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Using isotope shift for testing nuclear theory: The case of nobelium isotopes
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We calculate field isotope shifts for nobelium atoms using nuclear charge distributions which come from
different nuclear models. We demonstrate that comparing calculated isotope shifts with experiment can serve as a
testing ground for nuclear theories. It also provides a way of extracting parameters of nuclear charge distribution
beyond nuclear root mean square (rms) radius, e.g., parameter of quadrupole deformation β. The measurements
of at least two atomic transitions is needed to disentangle the contributions of the changes in deformation and
nuclear rms radius into field isotopic shift. We argue that a previous interpretation of the isotope measurements
in terms of δ〈r2〉 between 252,254No isotopes should be amended when nuclear deformation is taken into account.
We calculate isotope shifts for other known isotopes and for hypothetically metastable isotope 286No for which
the predictions of nuclear models differ substantially.
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I. INTRODUCTION

Studying nuclear structure of superheavy elements (SHE)
(Z > 100) is an important area of research taking nuclear
physics to unexplored territory and potentially leading to the
hypothetical island of stability [1–6]. The sources of exper-
imental information are very limited since the SHE are not
found in nature but produced at accelerators at a very low
production rate. In addition, all produced isotopes are neutron-
poor and have short lifetimes (see, e.g., reviews [1–6]). Using
atomic spectroscopy to measure isotope shift and hyperfine
structure (hfs) is one of the promising methods to proceed.
The part of isotope shift caused by the change of nuclear
volume and called “field isotope shift” (FIS) is widely used to
extract the change of nuclear root-mean-square (rms) radius
between two isotopes [7]. In our previous paper [8] we argue
that it can also be used to study nuclear deformation. For
example, using different dependence of atomic transitions on
nuclear structure and having FIS measurements for at least
two transitions, we could extract not only the change of rms
radius but also the change in quadrupole deformation param-
eter β. Superheavy element E120 (Z = 120) was used in [8]
to illustrate that if we take nuclear parameters from nuclear
theory, the effect of nuclear deformation on FIS is sufficiently
large to be detected by modern spectroscopic methods. The
E120 element was chosen for illustration purposes because of
the large value of the effect. However, real measurements for
E120 are not expected any time soon. The heaviest element
for which isotope shift and hfs measurements are available is
nobelium (Z = 102) [9,10]. The isotope shift is measured for
the 252,253,254No isotopes and hfs is measured for the 253No
isotope.

In this work we study FIS of nobelium in detail. We cal-
culate nuclear charge densities using several nuclear models

based on covariant density functional theory [11]. Then we
employ these densities in atomic calculations to get the FIS
and compare it to experiment. We take a closer look at the
interpretation of the data and argue that nuclear deformation
should be taken into account in the analysis to reduce uncer-
tainties below 10%.

We present a formula which expresses FIS via nuclear pa-
rameters. The formula is similar to what was suggested in [8].
It is an analog of the standard formula FIS = Fδ〈r2〉 but has
more terms proportional to δ〈r2〉2, �β2, �β3. The parameters
of the formula are found from the fitting of the calculated FIS.
The formula is more accurate than the standard one for heavy
nuclei. It can be used for predicting FIS for different isotopes
if nuclear parameters are taken from nuclear theory. Since the
formula contains terms related to nuclear deformation, it can
be used to extract the values of the change of the parameter
of nuclear quadrupole deformation �β similar to how the
standard formula is used to extract the change of nuclear rms
radius δ〈r2〉. FIS for at least two atomic transitions is needed
for this purpose. Currently the isotope shift has been measured
for only one transition in nobelium. Therefore, we strongly
argue in favor of new measurements and present theoretical
data for three more transitions.

Finally, we make predictions for the values of the isotope
shift for the hypothetically metastable isotope with neutron
number N = 184 which has spherical shape.

II. CALCULATIONS

In this work we perform nuclear and atomic calculations.
Nuclear calculations are used to provide nuclear charge den-
sities which are connected then to observable effects, such as
isotope shifts via atomic structure calculations.
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A. Nuclear calculations

The nuclear properties have been calculated within the
covariant density functional theory (CDFT) [11] using several
state-of-the-art covariant energy density functionals (CEDFs)
such as DD-ME2 [12], DD-MEδ [13], NL3* [14], PC-PK1
[15], and DD-PC1 [16]. In the CDFT, the nucleus is consid-
ered as a system of A nucleons which interact via the exchange
of different mesons. The above-mentioned CEDFs represent
three major classes of covariant density functional models,
namely, the nonlinear meson-nucleon coupling model (NL)
(represented by the NL3* functional), the density-dependent
meson exchange (DD-ME) model (represented by the DD-
ME2 and DD-MEδ functionals), and point coupling (PC)
model (represented by the DD-PC1 and PC-PK1 functionals).
The main differences between them lie in the treatment of
the interaction range and density dependence. In the NL and
DD-ME models, the interaction has a finite range which is
determined by the mass of the mesons. For fixed density it is
of Yukawa type and the range is given by the inverse of the
meson masses. The third class of models (PC model) relies
on the fact that for large meson masses, the meson propagator
can be expanded in terms of this range, leading in zeroth order
to δ forces and higher order derivative terms. Thus, in the
PC model the zero-range point-coupling interaction is used
instead of the meson exchange [11]. The NL, DD-ME, and
PC models typically contain six to nine parameters which are
fitted to experimental data on finite nuclei and nuclear matter
properties, see Sec. II in Ref. [17] for details.

Pairing correlations play an important role in all open shell
nuclei. In the present article, they are taken into account in the
framework of relativistic Hartree-Bogoliubov (RHB) theory
in which the RHB equations for the fermions are given by
[11] (

ĥD − λ �̂

−�̂∗ −ĥ ∗
D + λ

)(
U (r)
V (r)

)
k

= Ek

(
U (r)
V (r)

)
k

. (1)

Here, ĥD is the Dirac Hamiltonian for the nucleons with mass
m; λ is the chemical potential defined by the constraints on the
average particle number for protons and neutrons; Uk (r) and
Vk (r) are quasiparticle Dirac spinors [11,17]; and Ek denotes
the quasiparticle energies. The Dirac Hamiltonian

ĥD = αp + V0 + β(m + S) (2)

contains an attractive scalar potential

S(r) = gσ σ (r) (3)

and a repulsive vector potential

V0(r) = gωω0(r) + gρτ3ρ0(r) + eA0(r). (4)

Since the absolute majority of nuclei are known to be axially
and reflection symmetric in their ground states, we consider
only axial and parity-conserving intrinsic states and solve the
RHB equations in an axially deformed harmonic oscillator
basis [17]. Separable pairing of the finite range of Ref. [18] is
used in the particle-particle channel of the RHB calculations.

The accuracy of the description of the ground state proper-
ties (such as binding energies, charge radii, etc.) of even-even
nuclei has been investigated globally in Refs. [17,19]. The

best global description of experimental data on charge radii
has been achieved by the DD-ME2 functional (characterized
by a rms deviation of �rrms

ch = 0.0230 fm), followed by DD-
PC1 (which also provides best global description of binding
energies), NL3*, and finally by DD-MEδ (characterized by
a rms deviation of �rrms

ch = 0.0329 fm) (see Table VI in
Ref. [17] and Fig. 7 in Ref. [19]). However, the spread of
rms deviations for charge radii between the above-mentioned
functionals is rather small [�(�rrms

ch ) = 0.0099 fm]. On the
other hand, the charge radii of some isotopic chains (espe-
cially, those with high proton number Z) are not very accu-
rately measured. Thus, strictly speaking we have to consider
the accuracy of the description of charge radii by these func-
tionals as comparable. Note that the nobelium nuclei under
study have well-pronounced prolate or spherical minima in
potential energy surfaces. Thus, the equilibrium quadrupole
deformations obtained in static (CDFT) and dynamic (five-
dimensional collective Hamiltonian based on CDFT) calcu-
lations are expected to be very similar (see Ref. [20] for
examples in higher Z superheavy nuclei).

In the context of the study of isotopic shifts in superheavy
elements it is necessary to mention substantial differences
in model predictions for the nuclei located beyond currently
measured. This is contrary to the fact that nuclear theories in
general agree on the properties of SHE which have already
been measured in experiment (see, for example, Figs. 7 and 8
in Ref. [21]). For example, some CEDFs (such as NL3*, DD-
ME2, and PC-PK1) predict a band of spherical nuclei along
and near the proton number Z = 120 and neutron number
N = 184 (see Figs. 6(a), (b), and (e) in Ref. [21]). How-
ever, for other functionals (DD-PC1 and DD-MEδ) oblate
deformed shapes dominate at and in the vicinity of these lines
(see Figs. 6(c) and (d) in Ref. [21]). Nuclear measurements
of the energies of the excited 2+ states are needed to discrim-
inate experimentally between spherical and oblate deformed
ground states. Such experiments are not possible nowadays.
It would be interesting to see whether atomic measurements
would be able to help with such a discrimination.

B. Atomic calculations

We start from an estimation of mass shift to demonstrate
that it can be neglected. Mass shift is the sum of normal
mass shift and specific mass shift which has the same order
of magnitude (see, e.g., [22]). In the nonrelativistic limit
the normal mass shift (NMS) between isotopes with mass
numbers A1 and A2 is given by

δνNMS =
(

1

A1
− 1

A2

)
νexp

1822.888
. (5)

Substituting numbers for the 1S0 − 1P1 transition in 254No and
252No we get δνNMS = 5 × 10−4 cm−1. Total mass shift can
be several times larger than the normal mass shift, therefore a
reasonable estimation for the mass shift in nobelium stands at
≈10−3 cm−1. If the uncertainty of the isotope shift measure-
ments is smaller than this value, then taking into account mass
shift and using the King plot to separate mass shift and field
shift might be important for an accurate interpretation of the

024326-2



USING ISOTOPE SHIFT FOR TESTING NUCLEAR … PHYSICAL REVIEW C 102, 024326 (2020)

measurements. We leave this for future work. In this work we
focus on FIS.

Nuclear calculations produce nuclear charge density as a
two-dimensional function ρ(z, r⊥), where z is the coordinate
along the axis of symmetry and r⊥ is the radial coordinate in
the direction perpendicular to the axis of symmetry. Atomic
electrons feel the nucleus as a spherically symmetric sys-
tem, averaged over nuclear rotations. This is because atomic
transition frequencies are three orders of magnitude smaller
than nuclear rotational transition frequencies (see, e.g., [23]).
Note that a correction to this picture has been calculated
for hydrogen-like ions where electron frequencies are much
bigger. Even in this case the correction is small [24]. There-
fore, we transform ρ(z, r⊥) into spherical coordinates ρ(r, θ )
and average it over θ , ρ(r) = ∫

ρ(r, θ )dθ . The density ρ is
normalized by the condition

∫
ρdV = Z . In the end we have

nuclear charge density in numerical form rather than a set of
parameters as in the case of using standard Fermi distribution.
However, it is often useful to have such parameters as nuclear
rms radius Rp, parameter of quadrupole deformation β, etc.
Having them allows to study the sensitivity of observable
effects (isotope shift in our case) to the change in the values
of these parameters.

In our previous work [8] we studied various types of
nuclear charge distribution variations including quadrupole
deformation, change of nuclear skin thickness, and density
suppression in the nuclear center. The effect of the density
suppression is significantly smaller than the effect of the
deformation and hardly can be separated using experimental
FIS data. It is known from the nuclear models that the skin
thickness is approximately the same in different nuclei and it
hardly produces a significant effect on FIS. Moreover, the ef-
fect of the skin thickness on FIS cannot be separated from the
effect of the deformation [25], numerically they are equiva-
lent. Therefore, we concentrate on the effect of the quadrupole
deformation β. In the end, the answer to the question which
type of shape variation really takes place would come from
nuclear theory. We use different nuclear models to calculate
FIS and compare the results with experiment. A particular
nuclear model and its predictions would be endorsed by the
result.

It was also demonstrated in Ref. [8] that the three types
of shape variation could be distinguished from the change of
nuclear rms radius because of the different behavior of the
p1/2 and p3/2 states (see Ref. [8] for more details). Therefore
in this work we restrict our discussion to just two parameters,
Rp and β. Their values are found by integrating nuclear charge
density.

An alternative approach is possible in which the calcula-
tions start from the standard Fermi distribution for nuclear
density and the effect of nuclear deformation is modeled by
increasing the nuclear skin sickness. In this approach the
discrimination between nuclear models would be done on the
final stage of the study when the calculated isotope shift is
compared to experiment.

The results of the calculations are presented in a form in
which electron and nuclear variables are factorized, so that
the electron structure factors do not depend on the nuclear
isotope and therefore are not affected by the nuclear calcu-

lation uncertainty. The aim of atomic calculations is to find
these electron structure factors. To do this we use nuclear
charge densities in a particular nuclear model for two different
isotopes and integrate them to get nuclear potentials V1 and
V2. It is assumed on this stage that nuclear density is known
exactly. All nuclear uncertainties are accounted for in the
actual values of the nuclear factors. FIS can be found by direct
comparison of the calculations for two different isotopes. This
works well for isotopes which differ by a large number of
neutrons, �N � 1. For neighboring isotopes, where �N ≈
1, the FIS is small and its calculated value is affected by
numerical uncertainties. To suppress numerical noise we use
the so-called finite field method [27]. We construct the nuclear
potential according to the formula VN = V1 + λ(V2 − V1),
where V1 and V2 are nuclear potentials for two isotopes and
λ is a numerical factor which can be large to enhance the
difference between two isotopes and thus suppress numerical
noise. First, the calculations are done for λ = 0 to obtain
reference transition frequencies. Then, they are performed for
several values of λ > 1 and the frequencies are extrapolated
to λ = 1. In practice, we use λ = 2 and λ = 4.

To perform electron structure calculations we start from
the so-called CIPT method (configuration interaction with
perturbation theory) [28]. It treats nobelium as a system
with 16 external electrons allowing excitations from the 5 f
subshell into the CI space. The aim of this study is to check
whether the mixing of the 4 f 147snp (n = 7, 8) and 4 f 1372s6d
configurations has any significance for our states of interest.
Such study was performed before [10,29] for the lowest odd
states of No, 7s7p 3Po

1 and 1Po
1. The answer was negative. Now

we want to extend our study to two more states 7s8p 3Po
1

and 1Po
1. Therefore, we performed the CIPT calculations

again and found that there is no strong mixing of our states
of interest with the state involving excitations from the 5 f
shell. This means that nobelium can be treated as an atom
with two valence electrons above closed shells. We use the
well-established CI + MBPT method [30,31] to perform the
calculations.

The effective CI hamiltonian has a form

HCI(r1, r2) = ĥ1(r1) + ĥ1(r2) + e2

r12
+ �2(r1, r2), (6)

where ĥ1 is the single-electron part of the Hamiltonian, which
is the sum of the Hartree-Fock operator ĤHF and correlation
potential �1, ĥ1 = ĤHF + �1. Correlation potential �1 is
an operator which includes correlations between a particular
valence electron and the electrons in the core. The operator �2

can be understood as a screening of the Coulomb interaction
between valence electrons by core electrons. We calculate
�1 and �2 in second order of the many-body perturbation
theory. The contribution of higher orders is relatively small
but not totally negligible [29,32,33]. To simulate them, we
rescale the �1 operator in the s and p waves to fit the
known energy of the 1S0 − 1Po

1 transition, �1(s) → 0.8�1(s),
�1(p) → 0.94�1(p). The rescaling helps to make more ac-
curate predictions for the positions of other odd levels. It
also improves the wave functions used to calculate transition
amplitudes.
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TABLE I. Excitation energies, electric dipole transition ampli-
tudes and rates of spontaneous decay via electric dipole transitions
to the ground state for four odd states of nobelium.

Upper Excitation energies (cm−1) Aab Transition

state Present Exp. [9] CI+all [29] (a.u.) rate (s−1)

7s7p 3Po
1 21213 21042 1.37 1.2 × 107

7s7p 1Po
1 29963 29961 30203 4.24 3.3 × 108

7s8p 3Po
1 41482 0.097 3.6 × 105

7s8p 1Po
1 42926 0.86 4.0 × 107

We perform the calculations of the electric dipole transition
rates between the ground and four lowest in energy odd
states to see whether the rates are sufficiently large for the
measurements. We use random-phase approximation (RPA)
for the calculations. The RPA equations for the core states
have a form

(ĤHF + εc)δψc = −(d + δV )ψc, (7)

where d is electric dipole operator, the index c numerates the
states in the core, δψc is the correction to the core orbital
caused by external electric field, and δV is the correction to the
self-consistent Hartree-Fock potential caused by the change of
all core states. The RPA equations are solved self-consistently
for all states in the core. As a result, we have δV which is used
to calculate transition amplitudes between valence states

Aab = 〈a|d + δV |b〉. (8)

Here, a and b are two-electron wave functions found in the
CI + MBPT calculations. The rate of spontaneous decay of
the state b into the state a via an electric dipole transition is
given by (in atomic units)

Tab = 4

3
(ωabα)3 A2

ab

2Jb + 1
. (9)

III. RESULTS

A. Energies and transition rates

The results of calculations for the energies and transition
rates are presented in Table I. Good agreement with experi-
ment is the result of fitting. The ab initio CI + MBPT result
for the energy of the 7s7p 1Po

1 state is 31652 cm−1. This value
differs from the experimental one by 5.6%. Comparing it with
the CI+all-order result of Ref. [29] shows that most of this
difference is due to higher-order correlations.

The 7s7p 1Po
1 state has the largest electric dipole transition

amplitude and largest transition rate to the ground state. There
are at least two more transitions (first and last lines of Table I)
which are probably strong enough to be experimentally stud-
ied. Note, that at least two transitions are needed to use isotope
shift to extract nuclear deformation (see below).

B. Comparing nuclear models

Figures 1 and 2 show symmetrized nuclear densities
[ρ(r) = ∫

ρ(r, θ )dθ ] for nuclear models used in this work.

FIG. 1. Symmetrized nuclear densities in five nuclear models
considered in this work. See Fig. 2 for details.

Table II shows the parameters of nuclear charge distribution
for these models (CEDFs) and corresponding calculated iso-
tope shifts for the 7s2 1S0 - 7s7p 1Po

1 line of 252No and
254No. Experimental value for the isotope shift is 0.336(23)
cm−1 [10]. The DD-MEδ model leads to the best agreement
of the calculated and experimental IS; the calculated value
is only about 10% larger then the experimental one. Note

FIG. 2. Upper left part of Fig. 1 showing the details of nuclear
density in five nuclear models. Solid line—DD-MEδ, dotted line—
DD-ME2, short dashed line—NL3*, long dashed line—PC-PK1,
dot-short dashed line—DD-PC1.
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TABLE II. Parameters of nuclear model and corresponding calculated isotope shift for the 7s2 1S0 - 7s7p 1Po
1 transition in 252,254No. Rp

is nuclear rms charge radius (Rp =
√

〈r2〉), β is a parameter of nuclear quadrupole deformation, IS is calculated isotope shift, F is field shift
constant (F = IS/δ〈r2〉). Here, �β = β1 − β2; the subscripts 1/2 correspond to the isotope with higher/lower value of neutron number.

Nuclear 252No 254No δ〈r2〉 IS F

model Rp (fm) β Rp (fm) β fm2 �β cm−1 cm−1/fm2

DD-ME2 5.97171 0.298 5.98349 0.298 0.1408 0.000 −0.482 −3.42
DD-MEδ 5.96390 0.284 5.97259 0.278 0.1037 0.006 −0.374 −3.61
NL3s 5.97447 0.300 5.98772 0.298 0.1585 0.002 −0.503 −3.17
PC-PK1 5.98639 0.306 5.99967 0.305 0.1592 0.001 −0.538 −3.38
DD-PC1 5.97208 0.297 5.98225 0.295 0.1216 0.001 −0.431 −3.54

also that this model predicts the largest value of �β between
two isotopes. The last column of Table II presents the ratios
of calculated isotope shift to δ〈r2〉, which is the field shift
constant F . In the absence of nuclear deformation FIS could
be approximated by the standard formula δν = Fδ〈r2〉, where
F does not depend on nuclear isotope, i.e., it should be
the same for any nuclear model since FIS is dominated by
one nuclear parameter δ〈r2〉. However, we see that F varies
significantly, i.e., there is another parameter which may affect
δν. This is an indication that nuclear deformation may be
important.

In Ref. [10] the nuclear field constant F was calculated
without taking into account nuclear deformations. The CI +
MBPT value of Ref. [10] is −3.47 cm−1/fm2. It is in excellent
agreement with our value −3.42 cm−1/fm2 obtained with the
same method and with the use of the DD-ME2 nuclear model
in which �β = 0 for the two isotopes (see Table II). However,
the calculations of FIS based on this model overestimate FIS
by about 40%. If we assume that the overestimation of the FIS
mostly comes from the overestimation of δ〈r2〉, then the DD-
MEδ results provide a more consistent picture. Indeed, the
transition from the DD-ME2 to DD-MEδ model leads to the
reduction of δ〈r2〉 from 0.1408 fm2 down to 0.1037 fm2 (see
Table II). The latter value is very close to δ〈r2〉 = 0.105(7)(7)
fm2 found in Ref. [10]. In addition, the calculated FIS of the
DD-MEδ model of −0.374 cm−1 (see Table II) is very close
to the experimental value of −0.336(23) cm−1 (see Ref. [10]).
Note that the best agreement with experiment is achieved with
the nuclear model which gives the largest change in nuclear
deformation parameter between two isotopes. This indicates
that nuclear deformation may give a noticeable contribution to
the FIS. However, it is not possible to include it into analysis
in the current situation when isotope shift is known for only
one atomic transition. At least two transitions are needed to
distinguish between δ〈r2〉 and �β (see next section).

C. Using isotope shift measurements to find parameters of
nuclear charge distribution

It was suggested in our previous work [8] to fit the field
isotope shift between two isotopes with the formula which
depends on the change of two nuclear parameters, nuclear
rms radius, and quadrupole deformation parameter β. Here,
we present the formula in a slightly different form

δν = Fδ〈r2〉 + G(δ〈r2〉)2

+ a�(β2) + b�(β3) + cδ〈r2〉�(β2). (10)

Here, δ〈r2〉 = 〈r2〉1 − 〈r2〉2 is the change of square of nu-
clear rms radius, �(β2) = β2

1 − β2
2 , �(β3) = β3

1 − β3
2 , and

the indexes 1 and 2 numerate isotopes, index 1 corresponds
to an isotope with higher value of the neutron number. The
coefficients F, G, a, b, c in this formula are found by a least
squares fitting of calculated FIS for a wide range of nuclear
parameters. The values of these parameters for four electric
dipole transitions in nobelium are presented in Table III. Note
that the value of F for the second transition is in excellent
agreement with the CI + MBPT calculations of Ref. [10].

The first term in Eq. (10) represents a standard formula
for field IS. It ignores nuclear deformation and relativistic
corrections. It was shown in Ref. [34] that relativistic ef-
fects make the field constant F isotope-dependent. It was
suggested to use a modified formula δνi = F ′δ〈r2γ 〉, where
γ =

√
1 − (zα)2. Modified field shift constant F ′ does not

depend on isotopes. However, this formula works well only
for spherical nuclei [8]. In contrast, formula (10) can be
used for a wide range of nuclei. Relativistic corrections in
it are fitted with quadratic in the δ〈r2〉 term [second term in
Eq. (10)]. This formula can be used to predict FIS for different
isotopes and atomic transitions if nuclear parameters are taken
from nuclear theory.

TABLE III. The parameters of formula (10) for isotope shifts from the ground state (7s2 1S0) to excited odd states of nobelium.

F G a b c
Odd states cm−1/fm2 cm−2/fm4 cm−1 cm−1 cm−1/fm2

7s7p 3Po
1 −3.7828 0.0288 −1.4013 1.3708 −0.0215

7s7p 1Po
1 −3.5042 0.0254 −1.2247 1.2234 −0.0152

7s8p 3Po
1 −3.2063 0.0265 −1.0941 1.1304 −0.0071

7s8p 1Po
1 −3.3112 0.0245 −1.1592 1.1919 −0.0090
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TABLE IV. Isotope shifts between 254No and 286No in different nuclear models for four electric dipole transitions from the ground state
(cm−1).

Nuclear Rp for 286No δ〈r2〉 Upper state

model (fm) (fm2) 7s7p 3Po
1 7s7p 1Po

1 7s8p 3Po
1 7s8p 1Po

1

DD-ME2 6.084420 1.1872 −4.52 −4.18 −3.84 −3.97
DD-MEδ 6.075497 1.2111 −4.61 −4.27 −3.90 −4.03
NL3* 6.097316 1.3029 −4.94 −4.57 −4.20 −4.34
PC-PK1 6.114652 1.3655 −5.17 −4.78 −4.39 −4.54
DD-PC1 6.085116 1.2212 −4.64 −4.29 −3.95 −4.08
Average 1.2576 −4.78(40) −4.42(36) −4.06(33) −4.19(35)

The formula can also be used in an opposite way: the
change of nuclear parameters can be found from the isotope
shift measurements. Since formula (10) depends on two nu-
clear parameters, the measurements of isotope shift for at
least two atomic transitions are needed. Then standard math-
ematical procedures can be used to solve the system of two
quadratic equations to find the change of nuclear parameters.

For neighboring isotopes the second and last terms in
Eq. (10) can be neglected (see Table III) and the remaining
terms reduced to

δν = Fδ〈r2〉 + d�β. (11)

The parameters F and d in this formula are isotope-dependent
and should be calculated for one of the considered isotope.
The parameter d is related to a and b in Eq. (10) by d =
a(β1 + β2) + b(β2

1 + β1β2 + β2
2 ) and �β = β1 − β2.

So far the IS has been measured for one transition (sec-
ond transition in Table III) between isotopes 252,253,254No.
According to nuclear theory [21], all these isotopes have
deformed shapes, e.g., for 252,254�β = 0.006 for DD-MEδ

CEDF (see Table II). Using the formula (11) and the numbers
from Table III we find that the contribution of the second term
in Eq. (11) into IS is 0.003 cm−1. This is 8 times smaller
than the uncertainty of the measurements (measured value for
IS is 0.336(23) cm−1 [10]). Therefore, to see the effect of
nuclear deformation one has to either increase the accuracy
of the measurements or use different isotopes. Note also that
the measurements need to be done for at least two atomic
transitions. Currently, IS is measured only for one transition
in No [10].

Finally, we calculated isotope shifts between the 254No
and 286No isotopes in different nuclear models; the results
are presented in Table IV. Note that the 286No nucleus has
neutron number N = 184 which is a magic number in this
mass region [6,21] corresponding to a large shell closure.
Thus, according to nuclear theory this nucleus has spherical
shape. It is expected to be a long-living isotope [6]. One
transition frequency has been already measured in the 254No
isotope [9]. One can use the isotope shift from Table IV
to correct measured frequencies of atomic transitions from
254No to 286No isotopes and use the data for a search of
long-living nobelium isotopes in astrophysical data [35]. Note
that all nuclear models give very close predictions for the

IS (see Table IV). We use the spread of calculated results
for an estimation of the uncertainties in the predictions and
an average calculated value as the central point of these
predictions.

We should note that there are other corrections affecting
isotopic shift including the nuclear polarization effect and
QED corrections. For example, they are seen in a detailed
comparison of different contributions to the isotope shift
for the 2p1/2 − 2s transition in Li-like ions 150,142Nd57+ in
Ref. [37]. However, the effect of the quadrupole deformation
increases with the nuclear charge significantly faster than
other effects due to the singularity of the Dirac wave function
at the origin—see, for example, Ref. [37]. This is why we
concentrate on the effect of the quadrupole deformation when
considering superheavy elements like nobelium.

D. Nuclear deformation and nonlinearity of King plot

It was suggested in Ref. [36] to use a possible nonlinearity
of the King plot to search for new particles. If some presently
unknown bosons mediate interaction between atomic elec-
trons and neutrons in the nucleus, then field shift constant F
would depend on the number of neutrons. This would mani-
fest itself in the nonlinearity of the King plot. Let us consider
how this consideration is affected by nuclear deformation. The
only condition for the King plot to be linear is the separation
of nuclear and electron variables. Let us consider standard
formula for isotope shift, namely, δν = Fδ〈r2〉 + MN . Here,
F is field shift constant, δ〈r2〉 is a nuclear factor describing
change in nuclear structure between two isotopes, M is the
mass factor M = (Mb − Ma)/MbMa, N is electron structure
factor related to mass shift, and the indexes a and b numerate
isotopes. If F does not depend on the nucleus and δ〈r2〉 does
not depend on electrons then one can write for two atomic
transitions

(δν1/M ) = F1

F2
(δν2/M ) + F1

F2
N2 + N1. (12)

One can see that on the δν1/M, δν2/M plane the points
corresponding to different isotopes are all on the same line.
If formula (11) is used for the field shift then an extra term
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appears in Eq. (12):

(δν1/M ) = F1

F2
(δν2/M ) + F1

F2
N2 + N1

+ �β

M

(
d1 − F1

F2
d2

)
. (13)

This last term does depend on isotopes and thus breaks the
linearity of the King plot. It is instructive to see when this
term is zero. The most obvious case is �β = 0, i.e., all
considered isotopes have the same nuclear deformation. This
is an unlikely scenario for heavy nuclei. However, the terms
can be small if deformations are similar. The less obvious case
is d1 − d2F1/F2 = 0. Note that the expression d1F2 − d2F1 is
the determinant of the system of two linear equations for δ〈r2〉
and �β if IS for two transitions is given by Eq. (11). The
determinant is zero means that the equations are proportional
to each other and cannot be resolved. This might be the
case of the transitions between similar states, e.g., 7s − 7p3/2

and 7s − 8p3/2 transitions in No+. Exact proportionality is
unlikely but strong suppression is possible (i.e., d1F2 ≈ d2F1).
The suppression is less likely in many-electron atoms since
the states are affected by configuration mixing and it is differ-
ent for low and high energy states so that similar transitions
can hardly be found.

IV. CONCLUSION

We considered five nuclear models of nuclear charge dis-
tribution in two isotopes of nobelium, 252No and 254No, and
calculated the field isotope shift for four electric dipole atomic
transitions. It was demonstrated that comparing the calculated
isotope shift with experiment helps to discriminate between
nuclear models endorsing the predictions of the best-fit model.
It was also shown that having isotope shift measurements
for at least two atomic transitions can be used to extract
from the measurements not only the change of nuclear rms
radius but also the change in nuclear shape. Referring to the
best-fit model endorses a particular type of shape change,
e.g., change in nuclear quadrupole deformation, nuclear skin
thickness, or nuclear density suppression in the origin. It was
demonstrated that a change in nuclear shape between isotopes
leads to nonlinearity of the King plot complicating its use for
the search of new physics.
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