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In this paper we study mass relations of mirror nuclei, with our focus on local correlations of deviations
between theoretical nuclear masses and experimental data. With inclusion of such local correlations, we are
able to construct very accurate mass formulas of mirror nuclei. The root-mean-square deviation (RMSD) of our
formulas is ∼69 keV for nuclei with 10 � Z � 38 and Z > N + 1 in the AME2016 database, and, furthermore,
the RMSD value becomes only 51 keV if one excludes three experimental data for which experimental
uncertainties are larger than 150 keV. More than 240 proton-rich nuclear masses with mass number A below
80 are predicted within the theoretical accuracy of 300 keV and are tabulated in the Supplemental Material
of this paper. As a simple application, our predicted results are adopted to predict candidates with two-proton
radioactivity.
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I. INTRODUCTION

Nuclear mass M(N, Z ) [where N is the neutron number
and Z is the proton number] is a fundamental quantity in
nuclear physics and astrophysics. Many theoretical models
and approaches are developed to describe the state-of-the-
art atomic-mass evaluation database and to predict unknown
masses [1,2]. There are mainly two types of theoretical efforts,
global models such as in Refs. [3–5], and local mass relations
such as in Refs. [6–10].

In addition to these efforts, mass relations of mirror nuclei
have been investigated in Refs. [11–13]. Here we mention that
mass relations between mirror nuclei do present very accurate
descriptions of atomic masses: Most theories yield typically
deviations from experimental data 400–1000 keV for nuclei
with neutron number 10 � Z � 38 and Z > N , while the root-
mean-square deviation (RMSD) in Ref. [12] is 398 keV and
that in Ref. [13] is 120–290 keV (depending the value of Z −
N); in Ref. [14], the RMSD is 110–130 keV for nuclei with
Z > N and mass number A = 20–75. Mass relations of mirror
nuclei are based on the assumption that nuclear interaction
conserves the isospin symmetry, and with this assumption the
mass difference of two mirror nuclei is given by the Coulomb
interaction plus constant values related to the neutron-proton
mass difference.

The main purpose of this paper is to report local correla-
tions of deviations between theoretical nuclear masses and
experimental data for mass relations of mirror nuclei, and
with this correlation one is able to construct mass formulas
with remarkable accuracy. The RMSD value of our formulas
is ∼69 keV for nuclei with 10 � Z � 38 and Z > N + 1 in
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the AME2016 database; and the RMSD value is reduced to
only 51 keV if one excludes three experimental data for which
experimental uncertainties are larger than 150 keV.

This paper is organized as follows. In Sec. II, we give an
overview of previous mass relations of mirror nuclei, with a
brief discussion of pairing correlation of Coulomb energies
exhibited in our mass formulas; in Sec. III, we discuss local
correlations of deviations between theoretical nuclear masses
and experimental data and in Sec. IV adopt our predicted
results to predict candidates of nuclei with 2p radioactive
decay. We summarize our paper in Sec. V.

II. MASS RELATIONS OF MIRROR NUCLEI AND
COULOMB ENERGY

As masses of mirror nuclei are connected dominantly via
their Coulomb energies, it is useful to present a short review
on studies of Coulomb energy in atomic nuclei. Assuming a
spherical shape and uniform proton distribution with charge
radius Rc = r0A1/3, the Coulomb energy of a nucleus with
given (N, Z, A) is as follows:

EC = ac
Z2

A1/3
, ac = 3

5

e2

4πε0r0
, (1)

where ε0 is electric permittivity of vacuum and ac � 0.72
MeV if r0 is taken to be 1.2 fm. By using this simple
formula, we obtain mass difference between two mirror nu-
clei with (N, Z ) = (K − k, K ) and (K, K − k), denoted by
δm(K − k, K ) ≡ M(K − k, K ) − M(K, K − k), as follows:

δm(K − k, K ) = ack(2K − k)2/3 + k(mp − mn)

= acδEm + kC, (2)
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TABLE I. The parameters (ac, C) and RMSD (σ ) of Eqs. (2)–(4)
for nuclei with Z � 8. These parameters are optimized by using
the AME2016 [6] database, except for the 44V nucleus whose mass
is taken as in Ref. [15]. N is the number of nuclei involved in
parametrization.

δ k N ac (MeV) C (MeV) σ (MeV)

1 29 0.705(7) −1.703(95) 0.121
2 21 0.714(6) −1.777(69) 0.124

δm
3 19 0.713(8) −1.783(86) 0.204
4 6 0.727(14) −1.904(140) 0.149

δn 75 0.713(5) −1.802(54) 0.114
δp 75 0.707(5) −1.703(61) 0.117

where mp (mn) is mass of a hydrogen atom (a neutron), and we
denote δEm = k(2K − k)2/3 while C = mp − mn. For brevity,
we call Eq. (2) the δm relation. This relation was studied with
both ac and C taken as adjustable parameters depending on
the value of k [13]. For the Atomic Mass Evaluation 2016
database (AME2016) [6] database for 10 � K � 38 (except
that the experimental mass value of 44V in the AME2016
database is replaced by the latest value measured in Ref. [15])
as our inputs of M(K − k, K ), the resultant RMSD values
(denoted by σ ) are 121, 124, 204, and 149 keV for k = 1−4,
respectively, as listed in the first four rows (corresponding to
the δm) in Table I.

Similarly to Eq. (2), two new relations of mirror nuclei,
called δn ≡ δm(K − k, K ) − δm(K − k + 1, K ) relation and
δp ≡ δm(K − k, K ) − δm(K − k, K − 1) relation, were sug-
gested in Ref. [14]. Instead of two mirror nuclei involved in
the δm relation, both the δn and δp relations involve masses of
four nuclei. By using Eq. (2), one readily obtains

δn(K − k, K ) = acδEn + (mp − mn) = acδEn + C, (3)

δp(K − k, K ) = acδEp + (mp − mn) = acδEp + C, (4)

where C = mp − mn, as in Eq. (2); δEn and δEp originate from
the Coulomb energy, and are given in the following form:

δEn = k(2K − k)2/3 − (k − 1)(2K − k + 1)2/3, (5)

δEp = k(2K − k)2/3 − (k − 1)(2K − k − 1)2/3. (6)

The key point of δp and δn relations is the same as that
of Eq. (2), namely mass difference of two mirror nuclei is
dominated by their Coulomb energies and the neutron-proton
mass difference. The advantage of Eqs. (3) and (4) is that
one does not need the total Coulomb energies EC of two
mirror nuclei but instead one needs only the Coulomb energy
difference �EC of two neighboring nuclei; as �EC is always
small, uncertainties originated from the evaluation of the
Coulomb energy are expected to be small. The RMSDs are
114 and 117 keV for δn and δp, respectively, in the same region
of the δm relation discussed above. Another advantage of the
δp and δn relations is that parameters ac and C are independent
of k, which are much more convenient in extrapolations.

Clearly, the Coulomb energies in the above mass rela-
tions of mirror nuclei, δm, δp, and δn, are based on Eq. (1),
in which nuclei are treated as uniformly charged, classical

eletrostatic systems. However, atomic nuclei are very com-
plex quantum systems of protons and neutrons. All even-
even nuclei have spin zero in the ground states, which is
a reflection of pairing correlation between like-nucleons in
atomic nuclei. The Coulomb energy between protons is far
weak to prevent pairing. On the other hand, the Coulomb
energy depends on the spatial correlations, thus the odd-even
feature of the Coulomb energy is a rough measure of pairing,
as studied in Refs. [16–20]. To exemplify this pairing feature
exhibited in Coulomb energy, we investigate the difference of
δm for two neighboring nuclei with same k, namely δa(K −
k, K ) ≡ δMm(K − k, K ) − δMm(K − 1 − k, K − 1). Accord-
ing to Eq. (2),

δa(K − k, K ) = ac[k(2K − k)2/3 − k(2K − k − 2)2/3]. (7)

If one assumes k � 2K , then the above δa is reduced to

δa(K − k, K ) � ac

(
25/3

3K1/3

)
k. (8)

In this case the value of δa is proportional to k for given K .
In Fig. 1, we plot δa based on experimental masses (solid

circles in black) and based on Eq. (8) (dashed lines), for k =
1, 2, 3. The parameter ac for each k are optimized for the δm

relation, shown in Table I. For k = 1, 3 cases, one sees an odd-
even staggering of experimental-data-based δa with respect to
the results given by Eq. (8). This feature is understood in terms
of the seniority scheme for Coulomb interaction [18,21,22].

According to Refs. [21,22], the expectation of an arbitrary
two-body interaction with respect to the lowest seniority
ground state of an identical-particle system is given as fol-
lows:

V ( jn) = Ṽ + nε j + n(n − 1)

2
α +

[n

2

]
β, (9)

where j represents the angular momentum of a single-particle
state in a schematic, single- j shell, and n is the number of
valence particles (n = Z − Z0, Z0 is the magic number of the
core). Ṽ represents the contribution of interactions within the
full filled shells, and ε j is the effective single-particle energy.
The last two terms are derived from the interactions within
the j shell, where α, β are quantities related to the two-body
interaction matrix elements [22], and [n/2] denotes the largest
integer not greater than n/2.

Now we make use of Eq. (9) to calculate δa =
M(K − k, K ) − M(K − k − 1, K − 1) − M(K, K − k) +
M(K − 1, K − k − 1). From Eq. (9), one derives the
contributions from Coulomb interactions are as follows:

δa(K − k, K ) = V ( jn) − V ( jn−1) − V ( jn−k ) + V ( jn−k−1)

= kα + 1 − (−1)k

2
(−1)Kβ, (10)

where n, n − 1, n − k, and n − k − 1 are the valence proton
numbers of corresponding nuclei involved in δa. This simple
relation shows that there are two dominant parts in δa: One
is approximately proportional to k and consistent with the
feature exhibited in Eq. (8), and the other is an odd-even term
which depends on the values of k and K .
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FIG. 1. Experimental and theoretical values of δa relation versus
K . Panels (a), (b), and (c) correspond to k = 1, 2, and 3, respectively.
Experimental data (solid balls in black) are taken from the AME2016
database [6] except that of 44V from Ref. [15]. Theoretical results,
calculated by using Eq. (7), are plotted in dashed lines.

From Eqs. (2)–(4) and Eq. (10), we propose new mass
relations as below.

δm = acδEm + kC + 1 − (−1)k

2

k + (−1)K

2
β, (11)

δn = acδEn + C + 1 − (−1)K−k

2
β, (12)

δp = acδEp + C + 1 + (−1)K

2
β, (13)

where Em, En, and Ep are the same as in Eqs. (2)–(4).
As the odd-even feature of Coulomb energy is striking,

the inclusion of odd-even term is expected to improve these
formulas. Without details we note that the RMSD value of
Eq. (11) becomes 112 and 192 keV for k = 1 and 3, for which
the RMSD is reduced by 9 and 12 keV, respectively, and the
RMSD values of Eqs. (12) and (13) become 104 and 98 keV,
respectively (the RMSD value reduced by 10 and 19 keV) if
one includes one more parameter β as above.

Therefore, the odd-even feature is interesting, and the im-
provement with simple odd-even correction is not substantial.
One has to resort more sophisticated correlations in order to
refine the accuracy of predictions for mass relations of mirror
nuclei.

III. MASS RELATIONS OF MIRROR NUCLEI WITH
LOCAL CORRELATIONS

In the last section, we improved the relations of δm, δn,
and δp by considering the odd-even term of Coulomb energy,
originated from pairing correlation of protons. However, the
value of β varies sizably in different shells. In order to make
predictions as accurate as possible, evolution of β and shell
effect should be considered. In this section, we report local
correlation among deviations of δm, δn, and δp mass relations
given in Eqs. (2)–(4), with respect to those extracted from
experimental data.

To proceed our discussion, we define the deviations of
theoretical δ values [δm, δn, and δp in Eqs. (2)–(4)] from δ

values extracted from the AME2016 database [6] and denote
these deviations D,

Dm = δ(exp)
m − acδEm − C,

Dn = δ(exp)
n − acδEn − C,

Dp = δ(exp)
p − acδEp − C.

We note that the values of ac and C in the above three
definitions of D are optimized for Eqs. (2)–(4), respectively.

With this definition, we investigate the correlations be-
tween Dm(K − 3, K ) and Dm(K − 1, K ), Dn(K − k, K ) and
Dn(K − k, K − 1), and Dp(K − k, K ) and Dp(K − k + 1, K ).
The correlated pair of D are so chosen that the values of
β in Eq. (11)–(13) are canceled out, and in such cases the
corresponding pair of D are expected to be correlated. In
other words, these three correlations have considered the odd-
even features in Eqs. (11)–(13) and further have considered
the variations of β in different regions and shells, because
correlated D values correspond to two neighboring nuclei with
the same odd-even parity of Z and N .

Figure 2 plots such correlated D values, where linear
correlation is seen. Therefore, we assume

Dm(K − k, K ) = λmDm(K − k + 2, K ), (14)

Dn(K − k, K ) = λnDn(K − k, K − 1), (15)

Dp(K − k, K ) = λpDp(K − k + 1, K ), (16)

where λm, λn, and λp are adjustable parameters. The red lines
in Fig. 2 are plotted with optimized λ values. In Table II, we
list optimized λ and Pearson correlation coefficient r which
measures the degree of linear correlation between variables.
The value of r ∼ 0.8 corresponds to reasonably high linear
correlation.

Now we investigate the accuracy of mass relations with
such local correlation for the AME2016 database. The pro-
cedure to apply our mass formulas with local correlations is
as follows. We first make use of Eqs. (2)–(4) and obtain

M (m)(N, Z ) = M(Z, N ) + acδEm(N, Z ) + C, (17)

024330-3



MA, ZONG, ZHAO, AND ARIMA PHYSICAL REVIEW C 102, 024330 (2020)

FIG. 2. Correlations between deviations between theoretical re-
sults and experimental data. The deviations are denoted by Dm, Dn,
and Dp [defined in Eqs. (14), (15), and (16)], respectively, for δm, δn,
and δp. (a) Correlation between Dm(K − 3, K ) and Dm(K − 1, K ),
(b) correlation between Dn(K − k, K ) and D(K − k, K − 1), and
(c) correlation between Dp(K − k, K ) and Dp(K − k + 1, K ). The
red lines are plotted by a slope y = λx and used to guide eyes. We
put the error bars for cases which involves of large experimental
uncertainties.

M (n)(N, Z ) = M(Z, N ) + M(N + 1, Z ) − M(Z, N + 1)

+ acδEn(N, Z ) + C, (18)

M (p)(N, Z ) = M(Z, N ) + M(N, Z − 1) − M(Z − 1, N )

+ acδEp(N, Z ) + C, (19)

where predicted masses by using Eqs. (2)–(4) are denoted by
a superscript “(m),” “(n),” “(p),” respectively. This step is the
same as in Refs. [13,14]. We next considered the correction of

TABLE II. Linear correlation coefficient λ and RMSD (denoted
by σth) of mass relations with correction of local correlations [namely
by using Eqs. (20)–(22)] and Pearson correlation coefficient r for D
[Dm, Dn, and Dp]. σ ′

th is the same as σth but excluding three nuclei,
28S, 40Ti, and 55Cu, whose experimental uncertainties are larger than
150 keV. The RMSD (denoted by σ0) by using Eqs. (2)–(4) are
presented for convenience.

D λ r σ0 σth/σ
′
th (MeV)

Dm 1.642 0.846 0.204 0.115/0.110
Dn 0.854 0.766 0.107 0.069/0.051
Dp 0.888 0.786 0.113 0.069/0.051

D, and our predicted mass is given by

M (pred,m)(N, Z ) = M (m)(N, Z ) + Dm(N, Z ), (20)

M (pred,n)(N, Z ) = M (n)(N, Z ) + Dn(N, Z ), (21)

M (pred,p)(N, Z ) = M (p)(N, Z ) + Dp(N, Z ). (22)

Let us denote the RMSD values by using Eqs. (2)–(4)
by σ0, and those of Eqs. (20)–(22) by σth. Our numerical
experiments show that the value of σth by using Eq. (20) is
115 keV for k = 3, while the corresponding σ0 is 204 keV
(without the correction of local correlation as above). Very
remarkably, one obtains that σth by using Eqs. (21)–(22) for
k = 2–4 are 69 keV, in comparison with the RMSD values,
107 keV and 113 keV, for Eqs. (3) and (4), respectively.

It is worthy to note that experimental mass uncertainties
of 28S, 40Ti, and 55Cu are larger than 150 keV; if we exclude
experimental masses values of those three nuclei from our nu-
merical calculations, Eqs. (20)–(22) are even more accurate:
the RMSD values using Eqs. (20)–(22) with those three nuclei
excluded, denoted by σ ′ in Table II, are 110, 51, and 51 keV,
respectively.

These RMSD values of Eqs. (20)–(22) are by far smaller
than those of any other methods in the market, either global
approaches such as the DZ28 [3], FRDM12 [4], and WS4
[5], the RMSD values of which are 451, 996, and 406 keV,
respectively, and local relations of generalized Garvey-Kelson
mass formulas [12], the RMSD value of which is 398 keV, in
comparison with the AME2016 database [13], for the same
set of nuclei.

It is of interest to investigate the predictive power of our
formulas with corrections of local correlation, and here we
use Eqs. (21) and (22). This is exemplified by an extrapolation
from the AME1995 database [23] to the AME2016 database.
The procedure of our extrapolation is as follows:

(i) The parameters ac and C in Eqs. (3) and (4) and
λ in Eqs. (15) and (16) are optimized by using the
AME1995 [23]);

(ii) By using the optimized values of ac and C, we obtain
our preliminary values of predicted masses by using
Eq. (18) and/or Eq. (19), denoted by M (n)(N, Z )
and/or M (p)(N, Z ), respectively;

(iii) Next we calculate Dn and Dp, and optimize the value
of λ;

024330-4



MASS RELATIONS OF MIRROR NUCLEI WITH LOCAL … PHYSICAL REVIEW C 102, 024330 (2020)

TABLE III. The results of extrapolation from AME1995
database [23] to AME2016 database [6]. The values under “Expt.”
are taken from the AME2016 database, except for 44V taken from
Ref. [15]; “A-W” corresponds to the Audi-Wapstra extrapolation in
the AME1995 database [23]; “Ref. [14]” corresponds to predicted
results by using the δn and δp relations, i.e., Eqs. (3) and (4) in this
paper; and the column “This work” corresponds to predicted results
by using Eqs. (21) and (22), proposed in this paper. In the last row we
list the RMSDs in comparison with results in the AME2016 database.
All values are in units of MeV.

Nuclei Expt. A-W Ref. [14] This work

41Ti −15.698(28) −15.713(35) −15.634(75) −15.625(75)
43V −17.916(43) −18.024(233) −17.657(89) −17.793(89)
44V −23.827(20) −23.846(84) −23.687(76) −23.805(76)
45Cr −19.515(35) −19.412(102) −19.415(87) −19.482(87)
47Mn −22.566(32) −22.263(158) −22.454(90) −22.527(90)
48Mn −29.296(7) −28.997(71) −29.226(77) −29.301(77)
49Fe −24.751(24) −24.582(158) −24.641(95) −24.676(95)
51Co −27.342(48) −27.274(149) −27.318(96) −27.338(96)
52Co −34.361(8) −33.916(65) −34.351(76) −34.376(76)
53Ni −29.631(25) −29.379(158) −29.645(92) −29.607(92)
55Cu −31.635(156) −31.624(298) −31.699(94) −31.715(94)
56Cu −38.643(15) −38.601(140) −38.617(76) −38.580(76)

RMSD − 0.204 0.106 0.058

(iv) With optimized λ, we readily calculate D values
to be adopted in our extrapolation, namely from
Dn(K − k, K − 1) to Dn(K − k, K ) or from Dn(K −
k + 1, K ) to Dn(K − k, K );

(v) M (pred) are calculated by using Eqs. (21) and (22).
(vi) Our predicted mass values are taken to be the

uncertainty-weighted average of M (pred).
(vii) Evaluation of theoretical uncertainties for predicted

masses follow the same procedure as in previous
studies, e.g., Refs. [8,14].

In Table III and Fig. 3, we present our predicted the masses
of 12 nuclei, which were not accessible in the AME1995
database [23] but compiled in the AME2016, with k = 2, 3, 4.
For comparison we also present the predicted results of
Audi-Wapstra extrapolation (denoted A-W) in the AME1995
database and those predicted in Ref. [14]. The RMSD values
with respect to the AME2016 database are listed in the last
row of Table III (we note that we replace the mass of the
44V nucleus in the AME2016 database by that in a recent ex-
perimental measurement [15]). Clearly, our predicted masses
are, in general, the most competitive; our RMSD value of our
extrapolated results for these nuclei is below 60 keV.

Encouraged by the remarkable agreement between our
predicted results with experimental data, here we also predict
the three experimental data (28S, 40Ti, and 55Cu) for which
uncertainties are larger than 150 keV, based on other data com-
piled in the AME2016 database (the result for 44V is replaced
by that in Ref. [15]). Our theoretical mass excesses of 28S, 40Ti
and 55Cu [whose experimental mass excesses of 28S, 40Ti, and
55Cu are 4073 (160) keV, −8850(160) keV, and −31635(156)
keV, respectively] are 4205(86) keV, −9105(84) keV, and

FIG. 3. Deviations between experimental masses (denoted by
“AME2016,” solid balls in black) and predicted values in the
AME1995 database (denoted by “A-W,” solid squares in blue) [23],
predicted values by Ref. [14] (denoted by “Ref. [14],” solid up-
triangles in green), and predicted values by using Eqs. (21) and (22)
in this work (denoted by “This work,” down-triangles in red). The
experimental mass of 44V is taken from Ref. [15]. One sees that our
predicted results for these nuclei agree best with experimental data.
Panels (a)–(l) correspond to the same 12 nuclei listed in Table III.

−31798 (82) keV, respectively. As a by-product of this pa-
per, we enclose of our predictions of totally 244 proton-
rich nuclear masses which are experimentally unaccessible
at present, for mass number 21 � A � 81 and theoretical
uncertainties below 300 keV, in the Supplemental Material of
this paper [24].

IV. PREDICTION OF TWO-PROTON RADIOACTIVITY
AND PROTON DRIP LINES

Because nuclei studied in this paper are of proton-rich type,
and because our formulas are very accurate, one immediate
application of our extrapolated nuclear masses is to discuss
candidates of two-proton (2p) radioactivity, which has drawn
enormous attention in recent years. We define p and 2p decay
energies as follows:

Qp(N, Z ) = M(N, Z ) − M(N, Z − 1) − Mp, (23)

Q2p(N, Z ) = M(N, Z ) − M(N, Z − 2) − 2Mp. (24)

One requirement of 2p radioactivity for given nucleus
is its Qp < 0, and meanwhile Q2p > 0. Among proton-rich
nuclei of our predicted mass database (see the Supplemental
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TABLE IV. Predicted two-proton decay energy Q2p, one-proton
decay energy Qp, and half-life T1/2 for a number of candidates with
2p radioactivity.

Nuclei Q2p (MeV) Qp (MeV) log10T1/2(s) [32]

34Ca 2.152(118) −0.203(151) −11.44+0.38
−0.35

38Ti 2.764(142) −0.124(168) −11.98+0.34
−0.32

39Ti 0.939(127) −0.159(151) −2.77+1.66
−1.35

42Cr 0.964(173) −0.895(198) −1.33+2.44
−1.86

59Ge 1.242(175) −0.045(199) 1.70+2.09
−1.69

66Kr 2.929(244) −0.021(256) −5.74+0.85
−0.75

70Sr 3.385(268) −0.076(280) −6.24+0.78
−0.70

71Sr 2.171(242) −0.179(257) −1.61+1.42
−1.20

Material), there have been five nuclei, 19Mg, 45Fe, 48Ni, 54Zn,
and 67Kr, that have been reported to have 2p radioactiv-
ity in Refs. [25–31]. Their experimental 2p decay energies
Qexp

2p are 0.750(50) [6,30], 1.154(16) [6,29], 1.305(37) [6],
1.480(20) [6,28], and 1.690(17) [31] MeV, respectively. The
corresponding theoretical values based on the extrapolation of
this work are 0.819(92), 1.198(202), 1.384(234), 1.600(178),
and 1.574(215) MeV. One sees that our predicted Q2p are quite
close to these experimental values, although we extend our
predictions from k � 4 to k = 5–8.

In addition to these experimentally known 2p-radioactive
nuclei, it is interesting to search other candidates which satisfy
Qp < 0 and Q2p > 0. For convenience, we also present a
rough estimation of half-lives for these candidates by using
an empirical formula suggested in Ref. [32],

logT1/2 = [(a × l ) + b]
(Z − 2)0.8√

Q2p
+ [(c × l ) + d], (25)

where the values of a, b, c, d are 0.1578, 1.9474, −1.8795,
and −24.847, respectively. T1/2 is the half-life of 2p radioac-
tivity in unit of second, Q2p is in unit of MeV, and l is the
orbital angular momentum carried by the protons and set to
zero by the spin-parity selection rule [33].

Based on the database of Supplemental Material in this
paper, eight candidate nuclei, 34Ca, 38Ti, 39Ti, 42Cr, 59Ge,
66Kr, 70Sr, 71Sr, have their 2p-radioactive half-lives below
100 s and thus might be suitable for experimental observation
of 2p radioactive decay. For convenience, our predicted Q2p,
Qp, and logT1/2 are listed in Table IV. Interestingly, the first
five candidates are also predicted in Ref. [33].

In Fig. 4 we show the predicted proton and diproton drip
lines based on the calculation of this work. The eight 2p-
radioactive candidates that we predict in this paper are de-
noted in red, and those five nuclei which were experimentally
suggested to have 2p radioactivity are denoted in purple.
The proton drip line is plotted where two isotones satisfying
Qp(N, Z ) < 0 and Qp(N, Z + 1) > 0 with largest Z , while the
diproton drip line is plotted where two isotones satisfying
Q2p(N, Z ) < 0 and Q2p(N, Z + 1) > 0 with smallest Z . Thus
2p-radioactive candidates are expected to locate between
these two lines. We note that 54Zn locates outside the drip

FIG. 4. The predicted proton and diproton drip lines based on
predicted masses in this work. (a) 12 � Z � 20, (b) 21 � Z � 29,
and (c) 30 � Z � 38. Nuclear symbols in red are predicted here to
be candidates with 2p radioactivity, and those in purple have been
experimentally suggested to have 2p radioactivity (and are consistent
with predictions in this work).

lines, whereas the predicted Qp(24, 30) = −28 ± 225 keV,
which is quite close to 0 and may not affect its 2p radioactivity
according to our extrapolation.

V. SUMMARY

To summarize, in this paper we study mass relations of
mirror nuclei with local correlations. We revisit the odd-even
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staggering of Coulomb energy and introduce correlations of
deviations between experimental data and our mass relations.
With considering this correlation, we are able to construct
formulas with the RMSD values below 70 keV; furthermore, if
we exclude three experimental data of three nuclei, 28S, 40Ti,
and 55Cu, whose mass uncertainties are larger than 150 keV,
the RMSD of our formulas is only 51 keV.

We demonstrate the strong predictive power of our formu-
las by numerical experiment. We predict masses in the region
of our interest based on the AME1995 database [23] and
compare our predicted results with those in the AME2016.
The RMSD of our predicted results, which are available in
the AME2016 database but not accessible in the AME1995
database [23], is remarkably small (58 keV).

We predict more than 240 masses of proton-rich nuclei
with proton number from 10 to 44, with the requirement
of uncertainties below 300 keV, and enclose them in the
Supplemental Material of this paper. As a by-product of these
predictions, we predict one-proton and two-proton drip lines
in the same region and candidates with 2p radioactivity.
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