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α + 28Si and 16O + 16O molecular states and their isoscalar monopole strengths
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The properties of the α + 28Si and 16O + 16O molecular states, which are embedded in the excited states of
32S and can have an impact on the stellar reactions, are investigated using antisymmetrized molecular dynamics.
From the analysis of the cluster spectroscopic factors, the candidates of α + 28Si and 16O + 16O molecular states
are identified close to and above the cluster threshold energies. The calculated properties of α + 28Si molecular
states are consistent with those reported by α + 28Si resonant scattering experiments. On the other hand, the
16O + 16O molecular state, which is predicted to be identical to the superdeformation of 32S, is inconsistent with
the assignment proposed by an α inelastic scattering experiment. Our calculation suggests that the monopole
transition from the ground state to the 16O + 16O molecular state is rather weak and is not strongly excited by α

inelastic scattering.
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I. INTRODUCTION

The α + 28Si and 16O + 16O molecular states [1–5] that
are embedded in the excited states of 32S are fascinating sub-
jects in nuclear cluster physics and nuclear astrophysics. The
α-induced reactions such as 28Si(α, γ ) 32S and 28Si(α, p) 31P
play an important role in the silicon burning process of
the stellar evolution and nucleosynthesis [6]. The α + 28Si
molecular states, if they exist at the incident energy, increase
the reaction rate in order of magnitude and determine the
reaction products [7–9]. In a similar manner, the 16O + 16O
molecular states crucially affect the oxygen burning process
[10–18]. Furthermore, the 16O + 16O molecular states have
unique and interesting characteristics from the view point
of nuclear cluster physics. Many theoretical studies [19–26]
have predicted that an 16O + 16O molecular band should exist
just below the 16O + 16O threshold energy, and it must be
identical to the superdeformed state of 32S. Although the su-
perdeformation of 32S has not been observed, the theoretical
prediction sheds a new light on the clustering of light nuclei.

Experimentally, these molecular states have been explored
using the ordinary techniques such as transfer reactions
[27–32] and resonant scattering [33–37]. However, as the
molecular states are embedded in the continuum of 32S, it
is difficult to identify them from many other resonances.
This difficulty prevents us from the full understanding of the
molecular states and the superdeformation.

In this decade, instead of the ordinary experimental tech-
niques, the isoscalar monopole and dipole transitions induced
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by α inelastic scattering are attracting a lot of research interest
to overcome the abovementioned problem. These transitions
can populate the deep subbarrier resonances and have unique
selectivity for molecular states; hence, they are effective to
identify the molecular states embedded in the continuum
[38–41]. In particular, the method has already been success-
fully applied to the discussion of clustering and molecular
states in many stable and unstable nuclei [42–55]. In the
same line of physics, Itoh et al. [56] have measured the
isoscalar transitions of 32S, identified several excited states
with enhanced transition strengths, and proposed a new band
assignment for the α + 28Si and 16O + 16O molecular states
(and hence the superdeformed states of 32S).

In this work, motivated by the new and interesting exper-
imental data, we theoretically investigated the α + 28Si and
16O + 16O molecular states and their monopole strengths. The
framework of antisymmetrized molecular dynamics (AMD)
[57–59] has already been applied to the study of the molec-
ular states and superdeformation of sd-p f nuclei [21,60–
63]. Recently it has been extended to handle the rotation
effect of the deformed clusters and successfully applied to
investigate the 12C + 16O molecular states at deep subbar-
rier energy [64]. Following these studies, we extended our
research, considering both the α + 28Si and 16O + 16O chan-
nels in addition to the rotation effect of the deformed 28Si
cluster. It was found that the monopole transition has a strong
selectivity to α + 28Si molecular states, but it is insensitive
to 16O + 16O molecular states. Consequently, we conclude
that many of the excited states reported by Itoh et al. [56]
should be attributed to the α + 28Si molecular states. From
the systematics of the cluster spectroscopic factors and B(E2)
transition strengths, we also propose the assignment of the
α + 28Si and 16O + 16O molecular bands.
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This paper is organized as follows. In the next section,
we explain the AMD framework and how we handle both
the α + 28Si and 16O + 16O channels, as well as the rotation
effect of the deformed 28Si cluster. In Sec. III, we explain
the α + 28Si and 16O + 16O wave functions obtained by the
variational calculations. We discuss the properties of the 0+
states and their monopole strengths in comparison with the
observations. We also suggest the α + 28Si and 16O + 16O
molecular band assignments. The final section summarizes
this work.

II. THEORETICAL FRAMEWORK

The theoretical framework used in this paper is the same as
that of our previous work for the 12C + 16O molecular states.
Deformed-basis AMD is combined with the d-constraint
method. The Hamiltonian is expressed as

H =
A∑

i=1

t (i) +
A∑

i< j

vNN (i j) +
A∑

i< j

vC (i j) − tc.m., (1)

where the Gogny D1S parameter set [65] is used for the
effective nucleon-nucleon interaction vNN and the Coulomb
interaction vC is approximated by a sum of seven Gaus-
sians. The center-of-mass kinetic energy tc.m. is properly re-
moved from the Hamiltonian without any approximation. This
Hamiltonian reasonably describes the threshold energies of
interest without any adjustment. The α + 28Si and 16O + 16O
threshold energies measured from the 32S ground state are
calculated as 7.56 and 16.25 MeV, respectively, which are
compared with the experimental data of 6.95 and 16.54 MeV.

The variational wave function of deformed-basis AMD is a
parity-projected Slater determinant of the single-particle wave
packets [66]:

� = A { ϕ1, . . . , ϕA } , (2)

ϕi =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp{−νσ (rσ − Ziσ )2}

× (αi |ξ↑〉 + βi |ξ↓〉)(|p〉 or |n〉), (3)

where each of the ϕi has the deformed Gaussian form and has
the following parameters: the centroid of the Gaussian Zi, size
parameter ν, and spin directions αi and βi. The isospin part is
fixed to either protons or neutrons. The size parameter ν is
a real-valued vector, but the other parameters are complex-
valued. They are determined by the energy variation with
two different constraints. The first one is the constraint on
the quadrupole deformation parameter β, which we call the
β constraint. It is noted that the β constraint was already
used to study the superdeformation of 32S and the 16O + 16O
molecular states within the AMD framework [21]. The second
constraint is imposed on the intercluster distance between the
α and 28Si clusters, and between two 16O clusters, which we
call the d constraint [67]. We classify the centroids of the
wave packets into two groups corresponding to the cluster
configurations, and we define an approximate intercluster
distance d as the distance between the center-of-masses of
two groups. For example, d for the α + 28Si configuration is

defined as

d =
∣∣∣∣∣∣
1

4

∑
i∈α

ReZi − 1

28

∑
i∈28Si

ReZi

∣∣∣∣∣∣. (4)

The value of d is constrained from 2 to 8 fm with the interval
of 0.5 fm. It is emphasized that the d constraint is essential
for describing the α + 28Si molecular states, because the β

constraint yields only the mean-field and 16O + 16O molecu-
lar states. Furthermore, it can handle the cluster polarization
effect and the rotation effect of the deformed clusters in a
natural manner.

From the energy variation with the constraints, we ob-
tain the wave functions that have the minimum energies for
each given value of β or d . After the energy variation, the
wave functions are projected to the eigenstates of the angular
momentum and superposed to diagonalize the Hamiltonian
(generator coordinate method, GCM):

�Jπ
Mα =

∑
iK

biKαPJ
MK�π (βi ) +

∑
iK

diKαPJ
MK�π (di ), (5)

where PJ
MK denotes the angular momentum projector, �π (βi )

and �π (di ) are the wave functions obtained by the β con-
straint and the d constraint, respectively. The coefficients of
the superposition biK and diK are determined by solving the
Hill-Wheeler equation [68].

As a measure for the α + 28Si and 16O + 16O clustering,
we calculate the reduced width amplitude (RWA), which is
the probability amplitude to find the clusters at the intercluster
distance a. It is defined as the overlap between the reference-
cluster wave function and the GCM wave function given by
Eq. (5),

y�(a) =
√

32!

C1!C2!

〈
δ(r − a)

r2

[
�C1�C2Y�(r̂)

]J

M

∣∣∣∣ �Jπ
Mα

〉
, (6)

where C1,2 and �C1,C2 denote the masses and wave functions
of clusters, respectively: C1 = 4 and C2 = 28 for the α + 28Si
configurations, and C1 = C2 = 16 for the 16O + 16O configu-
rations. The reference wave function (bra state) describes the
system in which two clusters with the masses of C1 and C2

are mutually orbiting with the angular momentum � and the
intercluster distance a. Here, the wave functions of the α and
16O clusters are assumed to be the the harmonic oscillator
wave functions with the doubly closed shell structure, which
reproduce the observed charge radii. The wave function of
the 28Si cluster is approximated using a single AMD wave
function projected to either the Jπ = 0+ state or the Jπ = 2+
state. Equation (6) was calculated using the Laplace expansion
method [69] for the α + 28Si channel and using the projection
method to the Brink wave function [70,71] for the 16O + 16O
channel. The cluster spectroscopic factors in these channels
are calculated by the squared integral of y�:

S� =
∫ ∞

0
da a2|y�(a)|2, (7)

which is enhanced for the developed cluster states and is used
to identify the molecular states.
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FIG. 1. Energy curves of the positive-parity states before (in-
trinsic) and after the angular momentum projection to Jπ = 0+.
(a) The energy curves obtained by the constraint on the quadrupole
deformation parameter β. (b) The energy curves of the α + 28Si and
16O + 16O molecular configurations.

In this work, we focus on the isoscalar monopole (IS0)
transition strength, which has been regarded and utilized as
a novel probe for the molecular states in stable and unstable
nuclei. The transition operator is defined as follows:

MIS0 =
A∑

i=1

r′2
i . (8)

Note that the single-particle coordinate r′
i is measured from

the center-of-mass rc.m., i.e., r′
i ≡ ri − rc.m.; hence, our calcu-

lation is free from the spurious center-of-mass contributions.
The reduced transition matrix from the ground state to the
excited 0+ state is calculated as

M(IS0; 0+
1 → 0+

ex.) = 〈�(0+
ex.)|MIS0|�(0+

g.s.)〉 , (9)

where �(0+
g.s.) and �(0+

ex.) are the wave functions of the
ground and excited 0+ states, respectively.

III. RESULTS AND DISCUSSIONS

A. Molecular configurations obtained by the
variational calculations

Figure 1(a) shows the energy curves of the positive-parity
states obtained by the β- constraint. It has two minima at
β = 0.32 and 0.72 after the angular momentum projection,
which correspond to the ground state and the superdeformed
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FIG. 2. (a)–(d) The intrinsic densities obtained by the β con-
straint. Panels (b) and (d) correspond to the ground and superde-
formed minima on the energy surface, respectively. (e)–(i) The
intrinsic densities obtained by the d constraint. Panel (e) shows
the intrinsic density of the 16O + 16O configuration at the energy
minimum. Panels (f) and (g) are the S-type α + 28Si configurations
in which the symmetry axis of the 28Si cluster is parallel to the x
axis, while panels (h) and (i) are the L-type configurations in which
the shortest axis is perpendicular to the x axis.

state, respectively. Their intrinsic density distributions shown
in Figs. 2(b) and 2(d) appear considerably different and
impress the exotic shape of the superdeformed minimum
[Fig. 2(d)], which is extremely deformed with a neck and two-
centered. Similar density distributions of the superdeformed
state have also been reported by many other theoretical studies
[21–26,72–74].

The energy curves for the α + 28Si and 16O + 16O molec-
ular configurations obtained by the d constraint are shown in
Fig. 1(b). We have obtained two different α + 28Si molecular
configurations that have different orientations of the deformed
28Si cluster. We call them S- and L-type configurations in
the following. In the S-type configuration denoted by (S), the
symmetry axis of the oblate deformed 28Si cluster is parallel
to the x axis on which the centers of mass of α and 28Si
clusters are placed [see Figs. 2(f) and 2(g)]. On the contrary,
in the L-type configuration (L), the symmetry axis of 28Si is
perpendicular to the x axis [see Figs. 2(h) and 2(i)]. By mixing
both the S- and L-type configurations, we can handle the
rotation effect of the deformed 28Si cluster within the AMD
framework. It is also noted that these two configurations have
different single-particle structures at a small intercluster dis-
tance. The S-type configuration approaches the ground-state
configuration (0h̄ω) at a short intercluster distance; hence, its
energy (E = −267.0 MeV at d = 2.5 fm) is close to that of
the ground-state minimum (E = −268.9 MeV at β = 0.25)
as shown in Fig. 1. It is important to note that the squared
overlaps of the wave functions between the ground-state and
the S-type α + 28Si configurations are non-negligible after
the parity and angular-momentum projection to Jπ = 0+,
although they appear quite different at a glance. Indeed, the
overlap between the wave functions shown in Figs. 2(b)
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and 2(f) is as large as 0.45. On the contrary, the L-type
configuration approaches a 4h̄ω excited configuration at a
small distance. Consequently, the L-type configurations are
orthogonal to the ground-state configuration and their energies
are relatively higher than those of the S-type configurations.
It is noted that these different asymptotics of the molecular
configurations play a crucial role in the isoscalar monopole
transitions.

The 16O + 16O configuration is almost identical to the
superdeformed state (a 4h̄ω configuration) at the energy
minimum (d = 3.5 fm), and its energy (−257.6 MeV) is
very close to that of the superdeformed minimum (−258.0
MeV). It is impressive that their density distributions are
significantly similar to each other [Figs. 2(d) and 2(e)], and
the squared overlap of their wave functions is as large as 0.92,
which indicates that they are actually identical. This is the
reason why many theoretical studies [20–26,72] discuss the
similarity of the superdeformation of 32S and the 16O + 16O
molecular states. However, despite the consistent and convinc-
ing discussions by many theories, experimental information
about the superdeformation of 32S had been rather limited
[32,75]. Recently, Itoh et al. [56] provided a new report by
investigating the isoscalar monopole transition strengths of
32S. In particular, based on the observed strong monopole
transitions, they proposed a new assignment of the 16O + 16O
molecular states, and hence the superdeformed states. We
verify their assignment in the following sections.

B. Molecular states and their monopole strengths

In this section, we focus on the Jπ = 0+ states and dis-
cuss their molecular structure, monopole transition strengths,
and experimental candidates. However, before the discussion
of the present results, it may be useful to summarize the
experimental information about the α + 28Si and 16O + 16O
molecular states. Many resonances that are the candidates of
the α + 28Si molecular states have been reported above the
α + 28Si threshold energy by the resonant scattering experi-
ments [34–37]. In particular, Lönnroth et al. [37] comprehen-
sively summarized the observed resonances covering a broad
energy region and proposed an α + 28Si molecular band. The
candidates of the 0+ resonances they proposed are fragmented
into many states in between 10.25 and 11.05 MeV as shown
in Fig. 3. They all have the α-decay widths ranging from a
few keV to a few tens of keV, and many of them coincide
with the resonances observed in other experiments [34–36].
The α-transfer reaction [27–31] is another useful probe for
the α + 28Si molecular states, especially for the states below
the decay threshold. Peng et al. [29,30] and Tanabe et al. [31]
reported the α spectroscopic factor of the 0+

2 states by means
of the (16O, 12C) and (6Li, d ) reactions, respectively. They
concluded that the α spectroscopic factor of the 0+

2 state is
approximately 0.50–0.75 relative to that of the ground state (it
varies, depending on the incident energy). Tanabe et al. [31]
also reported that several states at 10 to 11 MeV are strongly
populated by the ( 6Li, d ) reaction and hence are suggested as
the candidates of the α + 28Si molecular states. Although the
spin-parity assignment was not discussed, it is important to
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FIG. 3. The calculated and observed [37,56] candidates of the
α + 28Si (blue lines) and 16O + 16O (red lines) molecular states with
Jπ = 0+. The widths of the arrows are proportional to the isoscalar
monopole transition matrix.

note that the energies of these states are very close to the 0+
resonances reported by Lönnroth et al. [37].

The isoscalar monopole strength is a novel probe for the
molecular states and has a unique selectivity. Itoh et al.
[56] measured the isoscalar monopole transitions of 32S by
the α inelastic scattering and reported several states as the
candidates of the molecular states. In addition to the 0+

2 state,
they found that six excited states have enhanced monopole
strength as listed in Table I. They are classified into two
groups; three states at 6 to 8 MeV and the other three at
10 to 12 MeV. As summarized in Fig. 3, the former group
was proposed as the α + 28Si molecular states, and the latter
as the 16O + 16O molecular states. Furthermore, the latter
group, the states at 10 to 12 MeV, is also proposed as the
superdeformed states, because the 16O + 16O molecular state
and the superdeformation should be identical. To summarize
the experimental data, the 0+ resonances at 10 to 12 MeV
are observed in many experiments. They are assigned as

TABLE I. The calculated excitation energies in MeV, isoscalar
monopole transition matrices in fm2, and cluster spectroscopic fac-
tors of the 0+ states. Sα�=0, Sα�=2, and SO denote the spectroscopic
factors in the α + 28Si(0+

1 ), α + 28Si(2+
1 ), and 16O + 16O channels,

respectively. The observed excitation energies and the isoscalar
monopole matrices [56] are also listed.

AMD Expt.

Ex M(IS0) Sα,�=0 Sα,�=2 SO Ex M(IS0)

0+
1 0.0 0.09 0.04 0.00 0.0

0+
2 4.6 5.7 0.05 0.06 0.00 3.78 4.0

0+
3 7.0 6.5 0.02 0.01 0.02 6.59 6.3

7.65 3.8
7.95 2.7

0+
4 11.0 0.0 0.02 0.01 0.32

0+
5 11.6 2.8 0.29 0.14 0.00 10.49 3.3

0+
6 13.1 4.8 0.34 0.12 0.02 11.62 5.4

11.90 4.3
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the α + 28Si molecular states in Refs. [31,34–37], but are
assigned as the 16O + 16O molecular states in Ref. [56]. Itoh
et al. also reported another group of the states at 6 to 8 MeV
and assigned them as the α + 28Si molecular states.

Now, we discuss the present numerical results in compar-
ison with the abovementioned experimental data. The calcu-
lated ground state is predominated by the mean-field config-
uration shown in Fig. 2(b). The squared overlap between the
ground state and this configuration is 0.92. It is noted that the
ground state also has a large overlap with the S-type α + 28Si
molecular configurations with small intercluster distances.
The overlap between the ground state and the α + 28Si config-
uration shown in Fig. 2(f) is as large as 0.46, and the calculated
spectroscopic factors of the ground state are Sα = 0.09 and
0.04 in the α + 28Si(0+

1 ) and α + 28Si(2+
1 ) channels, respec-

tively. This small amount of the cluster component in the
ground state can be explained by the Bayman-Bohr theorem
[76], which proves the identity of SU(3) shell-model wave
functions and corresponding cluster wave functions with zero
intercluster distance. In other words, the theorem guarantees
that even a pure shell-model-like structure contains a certain
amount of the cluster component. In fact, the calculated RWA
of the ground state (Fig. 4) has a small peak at 3 to 4 fm
showing non-negligible α cluster formation at the nuclear
surface. These results qualitatively agree with the observed
cross section of 32S(p, pα) 28Si [77], which is sensitive to the
α cluster formation at the surface of the ground state [78–82].
On the other hand, the ground state has no overlap with the
L-type α + 28Si and 16O + 16O configurations because they
asymptotically approach the 4h̄ω excited configurations at
zero intercluster distance and are almost orthogonal to the
ground state.

The 0+
2 state largely consists of the almost spherical config-

uration shown in Fig. 2(a), and the squared overlap is 0.67. In
addition, it also has a non-negligible overlap with the S-type
α + 28Si molecular configuration. The overlap between the
0+

2 state and the α + 28Si configuration shown in Fig. 2(f)
is 0.22, which can also be explained by the Bayman-Bohr
theorem. The calculated RWA and α spectroscopic factors

are not as large as those of the ground state, and the ratio of
Sα to the ground state is Sα,�=0(0+

2 )/Sα,�=0(0+
1 ) = 0.56. This

reduction of Sα relative to the ground state reasonably agrees
with the observed values which are in between 0.51 and 0.75
[29–31]. It is noted that these small α cluster components
in the ground and 0+

2 states enlarge the monopole transition
strength (5.7 fm2) between these states. If we exclude the
α + 28Si molecular configurations from the GCM calculation,
the spectroscopic factors of the ground and 0+

2 states are
reduced to 0.05 and 0.02 in the α + 28Si(0+

1 ) channel, and
the monopole transition matrix is reduced to 2.32 fm2, which
is smaller than the observed value of 4.0 fm2.

The 0+
3 state has the largest overlap with the configuration

shown in Fig. 2(c), which amounts to 0.36. This state has
similar magnitude of the overlap with many other configura-
tions on the β-constraint energy surface shown in Fig. 1(a),
but it scarcely overlaps with the molecular configurations.
Therefore, its RWA and spectroscopic factors are small, and
we conclude that the 0+

3 state is a β-vibration state. This
interpretation explains the large monopole strength of this
state, as it is well known that the β vibration also enhances
the monopole transition strengths [83]. Itoh et al. [56] ob-
served three 0+ states (6.59, 7.65, and 7.95 MeV states) with
enhanced monopole strengths in this energy region, and the
6.59 MeV state plausibly coincides with the calculated 0+

3
state. However, neither of calculation nor other experiments
reported additional 0+ states in between 6 to 8 MeV [84].
Therefore, more detailed study is needed to confirm the 7.65
and 7.95 MeV states.

The 0+
4 state is the superdeformed state that was al-

ready discussed in the previous AMD study [21]. It has the
large squared overlap (0.95) with the configuration shown
in Fig. 2(d). In addition, it also has large overlap with the
16O + 16O configuration shown in Fig. 2(e), which amounts
to 0.92. Hence, the superdeformed state of 32S is regarded
as an 16O + 16O molecular state; i.e., it has a duality of the
superdeformation and clustering. From the observed strong
monopole transitions, Itoh et al. [56] proposed the 10.49,
11.62, and 11.90 MeV states as the superdeformed states.
However, in contrast to their assignment, the present calcula-
tion shows that the monopole transition to the superdeformed
state is negligible. This result clearly reflects the nature of
the monopole transition. As explained by Yamada et al. [40],
the monopole transition excites the molecular configurations
that are contained in the ground state. In other words, the
molecular configurations orthogonal to the ground state at
zero intercluster distance are not populated by the monopole
transition. Because the 16O + 16O configuration is orthogonal
to the ground state, the monopole transition from the ground
state to the 16O + 16O molecular state is strictly forbidden.
Therefore, the present result does not support the assignment
of the 16O + 16O molecular state and the superdeformed state
observed in the α inelastic scattering experiment.

The 0+
5 and 0+

6 states are the highly excited α + 28Si
molecular states that overlap with both the S- and L-type
α + 28Si configurations shown in Figs. 2(f)–2(i). As seen in
Table I, these states are predominated by the α + 28Si(0+

1 )
channel, while the ground state and the 0+

2 state are the
mixture of the α + 28Si(0+

1 ) and α + 28Si(2+
1 ) channels. This
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is because of the weak interaction between the clusters in the
0+

5 and 0+
6 states, which deexcites the 28Si cluster to its ground

state (weak cluster polarization). Note that the RWA of the
0+

5 and 0+
6 states has a peak at approximately 6 fm, which

indicates the large intercluster distance and enhanced cluster-
ing. Owing to this pronounced α + 28Si molecular structure,
these states have large monopole transition strengths, and they
may correspond to any of the 10.49, 11.62, and 11.90 MeV
states observed by Itoh et al. [56]. Interestingly, the α + 28Si
molecular states observed by Lönnroth et al. [37] are located
at the same energy region, and we consider that they are
the same α + 28Si molecular states. We also comment on
the magnitude of the calculated Sα for these states. Despite
the large overlap with the pronoucned α + 28Si configura-
tions, the calculated spectroscopic factor for the α + 28Si(0+

1 )
channel is not so large. This is due to the following two
reasons. The first is the deformation and polarization of the
28Si cluster induced by the interaction with the α cluster.
Because of this, the spectroscopic factor is distributed to var-
ious inelastic channels α + 28Si∗. The second is the coupling
with other noncluster configurations. Because of this coupling
the spectroscopic factor is fragmented into many states as
experimentally reported by Lönnroth et al. [37].

Thus, the present calculation has revealed the characteris-
tics of the excited 0+ states. The monopole transition from the
ground state has a selectivity, because the ground state is a
mixture of the deformed mean-field and α + 28Si molecular
structure. The β-vibration state and α + 28Si molecular states
are strongly excited, but the 16O + 16O molecular state (and
hence the superdeformed state) is not. We conclude that many
of the states with enhanced monopole strengths observed
below 12 MeV should be attributed to the α + 28Si molecular
states.

C. Assignment of the rotational bands

Figure 5 shows our assignment of the α + 28Si and
16O + 16O molecular bands from the present calculation. The
assignment is based on the calculated spectroscopic factors.
That is, if the spectroscopic factors in the 16O + 16O channel
or if the sum of the spectroscopic factors in the α + 28Si(0+

1 )
and α + 28Si(2+

2 ) channels is larger than 0.10, we have as-
signed the state as the molecular state. The figure also shows
the B(E2 ↑) strengths larger than 150 e2 fm4, which confirms
that most of the molecular states are connected by the strong
B(E2) transitions due to their strong quadrupole deformation.

The assignment of the 16O + 16O band is essentially same
as that proposed in the previous AMD study and rather
unique as it does not strongly fragment into many states.
The lowest 16O + 16O band is built on the 0+

4 state at 11.0
MeV, and as already discussed in Ref. [21], it is identical to
the superdeformed band with huge moment-of-inertia as large
as h̄2/(2I ) = 68 keV. Another 16O + 16O molecular band, in
which the relative motion between 16O clusters is excited,
exists at approximately Ex = 20 MeV, and the member states
of this band with J � 2 are fragmented into two or three states.

The assignment of the α + 28Si band is not as unique
as the 16O + 16O case because the member states are frag-
mented into many states due to the strong coupling of the
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FIG. 5. The calculated molecular bands up to Jπ = 8+ states.
The solid squares and circles show the α + 28Si and 16O + 16O
molecular states, respectively. The open squares show the observed
candidates of the α + 28Si molecular band [37]. The B(E2 ↑) tran-
sitions stronger than 150 e2 fm4 are shown by the connecting lines
whose widths are proportional to the magnitude of the transition
matrices.

α + 28Si(0+
1 ) and α + 28Si(2+

2 ) channels, as well as to the
coupling with the noncluster configurations. There are many
states that have small but non-negligible spectroscopic factors
in the α + 28Si channels. For example, the states that have
spectroscopic factors larger than 0.05 are almost twice as
many as those shown in Fig. 5. This result is consistent
with the observation by Lönnroth et al. [37] who reported
many excited states that have a small fraction of the α + 28Si
spectroscopic factors. However, for the sake of clarity and
simplicity, here, we discuss the states with sufficiently large
spectroscopic factors (larger than 0.10). We suggest an α +
28Si band built on the 0+

5 and 0+
6 states. Although the member

states are considerably fragmented, it can be confirmed that
many states are connected by the strong B(E2) transitions.
We consider that this band corresponds to the α + 28Si band
reported by Lönnroth et al. [37] as the energies of the member
states plausibly agree with their observation. We also com-
ment that the other band, in which the relative motion of the
clusters is excited, may be built on the 0+ states approximately
at 17 MeV. We can see the candidates of the band member
states up to Jπ = 6+, although the fragmentation is rather
strong. Experimentally, several candidates of the α + 28Si
states have been reported above 15 MeV without firm spin-
parity assignment [85,86], and the present results may explain
these observations.

IV. SUMMARY

We have investigated the properties of the α + 28Si and
16O + 16O molecular states in the 32S excited states. An
extended framework of AMD has been applied for handling
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both of the α + 28Si and 16O + 16O channels in addition to the
rotation effect of the deformed 28Si cluster. It was found that
the isoscalar monopole transition has strong selectivity in the
molecular states: It strongly excites the α + 28Si molecular
states, but is inactive in the 16O + 16O molecular states. This
selectivity originates in the different asymptotic behavior of
the molecular configurations at zero intercluster distance. We
found that the assignment of the α + 28Si molecular states
proposed by Lönnroth et al. [37] reasonably agrees with the
present calculation, while the 16O + 16O molecular state or
the superdeformed state proposed by Itoh et al. [56] does not,

because the monopole transition strengths of the 16O + 16O
molecular states are rather weak and are not excited strongly
by the α inelastic scattering.
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