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Improved description of light nuclei through chiral effective field theory at leading order
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We propose an arrangement of the most commonly invoked version of the two-nucleon chiral potential such
that the low-lying amplitude zero of the 1S0 partial wave is captured at leading order of the effective expansion.
Adopting other partial waves from the LENPIC interaction, we show how this modification yields an improved
description of ground-state energies and point-proton radii of the 3H, 4He, and 6He nuclei.
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I. INTRODUCTION

One of the fundamental challenges in nuclear physics
is to provide a consistent—as well as phenomenologically
successful—derivation of the nuclear potential grounded on
first principles. The nuclear effective field theory (EFT)
program offers a way to address this challenge. Here, the
link with the underlying quantum chromodynamics (QCD)
leans on the fact that the effective Lagrangian fulfills all
QCD symmetries—most particularly the spontaneously and
explicitly broken chiral symmetry, as in chiral EFT (χEFT)
[1–4]. The latter aims at generalizing the scheme of chiral
perturbation theory (χPT) [5] to nonperturbative physics,
namely nuclear systems. The χEFT Lagrangian is written
in terms of nucleons, pions, and other hadron fields instead
of the underlying quarks and gluons of QCD. Since its
symmetries are compatible with an infinite number of terms,
it becomes mandatory to establish a hierarchical principle
(“power counting”) that discriminates which terms should
be used for consistency when computing observables. This
enables one to express the EFT predictions as series in powers
of a small parameter Q/Mhi. Here, Q (Mhi) stands for the
magnitude of the typical external three-momentum of a pro-
cess amenable to the EFT (the momentum scale at which the
EFT breaks down and needs to be replaced by another theory
that underlies the former); in χEFT, this is of the order of
the pion mass, Q ≈ 100 MeV (the chiral-symmetry-breaking
scale, Mhi ≈ 1 GeV).

The initial applications of the nuclear EFT program were
provided by pioneering studies in the early and middle 1990s
[6–11]. They were grounded on the assumption that the
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nuclear potential and currents obey a power counting corre-
sponding with that of χPT, called naive dimensional analysis
(NDA) [12,13] or simply “Weinberg power counting.” How-
ever, in nonperturbative physics this program has been criti-
cized for leading to inconsistencies with the renormalization-
group-invariance (RGI) (or cutoff-convergence) principle, i.e.,
for displaying model dependence (see, e.g., Refs. [14–16]);
for a different interpretation in terms of a framework valid at
a defined scale, see, e.g., Refs. [17–20].

From a purely phenomenological point of view, it is worth
noting that, at leading order (LO) in the expansion, the
Weinberg counting fails to produce a qualitatively correct
description of two-nucleon (NN) scattering in the 1S0 channel
at momenta Q ∼ mπ due to a lack of repulsion among the
nucleons. This may be remedied through an enhancement
of beyond-LO terms in the effective potential. As proposed
in Ref. [21], this enhancement is sufficient to reproduce the
amplitude zero that shows up in this wave at a relatively soft
scattering momentum. Consequently, the convergence of the
effective expansion is improved.

In modern calculations, χEFT plays a leading role, chiral
potentials being a basic ingredient for understanding nuclear
structure and reactions with ab initio methods (see Ref. [22]
for an overview). Among such methods, one of the most
versatile is the no-core shell model (NCSM) [23]. In this
approach, the A-body nonrelativistic Schrödinger equation is
solved in a basis representation which is most often cho-
sen to be the spherical harmonic-oscillator (HO) basis. All
the (structureless) nucleons are treated as active degrees of
freedom, and the Slater-determinant expansion is built up
from HO single-particle wave functions depending on the
HO frequency. This allows one to reformulate the many-body
problem as a symmetric sparse eigenvalue problem, whose
solution has the finite size of the model space as its only
source of uncertainty. One version of the chiral potential that
is employed in current NCSM calculations is essentially given
by Weinberg power counting. However, the abovementioned
lack of repulsion in the 1S0 channel results in an overbinding
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pattern of light nuclei at LO; see the work by the LENPIC
Collaboration in Refs. [24–26].1 The convergence of the ex-
pansion may be thus accelerated by means of a modification of
the original prescription along the lines explored in Ref. [21].
In particular, we replace the bare, partial-wave projected NN
potential of the 1S0 wave (where the centrifugal suppression
that appears for channels with � � 1 [28] is absent) and we
retain the isospin-conserving LO interactions present in all
the remaining channels, namely one-pion exchange (OPE)
plus a single, nonderivative contact term affecting the 3S1

wave. This produces a very significant improvement in the
predictions for ground-state energies and point-proton RMS
radii of three light nuclei, namely 3H, 4He, and 6He, as we
show in the present work. Our efforts are framed in the context
of other studies such as Refs. [15,27,29], where alternative LO
descriptions of few-nucleon systems are explored in order to
achieve an improved and theoretically consistent convergence
of the χEFT expansion. In addition, an improvement at the
LO level such as the one we propose here may potentially
give rise to future works based on perturbation theory beyond
LO.

This article is structured as follows. In Sec. II, the issues
with Weinberg power counting in the 1S0 two-nucleon channel
are examined, the strategy used here to improve on such
problems is described, and the details of our calculation at
the two-body level are provided. In Sec. III, we show the
LO results for the ground-state energies and radii of 3H,
4He, and 6He both for the LO original LENPIC interaction
(see Ref. [30]) and for the LO modified one, examine the
convergence of the energies in the infinite-basis limit, and
argue that the overestimation of binding energies and the un-
derestimation of radii coming from the LO original LENPIC
potential are significantly alleviated after the modification we
propose. Finally, in Sec. IV we present our conclusions and
outline our ideas for future research work.

II. THE TWO-NUCLEON 1S0 CHANNEL IN CHIRAL EFT

The emergence of a pole in the NN 1S0 amplitude at
imaginary momentum k ≈ i/a (note that the h̄ = c = 1 units
are used all through this work), where a = −23.7 fm =
− (8.3 MeV)−1 is the scattering length in the neutron-proton
channel,2 has long been identified as a very shallow virtual

1Related to the RGI issues of the Weinberg counting that were
previously mentioned, we remark that such overbinding holds true
only when relatively soft momentum cutoffs are considered, as is
the case in the present work. Note also that Refs. [15,27], where
a modified, RGI-consistent power counting is invoked, predict an
underbound 3H nucleus already at moderate cutoff values.

2Unlike the Coulomb repulsion in the two-proton channel, the
effects of charge-independence and charge-symmetry breakings that
are inherent to the strong force have been neglected in our first-order
approach. We recall [31] that those two phenomena may be respec-
tively quantified in terms of the 1S0 neutron-neutron (nn), proton-
proton (pp), and neutron-proton (np) scattering lengths [32,33] as

anp − (
ann + a(strong)

pp

)
/2

anp
≈ 0.24 ;

ann − a(strong)
pp

anp
≈ 0.05.

state. This, together with the loosely bound deuteron, antic-
ipates the nonperturbative nature of nuclear physics already
in its simplest manifestation—the two-nucleon system. As a
consequence, the LO part of the NN interaction has to be
fully iterated when inserted in a dynamical equation (e.g.,
Schrödinger) that governs the system. In particular, the at-
traction provided by the OPE contribution—the main long-
range effect—to the 1S0 potential is relatively mild. This
introduces an attractive short-range contribution also at LO,
sufficient to render the aforementioned almost-bound state.
The momentum-space representation of this short-range part
reads as a pure constant C0. Its inclusion as a first-order effect
is grounded on two complementary arguments. On the one
hand, this contact force comes from a four-nucleon vertex
without derivative or pion-mass insertions; hence, according
to NDA, it will be parametrically enhanced by O(Mn

hi/Qn)
with respect to a diagram with n of such insertions.3 On the
other hand, from an RGI perspective, the cutoff-independent
contact piece of the 1S0-projected OPE as it emerges from the
effective Lagrangian would pose an ill-defined solution unless
such a piece is reabsorbed into the running coupling C0.

There is, however, another relevant feature of the 1S0

partial wave that was recognized early on. This is the fact that
the NN scattering amplitude changes from positive to negative
at momentum k ≡ k0 ≈ 350 MeV. It is worth recalling that
this fact motivated the inclusion of a short-range repulsive
core in some of the earliest phenomenological models of the
NN interaction (see, e.g., Refs. [34,35]). From a more modern
perspective, provided that the hard scale in χEFT, usually
identified as the typical mass of the lightest non-Goldstone
hadrons, respects Mhi ≈ 1 GeV, then one should identify4

k0 ∼ Q. Hence, χEFT should be well convergent in the k ∼ k0

momentum region—in other words, beyond-LO corrections
should not offset a significant deficiency in the LO result.
In addition, it seems appealing to have a LO interaction that
provides a satisfactory description of the phenomenological
scattering matrix on a qualitative level, i.e., in its gross
features—for instance, not only its poles but also its eventual
zeros and changes of sign. This concept appears particularly
reasonable if one adheres to the idea that only the LO part of
the potential should be treated nonperturbatively, while NνLO
terms should start contributing at νth order in distorted-wave
perturbation theory, as argued in Refs. [15,27,37–42].

To accomplish the vision just described, one confronts the
fact that the attraction provided by the short-range term C0

3Actually, for the particular case of the 1S0 wave, the four-nucleon
diagram with no derivative and two pion-mass insertions, which
gives rise to a pointlike D2m2

π interaction, happens to break this rule
and is nominally as relevant as the C0 vertex [14]. This observation,
however, remains inconsequential in the pure-nucleon sector, pro-
vided that the pion mass is treated as a constant.

4Such an assumption is in good agreement with the LO nature of
OPE in the 1S0 wave since, in terms of power counting, this relies on
MNN ∼ Q, where MNN sets the inverse strength of OPE in this wave;
recall that k0 happens to be only ≈15% numerically larger than MNN

(see Ref. [36] for a different approach to this).
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in the Weinberg scheme is too strong to capture the amplitude
zero at any reasonable momentum. Actually, the LO Weinberg
prediction for this channel is a phase shift that becomes ap-
proximately constant (≈60 ◦) in the middle-range region (k �
100 MeV all the way up to the pion-production threshold) pro-
vided that a reasonably hard momentum cutoff is employed
(� � 500 MeV, where a more precise estimate depends on
the chosen regularization prescription). In Ref. [21], another
formulation of the short-range part of the LO potential was
proposed in order to subsume the amplitude zero.

To see how this fact can be exploited here, start by con-
sidering the part of the χEFT Lagrangian relevant for the
two-nucleon 1S0 channel in the standard arrangement,

L (W)
χ = 1

2

(
∂μπ · ∂μπ − m2

ππ2
)

+ N†

[
i∂0 +

→
∇i2

2mN
− gA

2 fπ
τ · (

→
σ ·

→
∇ ) π

]
N

− C0
(
NT P1S0

N
)† · (

NT P1S0
N

) + · · · , (1)

where π and N denote the pion isotriplet and nu-
cleon isodoublet fields with isospin-averaged masses mπ =
138.04 MeV and mN = 938.92 MeV, gA = 1.26 and fπ =
92.4 MeV are the axial-coupling and pion-decay constants,
P1S0

= σ2ττ2/
√

8 is the two-nucleon projector in terms of

the Pauli matrices
→
σ (τ) acting on spin (isospin) space, and

the ellipsis stands for more complicated terms suppressed
by negative powers of the breakdown scale. Applying the
usual Feynman rules in momentum space, the 1S0 partial-wave
projected two-nucleon potential is obtained to be

V (W)
χ (p′, p) = C0 + Vπ (p′, p), (2)

where p (p′) is the magnitude of the relative momentum
of the incoming (outgoing) nucleons, while the long-range
component of the interaction is

Vπ (p′, p) = 1

mN

∫ ∞

0
dr r2 j0(p′r)Uπ (r) j0(pr), (3)

j0(x) = x−1 sin x being the zeroth-order spherical Bessel
function of the first kind, and

Uπ (r)=− m3
π

MNN
Y (mπ r), MNN = 16π f 2

π

g2
AmN

, Y (x)= e−x

x
.

(4)

Besides, C0 has been redefined with respect to Eq. (1) through
C0 + 4π/(mN MNN ) → C0. The off-shell scattering matrix is
then nonperturbatively found by solving the S-wave projected
Lippmann-Schwinger equation

T (p′, p; k) = V (p′, p) + 2

π

∫ ∞

0
dq

V (p′, q) q2 T (q, p; k)

(k2 − q2)/mN + i0+
(5)

for V (p′, p) ≡ V (W)
χ (p′, p). However, this happens to be sin-

gular, as one can see by the fact that the integral in Eq. (5)
is linearly divergent; thus, a regularization prescription must
be used. To be consistent with our adoption of potentials in
the remaining partial waves from Ref. [30], we will apply

a nonlocal regulator for the short-range component of the
interaction and a local regulator for the long-range one,

C0 → fS(p′/�)C0 fS(p/�), fS(x) = e−x2
; (6)

Uπ (r) → Uπ (r) fL(r/R), fL(x) = (1 − e−x2
) 6, (7)

where the coordinate and momentum cutoffs R and � verify
R� = 2, so that∫

d3k

(2π )3
ei�k·�r fS(k/�) ∝ fS(r/R) (8)

is fulfilled. The nonperturbative phase shift is obtained from
the on-shell scattering matrix,

δ(k) = 1

2i
log [1 − 2ikmN T (k, k; k)]. (9)

The value of C0 is found by imposing the renormalization
condition

lim
k→0

k cot δ(k) = −1

a
. (10)

If one chooses R = 0.9 fm (� = 439 MeV), then C0 =
−(440 MeV)−2.

The proposal of Ref. [21] is to remedy the excess of
attraction of the interaction (2) through resumming into LO
subleading terms that are repulsive enough to render the
amplitude zero. This is done by means of a reparametrization
of Eq. (1) grounded on the introduction of two auxiliary
“dibaryon” [43] fields φ1 and φ2 such that the effective
Lagrangian becomes

L (2φ)
χ = 1

2

(
∂μπ · ∂μπ − m2

ππ2
)

+ N†

[
i∂0 +

→
∇i2

2mN
− gA

2 fπ
τ · (

→
σ ·

→
∇ ) π

]
N

+
∑
j=1,2

{
φ†

j ·
[
Δ j + c j

(
i∂0 +

→
∇i2

4mN

) ]
φ j

−
√

4π

mN
(φ†

j · NT P1S0
N + H.c.)

}
+ · · · , (11)

where the two-dibaryon low-energy couplings (LECs)—the
residual masses Δ j and the kinetic factors c j—admit expan-
sions in powers of Q/Mhi; for notational simplicity, here we
will abbreviate Δ j ≡ Δ[0]

j and c j ≡ c[0]
j , with the superscript

[0] referring to the LO contribution. Then, the number of free
parameters at LO is reduced from four to three by adopting
the prescription c1 ≡ 0, thus yielding a potential given by
an energy-dependent term (associated with two LECs) plus
a constant, namely

V (2φ)
χ (p′, p, k) = 1

mN

(
1

Δ1
+ 1

Δ2 + c2k2/mN

)
+ Vπ (p′, p)

(12)
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(1/Δ1 + 1/MNN → 1/Δ1). Then one can fit to [21]

lim
k→0

k cot δ(k) = −1

a
,

lim
k→0

∂

∂k2
k cot δ(k) = r0

2
, (13)

δ(k0) = 0,

with r0 = 2.7 fm being the 1S0 np effective range. In
Ref. [21], it is shown that Eq. (12) yields a surprisingly good
description of the phenomenological 1S0 phase shift [33] in
the whole elastic regime. However, note that this interaction is
energy dependent, which is often a drawback in calculations
beyond the two-body sector—in general, it is unclear how
to define the pair energy on which the pair potential would
depend.

In this work, we adopt a heuristic approach by exploring
a momentum-dependent interaction such that its on-shell ver-
sion coincides with Eq. (12). This can be done [44] in terms
of the introduction of an auxiliary isovector field

� = NT

[
γ 2 − 1

4
(

→
∇ −

←
∇ )2

]− 1
2

P1S0
N

= NT

[
1

γ
+ 1

8γ 3
(

→
∇ −

←
∇ )2 + · · ·

]
P1S0

N, (14)

so that the effective Lagrangian becomes

L(�)
χ = 1

2

(
∂μπ · ∂μπ − m2

ππ2
)

+N†

[
i∂0 +

→
∇i2

2mN
− gA

2 fπ
τ · (

→
σ ·

→
∇ )π

]
N

− 4π

mN

[
γ 2

�1
�† · � + 1

�2

(
NT P1S0

N
)† · (

NT P1S0
N

)]
+ . . . , (15)

giving rise to a separable-plus-constant short-range potential

V (�)
χ (p′, p) = 1

mN

[
1

�1
F (p′/γ )F (p/γ ) + 1

�2

]
+Vπ (p′, p),

F (x) = (1 + x2)−
1
2 (16)

(1/�2 + 1/MNN → 1/�2), which is again supplemented
by Eq. (13).5 The constant term 1/�2 in the potential (16)

5In the MNN → ∞ limit of the interaction (16), Eq. (5) admits an
analytic solution and one can see explicitly that the resulting on-
shell amplitude coincides with the one arising from the MNN → ∞
version of the interaction (12). Also, it is interesting to note that
this “pionless” limit of Eq. (16) is compatible with a positive effec-
tive range, thus circumventing the Wigner-bound issues [45,46] of
momentum-dependent contact potentials such as the ones explored
in Ref. [47]. This observation is consistent with the conclusions
of Ref. [48], provided that the structure in Eq. (16) is seen as the
infinite resummation of interaction terms that appear in standard
pionless EFT, where the coefficients in front of those terms are fixed
beforehand.

emerges from the four-nucleon term in the Lagrangian (15),
similar to the case of C0 in the potential (2) and the Lagrangian
(1). Furthermore, the equivalence between Eqs. (15) and
(16) can be checked by expanding both expressions at low
momenta and comparing term by term using the standard
formalism employed in the literature; see, e.g., Ref. [49].
We solve Eq. (5) with V (p′, p) ≡ V ()

χ (p′, p), by means of
a regularization strategy analogous to the one of Eqs. (6) and
(7), for R = 0.9 fm. Through the best fit to Eq. (13), we find
�1 = −58 MeV, �2 = 96 MeV, and γ = 476 MeV.

In Fig. 1, we plot the 1S0 phase shifts arising from the
potentials V (W)

χ (p′, p) and V (�)
χ (p′, p) incorporating the reg-

ularization prescription and the renormalization conditions
detailed above, together with the partial-wave analysis (PWA)
of Ref. [32]. Note that the best fit corresponding to the
V (�)

χ (p′, p) interaction yields a good reproduction of the
phenomenological curve for momenta up to ≈300 MeV, but
fails to reproduce the amplitude zero at the correct location,
shifting it ≈10% to the right. However, this is a regulator
artifact—increasing slightly the momentum cutoff � would
remedy this flaw [21]. Besides, for larger cutoffs (� � Mhi),
the difference between the curves emerging from both po-
tentials becomes greater (see Fig. 7 of Ref. [21], where a
sharp-cutoff regularization prescription is adopted).

While it might seem reasonable to investigate the regulator
dependence of our proposed interaction, this would take us
beyond the scope of our present goal. That is, we aim here
only to demonstrate the order or magnitude of the effects that
are obtained with an existing regulator scheme.

Once the LECs of Eq. (16) are determined, the two-body
matrix elements (TBMEs) of this interaction in the HO basis
are found through sandwiching between corresponding HO
states |n, �〉:
V (1S0 )

n′n ≡ 〈n′, 0 |V (�)
χ | n, 0〉

= 2

π

∫ ∞

0
d p′

∫ ∞

0
d p p′2 p2ψ∗

n′0(p′)V (�)
χ (p′, p)ψn0(p)

= 1

mN

{
2

π

∫ ∞

0
d p′

∫ ∞

0
d p p′2 p2ψ∗

n′0(p′) fS(p′/�)

×
[

1

�1
F (p′/γ )F (p/γ ) + 1

�2

]
fS(p/�) ψn0(p)

+
∫ ∞

0
dr r2 �∗

n′0(r)Uπ (r) fL(r/R) �n0(r)

}
, (17)

with ψn�(p) and �n�(r) the momentum- and coordinate-space
representations of the radial basis functions at radial quantum
number n and orbital angular momentum �, given by [50]

ψn�(p) = (−1)n

√
2�(n + 1)b3

�
(
n + � + 3

2

) (pb)�e− p2b2

2 L
(�+ 1

2 )
n (p2b2) ;

�n�(r) =
√

2�(n + 1)

�
(
n + � + 3

2

)
b3

(r/b)�e− r2

2b2 L
(�+ 1

2 )
n (r2/b2), (18)

where b = √
2/(mN�) is the HO length, � being the HO

frequency, and L
(�+ 1

2 )
n is a generalized Laguerre polynomial.

These TBMEs are then transformed to the single-particle
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basis, supplementing contributions in other partial waves from
the LENPIC[0] two-nucleon interaction [24–26] for imple-
menting in our many-body calculations.

III. STUDY OF LIGHT NUCLEI

For our initial application to light nuclei, we selectively
investigate the ground-state properties of 3H, 4He, and 6He
using the NCSM approach. Our NCSM calculations have
been carried out on the supercomputer Cori, a Cray XC40
system at the National Energy Research Scientific Comput-
ing Center (NERSC), by means of the highly parallelized
nuclear-structure eigensolver known as many-fermion dy-
namics for nuclei (MFDn) [51–53]. The nuclear observables
have been calculated as functions of the HO energy h̄� =
15 MeV, 17.5 MeV, . . . , h̄�max, where h̄�max has been cho-
sen for each nucleus to provide a visual impression of the
convergence (ranging from h̄�max = 50 MeV for the loosely
bound 6He to h̄�max = 70 MeV for the tightly bound 4He).
Our results have been obtained for different values of the
parameter Nmax = 6, 8, . . . , 20 (for 3H); 6, 8, . . . , 16 (for
4He); and 4, 6, . . . , 14 (for 6He). These values of Nmax are
both convenient and sufficient for our purposes. We recall
that this parameter represents the maximum number of HO
excitation quanta that can be shared among the A nucleons
above the minimum-energy configuration. Both h̄� and Nmax

give a measure of the infrared and ultraviolet cutoffs and fully
determine the model space [54–56]. The accurate infrared
scale for the model-space truncation of the NCSM basis was
derived and demonstrated in Ref. [57]. However, instead of an
infrared-extrapolation prescription, here we use the simplest
extrapolation methods for energies and radii suggested in
Refs. [58,59], respectively. These are sufficiently accurate for
our purposes and clearly show, for those nuclei studied here,
the improvements induced by the suggested modification to
the NN interaction.

A. Ground-state energies

The results on ground-state energies of 3H, 4He, and 6He
are shown in Fig. 2: Left panels present the results obtained
with the original LENPIC[0] interaction [24–26,30], while
right panels show the results obtained with the same inter-
action modified in the 1S0 channel as described above. We
observe that the proposed modification removes much of the
overbinding inherent to the conventional LO potential. At the
same time, the convergence of the calculations as a function
of Nmax remains of a similar quality. This can be inferred from
the fact that, for increasing Nmax parameter, the results become
gradually independent of the HO energy quanta.

In order to extract the extrapolated ground-state energy
E∞, we adopt the simple Extrapolation B of Ref. [58], based
on the phenomenological relation

E (Nmax, h̄�) = A(h̄�) exp[−c(h̄�)Nmax] + E∞(h̄�). (19)

0 50 100 150 200 250 300 350 400
k [MeV]

-10

0

10

20

30

40

50

60

70

δ 1S
0

[d
eg

]

Vχ

Vχ
PWA’93

FIG. 1. 1S0 phase shift (in degrees) as a function of the center-
of-mass momentum (in MeV) for the potentials (2) and (16), with
the regularization prescriptions (6) and (7) (R = 0.9 fm) and the
renormalization conditions (10) and (13) respectively, depicted as
dashed (red) and dotdashed (blue) curves. The solid (black) line is
the phase shift extracted from the partial-wave analysis of Ref. [32].

Knowing E (Nmax, h̄�) for Nmax = {N∗
max − 2, N∗

max, N∗
max +

2}, one can easily solve

E∞(h̄�)= E2(N∗
max, h̄�)−E (N∗

max−2, h̄�) E (N∗
max+2, h̄�)

2E (N∗
max, h̄�)−E (N∗

max−2, h̄�)−E (N∗
max+2, h̄�)

.

(20)

In our extrapolations, we have taken N∗
max = 18, 14, 12

for 3H, 4He, 6He respectively. We have observed that the
extrapolated ground-state energies display a reasonable h̄�

independence in the intermediate region h̄� = (30–50) MeV.
To be specific, we choose E∞(h̄�) such that the difference
E (N∗

max + 2, h̄�) − E∞(h̄�) is minimized [58].
The uncertainties in E∞(h̄�), depicted as horizontal bands

in Fig. 2, have been determined through applying Eq. (20)
with N∗

max = 16, 12, 10 for 3H, 4He, 6He respectively. Still,
there is the caveat that the upper uncertainty of an extrapolated
result should not extend higher than the result for the largest
Nmax in consideration; note that the variational principle guar-
antees that, for any finite truncation of the model space,
each eigenvalue provides an upper bound for the ground-state
energy in the full model space. We apply such principle in
its strong (or global) version, meaning that our extrapolated
energy can never lie above the minimum of the largest Nmax

curve. This said, one also needs to be careful to not simply
choose the error associated to the optimal h̄� from which the
corresponding central value was extracted. This is due to the
fact that the extrapolated results from two consecutive sets of
Nmax tend to cross in the close neighborhood of such optimal
h̄�, thus leading to underestimated uncertainties when a
small h̄� step is used. Instead, we examined the uncertainties
around the optimal h̄� value (mostly above it) in order to
obtain such uncertainties.

We summarize our results in Table I, showing that the
overbinding is reduced by about 70% for the three nuclei.
Besides, notice that in our calculations the 4He ground state
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FIG. 2. Ground-state energies Eg.s. and E g.s. of 3H, 4He, and 6He with LENPIC[0] (2) [24–26,30] and modified LENPIC[0] (16) interactions
respectively, with the regularization prescription of Eqs. (6) and (7) and a coordinate cutoff R = 0.9 fm, together with the corresponding
experimental values. For both potentials, the infinite-Nmax extrapolated results and the associated uncertainties shown by black bands have
been obtained through Eq. (20) (see the main text for further explanations).

exhibits a faster Nmax convergence than the 3H ground state,
similar to what is observed with other NN interactions (see,
e.g., Refs. [58,60]). However, note that for both potentials

studied here, we find that 6He is above the 4He + n + n
threshold. This is an inconvenience that appears with other
interactions though; see, e.g., Ref. [61] and the beyond-LO
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TABLE I. Extrapolated ground-state energies Eg.s. and E g.s. of
3H, 4He, 6He with LENPIC[0] [24–26,30] and modified LENPIC[0] in-
teractions respectively. Note that the asymmetric character of the 4He
intervals of confidence is due to the suppression of the positive error
by the variational principle. Our results for Eg.s.(3H) and Eg.s.(4He)
are to be compared with the ones reported in Ref. [25] (−11.747 and
−48.39 MeV, respectively), where the charge dependence of the NN
interaction is explicitly taken into account, allowing us to conclude
that its effect is small for these nuclei.

Ground-state energies

Nucleus Eg.s [MeV] E g.s [MeV] E (exp)
g.s [MeV]

3H −11.88 ± 0.03 −9.303 ± 0.005 −8.42
4He −48.507+0.001

−0.040 −34.936+0.005
−0.010 −28.30

6He −44.9 ± 0.5 −31.9 ± 0.3 −29.27

results of Ref. [25]. Yet, the Daejeon16 and JISP16 NN
interactions do succeed in amending such an issue; see, e.g.,
Ref. [60] and references therein.

B. Point-proton RMS radii

Our results for the point-proton RMS radii of 3H and 4He
are plotted in Fig. 3. Note that, since 6He appears unbound
with respect to the 4He + n + n threshold (see Table I), the
6He point-proton radius is not meaningful for the two interac-
tions studied here.

Unlike the energy, which is sensitive to intermediate- and
short-range correlations, the RMS-radius operator is a long-
range operator. In general, long-range operators display a
poorer convergence with Nmax. This is due to the fact that
the HO basis produces density distributions with Gaussian
fall-off at large distances, while exponential fall-off is the
physically expected behavior. Hence, increasing the size of the
model space increases the radial extent of the NCSM density
distribution, but it does not circumvent its unphysical damping
with respect to the true density distribution. Extracting a
robust extrapolation of the point-proton RMS radii would thus
require new developments and/or larger basis spaces. We note
that in the literature there are phenomenological prescriptions
accounting for the dependence of the radii on the size of
the model space analogous to Eq. (20) for the energies [62].

FIG. 3. Point-proton RMS radii rp and rp of 3H and 4He with LENPIC[0] (2) [24–26] and modified LENPIC[0] (16) interactions respectively,
with the regularization prescription of Eqs. (6) and (7) and a coordinate cutoff R = 0.9 fm. The dashed black (green) band represents the
experimental error (the uncertainty of our estimated result). Note that the upper (lower) limit of the latter was obtained from the highest
(lowest) point where two curves with different Nmax cross each other.
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TABLE II. Point-proton RMS radii rp and rp of 3H and 4He
with LENPIC[0] [24–26,30] and modified LENPIC[0] interactions
respectively. Note that the “experimental” point-proton radii are
extracted from the experimental charge radii given in Refs. [64,65].

Point-proton RMS radii

Nucleus rp [fm] rp [fm] r (exp)
p [fm]

3H 1.3 ± 0.1 1.5 ± 0.1 1.587 ± 0.096
4He 0.99 ± 0.01 1.22 ± 0.01 1.455 ± 0.011

Theoretical approaches, able to obtain extrapolations of long-
range observables through analyses of infrared properties of
the HO basis, are also available [55,63]. However, in this work
we will adopt the prescription of taking as our guess for the
estimated radius the crossing point of the h̄� dependence of
the radii obtained with different Nmax [59]; see Table II. For
both nuclei, we note that the extra repulsion induced by the
modified LENPIC[0] interaction results in the crossing point
being shifted to the left (i.e., it appears for smaller values
of h̄�) with respect to the original LENPIC[0] interaction.
The overall effect of the modified interaction is to produce
a point-proton RMS radius that is larger than the one pro-
duced by the original interaction, in closer agreement with
experiment.

We see that the modification of the LO chiral potential
described in Sec. II allowed us to produce new LO results
for two nuclear magnitudes, namely the ground-state energy
and the point-proton RMS radius, of three positive-parity light
nuclei. These predictions are closer to experiment than the
LO results of Ref. [25] obtained under the assumption of
NDA. In particular, we notice that the excess of NN attraction
anticipated by Weinberg power counting at LO generates, for
these nuclei, an overestimation of the binding energies and
an underestimation of the radii that can be both easily and
significantly improved with our proposal.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have explored the consequences in the
description of light nuclei produced by a rearrangement of
the short-range part of a two-nucleon chiral potential that
is most commonly employed in current ab initio calcula-
tions of light nuclei, i.e., the one grounded on the Weinberg
power counting. We have followed Ref. [21] in promoting
subleading (repulsive) interaction terms that capture, already
at leading order in the effective expansion, the zero of the 1S0

partial-wave amplitude—a zero that appears at a relatively
soft scattering momentum according to experiment. We re-
mark that the proposal here relies merely on the treatment
of such momentum as a low-energy scale. Furthermore, the
1S0 channel amplitude is unique in displaying such a low-
lying zero along with a very shallow pole. We distinguish
the situation in the 1S0 channel from the 3S1 channel (where
the amplitude zero lies beyond the pion-production threshold)
and from the 3P0 amplitude (which turns around at a lower
energy but contains no low-energy pole). The scattering in
these latter two channels is qualitatively well captured at

leading order—either by the Weinberg scheme for cutoffs
below the breakdown scale of the theory [66,67] or for a
wider cutoff range through certain renormalization-consistent
modifications of the Weinberg prescription [15,38–41].

We have shown that the minimal change in the power
counting invoked in this work significantly helps to improve
the leading-order results, at the level of the ground-state en-
ergies and point-proton radii, of the 3H, 4He, and 6He nuclei.
In particular, the excess of attraction of the 1S0 two-nucleon
interaction brought by the Weinberg scheme at leading order
yields a pattern of overbinding in the ground-state energies
and underprediction of the radii for those nuclei [25]. We
show that this deficiency can be addressed by the inclu-
sion of repulsive terms as leading-order effects. This may
also help to alleviate the pressure on higher orders of the
effective expansion, thus opening a new avenue for poten-
tially improved convergence with respect to increasing chiral
order.

Of course, before a claim of convergence of this rear-
rangement can be made, one needs to produce results be-
yond leading order in the expansion for observables. We
intend to pursue this task in future work. Then, getting 6He
bound with respect to 4He, unlike what we found at lead-
ing order (see Sec. III), will be a relevant test of consis-
tency for our approach. We also need to study how charge-
dependent and charge-asymmetric terms should be encoded
in our proposed potential expansion, in the spirit of what
was done in Ref. [68] for Weinberg’s power counting; see
also the recent work of Ref. [69], which demonstrates that a
charge-independence-breaking short-range term needs to be
promoted to leading order for consistency with the nonpertur-
bative inclusion of electromagnetic effects in the two-nucleon
potential.

The path forward has significant uncertainties. Note that—
in spite of some exceptions, such as the recent work of
Ref. [70]—the general way to proceed in current ab initio
calculations is, following Weinberg’s original idea [6,7], to
treat subleading terms of the potential on the same footing
as its leading part (i.e., nonperturbatively). However, some
authors [15,27,37–42] argue that, in order not to undermine
cutoff independence of observables, such subleading contribu-
tions need to be added as perturbations on top of the infinitely
iterated leading-order potential. Still, other authors [17–20]
disagree with this conception, as they claim that cutoff de-
pendence of observables is guaranteed to be reasonably mild
provided that one sticks to cutoff values that are softer than
the breakdown scale of the EFT—typically, below (500–600)
MeV in ab initio calculations.

It is worth recalling that cutoff-convergence issues of the
Weinberg counting already emerge in the two-nucleon sector
at leading order itself, as first noticed in Ref. [15]. Such issues
arise in those channels where one-pion exchange—which
is prescribed to be leading order under the assumption of
naive dimensional analysis—is both singular and attractive.
That is, in light of the 1/r3 divergence of the potential at
small r, the leading-order amplitude does not converge for
large enough cutoffs if no repulsive contact term is em-
ployed. However, in Weinberg power counting a contact term
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affecting a partial wave with orbital angular momentum � is
prescribed to contribute no less than 2� orders down with
respect to leading order. Yet, one can easily check that the
3P0 amplitude becomes ill defined when cutoffs in the range
500 MeV–1 GeV are used unless an unexpected contact term
with two derivatives is promoted from next-to-next-to-leading
order to leading order. But, since there is an infinite number
of partial waves where one-pion exchange is both singular
and attractive, Refs. [15,38–41] advocate to treat one-pion
exchange as a subleading (perturbative) correction in those
channels where the centrifugal barrier becomes effective. In
particular, the 3P0 channel might be the only partial wave with
� � 1 where one-pion exchange needs to be retained at leading
order, as first pointed out in Ref. [71]; such a hypothesis is
backed by the more recent work of Refs. [72,73]. Hence, in
the future we plan to promote the 3P0 contact term to leading
order and see how this may improve the description of heavier
nuclei. We remark, however, that such a modification in the
Weinberg counting is mainly motivated by renormalization
requirements, unlike the one proposed here, which was aimed
at improving the agreement with phenomenological evidence.
Finally, we comment that cutoff dependence of observables

was not studied here, but it will be addressed in future
work.
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