ −0.13, the
ω-tensor coupling can be safely neglected. The case of the
ρ meson is less simple. The pure vector dominance model
(VDM) picture [11], i.e., the strict proportionality between the
electromagnetic current and the vector-meson fields, implies
the identification of κρ with the anomalous part of the isovec-
tor magnetic moment of the nucleon, i.e., κρ = 3.7, hereafter
called medium coupling for the ρ meson. For instance, the
effective Lagrangian PKA1 [28] assumes a value of about
3.2, which is comparable to the one suggested by the VDM
picture. However, pion-nucleon scattering data [12] suggest
a larger value κρ = 6.6, hereafter called strong ρ coupling.
Many approaches in finite nuclei while including the ρ-vector
coupling neglect the ρ-tensor coupling; see, for instance,
Refs. [10,29]. In the following, we also explore this case,
defined as the weak ρ coupling. Finally, the decomposition
of the SO potential for the various meson channels are shown
in Table I.

For the nucleonic sector, the SO potential is usually ex-
pressed as

Wso,N (R) = 1

R
(W1∇nτ + W2∇n−τ )(l · s)τ , (21)
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TABLE I. Meson decomposition of the nucleon direct (Hartree)
spin-orbit potential multiplying the term (l · s)τ /(2RM2

N ). The densi-
ties are n0 ≡ nn + np and n1 ≡ np − nn.

Thomas Associated
Meson Boost precession Total gradient

wσ
N 0 g2

σ

m2
σ

g2
σ

m2
σ

∇n0

wω
N 2(1 + κω ) g2

ω

m2
ω

− g2
ω

m2
ω

(1 + 2κω ) g2
ω

m2
ω

∇n0

w
ρ
N 2(1 + κρ )

g2
ρ

m2
ρ

− g2
ρ

m2
ρ

(1 + 2κρ )
g2
ρ

m2
ρ

∇n1

hence directly exhibiting its isospin dependence. For the
Skyrme interaction, the ratio (W1/W2)Skyrme = 2 and for
Walecka-type RMF models (without the ρ) we have
(W1/W2)RMF,noρ = 1 [5,6].

One could express the coefficients W H
1 and W H

2 for the
direct (Hartree) contribution in terms of the quantities wi

N
(i = σ, ω, ρ) defined in Table I,

W H
1 ≡ 1

2M2
N

[
wσ

N + wω
N + w

ρ
N

]
, (22)

W H
2 ≡ 1

2M2
N

[
wσ

N + wω
N − w

ρ
N

]
. (23)

For the orientation of the following discussion let us
reasonably consider that the σ and the ω contributions are
similar, as suggested from most phenomenological studies
[5,9]. For instance, if we choose the omega coupling adjusted
from standard VDM phenomenology (gqV = 2.65, mω = 780
MeV) [11], one obtains gω/mω = (3 × 2.65 × 200/780) � 2
fm. Note that the effective Lagrangian PKA1 [28] directly
calibrated from nuclear properties suggests gω/mω = 2.7 fm,
which is not far from our current estimate, considering that
the PKA1 Lagrangian is obtained by ignoring the quark sub-
structure. To obtain the binding of nuclear matter, gσ /mσ shall
be slightly larger, leading to wσ

N ∼ 1.1wω
N at maximum. The ρ

coupling constant is one third of the ω coupling constant. So
in the absence of ρ-tensor coupling (weak ρ), we also expect
that the ρ contribution will be w

weak ρ
N ∼ 0.1wω

N . However, in
the medium- and strong-ρ cases, w

med ρ
N and w

strong ρ

N will be
around ten times as large; see Table II for typical values.

Hence for a typical RMF approach without the ρ field,
Eqs. (22) and (23) predict W H

1 /W H
2 = 1, as expected from the

simplest “σ -ω” Walecka model; see, for instance, Ref. [6]. It is
interesting to note that, for the medium-ρ (strong-ρ) coupling,
one has W H

1 /W H
2 � 3 (W H

1 /W H
2 � 3), significantly larger

than W H
1 /W H

2 � 1.1 for the weak-ρ coupling. In Ref. [10] this
ratio calculated at the Hartree level (RMF) remains very close
to 1.1 (see Fig. 1 of this paper) for various nuclei (16O, 34Si,
208Pb), which is consistent with the weak-ρ hypothesis.

We see the considerable effect of the ρ-tensor coupling to
the isovector density dependence of the SO potential, which
in our approach is interpreted as a purely quark-substructure
effect. The question then arises of its survival when exchange
terms are included. From the approach of Ref. [24], it is
possible to construct an energy density functional [30] as in
the QMC model [25,31], from which one can deduce the

TABLE II. Summary of the results showing the various scenarios
for ρ. First, raw ρ coupling w

ρ
N for the weak, medium, and strong

scenarios. For the other mesons, we have wω
N � 4 fm2 and wσ

N �
4.4 fm2. Then we show the predictions for the ratio W1/W2; see
Eqs. (22)–(24), and for the half sum (W1 + W2)/2, see Eq. (27), for
Hartree (RMF) and Hartree-Fock (RHF) cases.

ρ contribution No ρ Weak ρ Medium ρ Strong ρ

w
ρ
N (fm2) 0 �0.4 �3.2 �5.6

W H
1 /W H

2 1 �1.1 �3 �3

W HF
1 /W HF

2 1.5 �1.7 �2.25 �2.25
1
2 (W1 + W2)H �0.18 �0.18 �0.18 �0.18
(fm4)
1
2 (W1 + W2)HF �0.23 �0.25 �0.35 �0.42
(fm4)

exchange (Fock) contribution to the spin-orbit potential. The
results for the direct (Hartree) are given in Eqs. (22) and
(23), and we give hereafter the exchange (Fock) and total
(Hartree-Fock) contribution to W1 and W2 as

W F
1 = 1

2M2
N

1

2

(
wσ

N + wω
N + w

ρ
N

)
,

W F
2 = 1

2M2
N

w
ρ
N ,

W HF
1 = 1

2M2
N

3

2

(
wσ

N + wω
N + w

ρ
N

)
,

W HF
2 = 1

2M2
N

(
wσ

N + wω
N

)
. (24)

Completely ignoring the contribution of the ρ meson, one
gets [W HF

1 /W HF
2 ]no ρ = 1.5, which can be seen as the basic

Walecka model result with exchange correction included. In-
troducing the ρ contribution in the weak scenario, i.e., ignor-
ing the tensor coupling, one obtains [W HF

1 /W HF
2 ]weak ρ ≈ 1.7,

not far from the ratio 1.75–1.8 visible in Fig. 2 of Ref. [10] for
the interior of 16O, 34Si, 208Pb in a RHF calculation which also
incorporates density dependent couplings. For the medium
ρ coupling, the ratio becomes [W HF

1 /W HF
2 ]med ρ � 2.25, and

for the strong ρ coupling, it becomes [W HF
1 /W HF

2 ]strong ρ �
2.25. One can also compare with the conventional Skyrme
EDF parametrization for which W1/W2 = 2; see, for instance,
Refs. [5,6], which turns out to be close to our estimate for
medium- and strong-ρ scenarios. These results are summa-
rized in Table II.

One can observe from the results given in Table II that
the ratio W1/W2 is clearly influenced by the contribution of
the ρ meson, as well as by the Fock term in the mean field.
For all cases, the Fock term contributes to shift the ratio
W1/W2 towards the phenomenological Skyrme value (�2). A
systematical analysis based on experimental data, e.g., see the
comparisons in Refs. [5,32], can provide a clear insight on the
strength of the ρ-meson coupling.

It is also interesting to look at the influence of the ρ meson
on the absolute value of the SO potential. For this purpose
one can look at its isoscalar component, i.e., the SO potential
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felt by one nucleon in a N = Z nucleus. In the SLy5 Skyrme
EDF approach this potential is parametrized with the W0 �
120 MeV fm5 � 0.6 fm4 parameter [33] according to

[Wso]Skyrme
N=Z (R) = 3

4

W0

R

dn0

dR
l · s. (25)

In our microscopic approach, the same quantity is given by

[Wso]Micro
N=Z (R) = W1 + W2

2R

dn0

dR
l · s. (26)

We see that we have to compare 3W0/4 � 0.45 fm4 in the
SLy5 Skyrme EDF with (W1 + W2)/2 from the microscopic
approach, which is expressed as[

W1 + W2

2

]H

no ρ

= 1

2M2
N

(
wσ

N + wω
N

)
,

[
W1 + W2

2

]H

with ρ

= 1

2M2
N

(
wσ

N + wω
N

)
,

[
W1 + W2

2

]HF

no ρ

= 5

8M2
N

(
wσ

N + wω
N

)
,

[
W1 + W2

2

]HF

with ρ

= 5

8M2
N

(
wσ

N + wω
N

) + 3

8M2
N

w
ρ
N . (27)

The two last rows of Table II provide estimates for the
SO potential under various scenarios for the ρ coupling.
We see that the contribution of the ρ meson, including its
tensor piece, is of utmost importance to reproduce the Skyrme
phenomenology, otherwise the SO potential would be strongly
underestimated by almost a factor of two. Also note that the
quantitative agreement of the microscopic approach with the
Skyrme interaction has been discussed within the QMC model
in Ref. [31]. Moreover, the strength of ρ-tensor coupling,
which is still under discussion, can possibly be determined
from the isoscalar and isovector density dependence of the SO
interaction extracted from finite nuclei data.

Let us make a further comment: in the present case we
have neglected the influence of the nucleon effective mass,
namely, its lowering with respect to the bare nucleon mass
which is position dependent and varies from about 0.6MN to
−0.7MN in the bulk up to about MN at the surface. At leading
order, the SO potential is increased by about 10%–30% up,
see Eqs. (15) and (16), depending on the coordinate position
R; to be consistent one should nevertheless take into account
the decrease of the in-medium scalar coupling constant gσ ,
which reduces the SO potential but to a lower extent. As
a result, the SO potential will increase by about 10%–20%
while the ratio W1/W2 will be almost unchanged. The Skyrme
phenomenology will thus be recovered more consistently for
the isoscalar and isovector density dependence by considering
the medium-to-strong-coupling cases. These results certainly
deserve a more detailed calculation but a firm conclusion
is nevertheless that a realistic relativistic calculation (RHF)
certainly requires the inclusion of the ρ-tensor coupling,
which can ultimately be linked to the quark substructure
of the nucleon. The symmetry (SLS) and the antisymmetric
(ALS) spin-orbit terms to the energy splitting are discussed in
Refs. [34,35].

V. SPIN-ORBIT POTENTIAL IN HYPERNUCLEI

Let us now come to the question of the SO potential in
hypernuclei. Recent precision measurements of E1 transitions
from p- to s-shell orbitals of a � hyperon in 13

� C give a
p3/2-p1/2 SO splitting of only (152 ± 65) keV [36] to be com-
pared with about 6 MeV in ordinary p-shell nuclei (different
by a factor ≈50). The � SO potential therefore appears to
be weaker than the nucleonic SO potential by at least an
order of magnitude. This effect was originally suggested from
phenomenological analyses, indicating a strong suppression
of the � spin-orbit potential [37,38].

Since the seminal work by Brockmann and Weise [39]
where the reduction of the SO potential in � hypernuclei was
obtained in a relativistic Hartree approach, this effect has been
investigated within several models: From one-boson exchange
N� potentials [34,40–42], which tend to overestimate the
N� spin-orbit potential; from SU(3) generalization of stan-
dard nuclear RMF models [39,43–45]; from the naive SU(6)
quark model with flavor symmetry breaking, which naturally
explains the small spin-orbit coupling of the � hyperon; from
a quark model picture combined to Dirac phenomenology
[21,46]; or from combining the quark model with scalar- and
vector-meson exchange (QMC, quark-meson coupling model)
[47], where Pauli blocking in the �N-�N coupled chan-
nels is incorporated phenomenologically. We finally mention
the flavor-SU(3) in-medium chiral effective-field theory ap-
proaches, where strangeness is being included. An almost-
complete cancellation is found between short-range contribu-
tions and long-range terms [48,49], even including the three-
body spin-orbit interaction of Fujita-Miyazawa type [50].
This scenario has been tested over a large set of hypernuclei
[51,52]. This list is only partial and many other approaches
have been developed.

Our chiral relativistic approach can be extended to the
full octet including hyperons. In case of a single hyperon
hypernucleus, the mesonic mean field originating from the
ensemble of baryons with a large majority of nucleons is not
modified. When considering the spin-orbit felt by a hyperon,
the summation on the quarks appearing in Eqs. (10) and (11)
has to be limited to the u and d quarks since the strange
quark does not couple to the σ , ω, and ρ fields. We neglect
here interaction of hyperons mediated by strange mesons.
Assuming SU(3) flavor symmetry, one can derive a general
expression for the SO potential experienced by any baryon
B = N or Y where Y = �, �, �, or � [47]:

Wso,B(R) = W boost
so,B (R) + W T P

so,B(R), (28)

where

W boost
so,B (R) = 1

2RM2
N

[
g2

ω

m2
ω

(2 + 2κω )SB
dn0

dR

+ g2
ρ

m2
ρ

(2 + 2κρ )
3

5
TB

dn1

dR

]
(l · s)B, (29)

W T P
so,B(R)= 1

2RM2
N

[(
g2

σ

m2
σ

− g2
ω

m2
ω

)
LB

dn0

dR
− g2

ρ

m2
ρ

IB
dn1

dR

]
(l · s)B,

(30)
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TABLE III. Matrix elements for nucleons and hyperons.

Baryon Composition SB TB LB IB

p uud 1 5/3 1 1
n udd 1 −5/3 1 −1
� uds 0 0 2/3 0
�+ uus 4/3 4/3 2/3 2
�0 uds 4/3 0 2/3 0
�− dds 4/3 −4/3 2/3 −2
�0 uss −1/3 −1/3 1/3 1
�− dss −1/3 1/3 1/3 −1
�− sss 0 0 0 0

with

SB =
〈 ∑

i=u,d σ3i
〉
B

〈σ3B〉B
, TB =

〈∑
i=u,d σ3iτ3i

〉
B

〈σ3B〉B
, (31)

LB =
〈

1

3

∑
i=u,d

1i

〉
B

, IB =
〈∑

i=u,d

τ3i

〉
B

, (32)

where only the Hartree term is considered since we treat the
single-hyperon case. The relevant SU(6) matrix elements SB,
TB, LB, and IB are given in Table III.

A first general remark is that the Thomas precession—
which was already small for the nucleon SO potential due
to the compensation between the scalar and the vector terms,
and the small contribution of the ρ term—is also small for the
hyperon potential for the same reason; see Eq. (30).

Let us give explicitly the SO potential for the neutral
hyperons, namely, �, �0, and �0. To simplify the writing we
omit the prefactor 1/2RM2

N and we define Gσ = g2
σ /m2

σ , Gω =
g2

ω/m2
ω, Gρ = g2

ρ/m2
ρ , also keeping in mind that Gσ ≈ Gω ≈

(1 + 2κρ )Gρ ≈ 10Gρ in the case of medium- and strong-ρ
couplings:

Wso,� = 2

3
(Gσ − Gω )

dn0

dR
(l · s)�, (33)

Wso,�0 =
[

2

3
(Gσ − Gω ) + 4

3
Gω(2 + 2κω )

]
dn0

dR
(l · s)�0 ,

(34)

Wso,�0 =
{[

1

3
(Gσ − Gω ) − 1

3
Gω(2 + 2κω )

]
dn0

dR

−
[

Gρ + 1

5
Gρ (2 + 2κρ )

]
dn1

dR

}
(l · s)�0 , (35)

to be compared with the SO potential for neutrons, including
here the Fock contribution,

Wso,n =
[

W1 + W2

2

dn0

dR
− W1 − W2

2

dn1

R

]
(l · s)n

=
{[

5

4
(Gσ + Gω(1 + 2κω )) + 3

4
Gρ (1 + 2κρ )

]
dn0

dR

−
[

Gρ (1 + 2κρ ) + 1

4
(Gσ + Gω(1 + 2κω ))

]
dn1

dR

}
× (l · s)n. (36)

In the particular case of the � hyperon, Eq. (34), Thomas
precession is, however, the only term which survives, leading
to a strong reduction of the SO potential (by a factor of about
50, as in the experimental data) with respect to the neutron
case. Similar conclusions have also been obtained in various
analyses; see Refs. [21,37,38,47].

Concerning the � case, Brockmann [53] has predicted
a small spin-orbit splitting, in contrast with quark-model
predictions suggesting a strong spin-orbit splitting [20]. In
our case we predict for symmetric nuclei an increase of the
� SO potential by about thirty percent with respect to the
neutron case taken at the Hartree level, for N = Z , i.e., 41

�0 Ca
as a typical example. However, if the Fock term is taken into
account for the neutron case the Hartree term is increased by a
factor of 5/4 to which a ρ contribution has to be added. Hence,
for the weak-ρ coupling, the � SO potential is expected to
be very close to the neutron case whereas, for the medium- or
strong-ρ coupling, the � SO potential is expected to be twenty
percent smaller than the neutron SO potential. The QMC
model (see Fig. 3 of Ref. [47]) predicts a slight decrease in
the case of 41

�0 Ca of this order of magnitude. We also observe
that the � SO potential is dominated by the ω meson, which
induces a great stability in our results, almost independent of
the ρ scenario.

For the cascade case we predict, again for symmetric
nuclei, a significant reduction by a factor of one fifth with
respect to the neutron case with, in addition, a change of
sign (also observed in Ref. [47]). One peculiarity of the
� SO potential is that the contribution of the ω meson is
quenched. In asymmetric nuclei such as 209

Y Pb, the reduction
of the hyperon spin-orbit potential compared with the neutron
spin-orbit potential is even accentuated.

Finally, for the � hyperon there is no SO potential since its
is composed only of strange quarks.

So, in conclusion, we predict very different SO potentials
for hyperons based on different meson coupling mechanisms:
the cancellation of the boost contribution strongly quenches
the � SO potential, the dominance of the ω coupling for the
� SO potential induces a very stable prediction, which is 20%
smaller than for nucleons, and finally, the quenching of the
ω contribution for the � SO potential makes smaller by a
factor of order five depending on the ρ scenario compared
with nucleons with in addition a change of sign.

VI. CONCLUSIONS

In this paper, the predictions of a chiral relativistic ap-
proach for the SO potential in nuclei and hypernuclei are an-
alyzed. The basic inputs are introduced at the quark substruc-
ture level in such a way that the ω and ρ coupling constants are
compatible with the standard VDM phenomenology and that
the σ coupling allows a plausible saturation mechanism. The
strength of the anomalous magnetic moment generated from
the ρ-tensor coupling is also predicted from the VDM picture,
and we explore some departure from it. Specifically, we study
three distinct scenarios: the weak-coupling case (no ρ tensor),
the medium-coupling case (suggested from quark substructure
and VDM), and the strong-coupling case (deduced from pion-
nucleon scattering data). In finite nuclei, the important role
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of the ρ meson is underlined and we compare our results
to the usual approximations, where either the ρ meson is
neglected or the Fock term is not calculated (as in the RMF
approach). We show that the systematics of SO splitting in
finite nuclei could be used to better determine the strength of
the ρ meson coupling. An important result is that the Skyrme
phenomenology can be recovered only in the case of the
medium-to-strong ρ coupling.

The present model is based on the quark substructure of
the nucleon, sensitive both to the confinement mechanism and
to SU(3) symmetry for the values or relations between the σ -,
ω-, and ρ-meson coupling constants. The strong sensitivity
of the results on the ρ-meson strength—and in particular on
its tensor piece affecting the nucleon anomalous magnetic

moment—suggests that the confrontation of the present phe-
nomenological analysis for systematics in finite nuclei could
shed light on the quark substructure of nucleons.

The same chiral relativistic model is applied to hypernuclei
where it shows that the SO potential in these cases can be
very different. It is quenched for �, decreased by 20% for �,
and reduced by one fifth for the � case. For each case, the
mechanism is different and analyzed in the present approach.

Extending the present model to the description of finite
nuclei, it will be interesting to analyze the isotope shifts in the
Pb region since it is expected to be closely related to the spin-
orbit interaction as well [6]. In the future, we should include
other contributions, such as the π and δ mesons missing in the
present approach.
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